A Complete Method for the Synthesis of
Linear Ranking Functions

Andreas Podelski and Andrey Rybalchenko

Max-Planck-Institut fir Informatik
Saarbriicken, Germany

Abstract. We present an automated method for proving the termina-
tion of an unnested program loop by synthesizing linear ranking func-
tions. The method is complete. Namely, if a linear ranking function exists
then it will be discovered by our method. The method relies on the fact
that we can obtain the linear ranking functions of the program loop as
the solutions of a system of linear inequalities that we derive from the
program loop. The method is used as a subroutine in a method for prov-
ing termination and other liveness properties of more general programs
via transition invariants; see [PR03].

1 Introduction

The verification of termination and other liveness properties of programs is a
difficult problem. It requires the discovery of invariants and ranking functions
to prove the termination of program loops.

We present a complete and efficient method for the synthesis of linear ranking
functions for unnested program loops whose guards and update statements use
linear arithmetic expressions. We have implemented the method. Preliminary
experiments show that the method is efficient not only in theory but also in
practice.

Roughly, the method works as follows. Given a program loop for which we
want to find a linear ranking function, we construct a corresponding system
of linear inequalities over rationals. As we show, the solutions of this system
encode the linear ranking functions of the program loop. That is, we can check
the existence of a linear ranking function by constraint solving. If it exists, a
linear ranking function can be constructed from a solution of the system of
linear inequalities, a solution that we obtain by constraint solving. If the system
has no solutions then (and only then) a linear ranking function does not exist.
As a consequence of our approach, one can use existing highly-optimized tools
for linear programming as the engine in a complete method (to our knowledge
the first) for the synthesis of linear ranking functions.

We admit unnested program loops with nondeterministic update statements.
This is potentially useful to model read statements. It is strictly required in the
context where we employ our method, described next.

In a work described elsewhere [PR03], we show that one can reduce the

test of termination and other liveness properties (in the presence of fairness

assumptions) to the test of termination of unnested program loops. That is,
we use the algorithm described in this paper as a subroutine in the software
model checking method for liveness properties via transition invariants proposed
in [PRO3]. The experiments that we present in this paper stem from this context.

2 Unnested Program Loops

We formalize the notion of unnested program loops by a class of programs that
are built using a single “while” statement and that satisfy the following condi-
tions:

— the loop condition is a conjunction of atomic propositions,
— the loop body may only contain update statements,
— all update statements are executed simultaneously.

We call this class simple while programs. Pseudo-code notation for the programs
of this class is given below.

while (Cond; and ... and Cond,,) do
Simultaneous Updates

od

We consider the subclass of simple while programs built using linear arith-
metic expressions over program variables.

Definition 1. A linear arithmetic simple while (LASW) program over the tuple
of program variables © = (x1,...,x,) is a simple while program such that:

— program variables have integer domain,
— every atomic proposition in the loop condition is a linear inequality over
(unprimed) program variables:

Ty + -+ Ty Sc(h

— every update statement s a linear inequality over unprimed and primed pro-
gram variables

0 ! !
ayxy +---+a,r, <arr + -+ apty, + ag.

Note that we allow the left-hand side of an update statement to be a linear
expression over program variables, and that an update can be nondeterministic,
e.g., ' +y' < x+2y—1. This is necessary, because we use simple while programs,
and LASW programs in particular, to approximate the transitive closure of a
transition relation (see Section 4).

We define a program state to be a valuation of program variables. The set
of all program states is called the program domain. The transition relation de-
noted by the loop body of an LASW program is the set of all pairs of program
states (s, s') such that the state s satisfies the loop condition, and (s, s') satisfies

each update statement. A {race is a sequence of states such that each pair of
consecutive states belongs to the transition relation of the loop body.

We observe that the transition relation of a LASW program can be expressed
by a system of inequalities over unprimed and primed program variables. The
translation procedure is straightforward. For the rest of this paper, we assume
that an LASW program over the tuple of program variables © = (z1,...,2,)
(treated as a column vector) can be represented by the system

an(z) <

of inequalities. We identify an LASW program with the corresponding system
of inequalities.

Ezample 1. The following program loop with nondeterministic updates

while (i —j > 1) do
(i,j) := (i — Nat,j + Pos)
od

is represented by the following system of inequalities.

—i+j< -1
—i+i' <0
j—j <1

Note that the relations between program variables denoted by the nondetermin-
istic update statements i := i — Nat and j := j+ Pos, where Nat and Pos stand
for any nonnegative and positive integer number respectively, can be expressed
by the inequalities i’ <7 and j' > j + 1.

3 The Algorithm

We say that a simple while program is terminating if the program domain is
well-founded by the transition relation of the loop body of the program, i.e.,
if there is no infinite sequence {s;}2, of program states such that each pair
(si, Si+1), where ¢ > 1, is an element of the transition relation.

The following theorem allows us to use linear programming over rationals
to test the existence of a linear ranking function, and thus to test a sufficient
condition for termination of LASW programs. The corresponding algorithm is
shown in Figure 1.

Theorem 1. A linear arithmetic simple while program given by the system

(AA’)('”,) < b is terminating if there exist nonnegative vectors over rationals
€T

input
program (AA")(%) <b
begin
if exists rational-valued A1 and)\ such that
A, 2220
AMA =0
(M —2X2)A=0
A(A+A)=0
A2b <0
then
return(“Program Terminates”)
else
return(“Linear ranking function does not exist”)
end.

Given A; and A2, solutions of the systems above, define

r & XA &g def —Mib, and § def —X2b. A linear ranking

function p is defined by
def | Tz if exists 2’ such that (AA")(%) <b,
p(z) = @

0o — O otherwise.

Fig. 1. Termination Test and Synthesis of Linear Ranking Functions.

A1 and Ao such that the following system is satisfiable.

MA'=0 (1a)

(A1 — A)A =0 (1b)
Aa(A4+ A)=0 (1c)
A2b <0 (1d)

Proof. Let the pair of nonnegative (row) vectors A\; and Ay be a solution of the
system (1a) (1d). For every x and 2’ such that (AA")(7) < b, by assumption

that A; > 0, we have A\;(AA") (f,) < A1b. We carry out the following sequence of
transformations.

A (Az + A'z") < \b
A]ACU +)\]A’Z‘I S)\]b

_AQAI:L' S)\]b by (1C)

From the assumption Ay > 0 follows Ay (AA") (;,) < A»b. Then, we continue with

)\2 (A:U + AIZEI) S)\Qb
)\QA.’E +)\QA’.’I,‘I S)\Qb
7}\214’.7: +)\214’.7:/ S)\Qb bY (1(’)

We define r " XA/, 69 2 M\b, and § & —Aob. Then, we have rz > & and
ra’ <rz—0 for all and 2’ such that (AA")(%) < b. Due to (1d) we have § > 0.
We define a function p as shown in Figure 1. Any program trace induces a
strictly descending sequence of values under p that is bounded from below, and
the difference between two consecutive values is at least §. Since no such infinite
sequence exists, the program is terminating. ad

The theorem above states a sufficient condition for termination. We observe
that if the condition applies then a linear ranking function, i.e., a linear arith-
metic expression over program variables which maps program states into a well-
founded domain, exists. The following theorem states that our termination test
is complete for the programs with linear ranking functions.

Theorem 2. If there exists a linear ranking function for the linear arithmetic
simple while program with nonempty transition relation then the termination
condition of Theorem 1 applies.

Proof. Let the vector r together with the constants dq and § > 0 define a linear
ranking function. Then, for all pairs z and z' such that (AA")(%) < b we have
rez > 09 and rz’ <rz — 9.

By the non-emptiness of the transition relation, the system (AA')(%) < b
has at least one solution. Hence, we can apply the ‘affine’ form of Farkas’ lemma
(in [Sch86]), from which follows that there exists dj and ¢’ such that &) > do,
0" > 4§, and each of the inequalities —rz < —§) and —rz + rz’ < —4¢' is a
nonnegative linear combination of the inequalities of the system (AA')(%) < b.

This means that there exist nonnegative rational-valued vectors Ay and A5 such
that

M(AAY (D) = —ra
Ab= =4

and

Ao (AAN(E) = —ro +ra’

Aob = —4".
After multiplication and simplification we obtain
MA=—r MA' =0
A= —r XA =71,

from which equations (1a)—(1c) follow directly. Since ¢’ > § > 0, we have A2b < 0,
i.e., the equation (1d) holds. O

The following corollary is an immediate consequence of Theorems 1 and 2.

Corollary 1. Ezistence of linear ranking functions for linear arithmetic simple
while programs with nonempty transition relation is decidable in polynomial time.

Not every LASW program has a linear ranking function (see the following
example).

Ezxample 2. Consider the following program.

while (z > 0) do
r:=—2x+ 10
od

The program is terminating, but it does not have a linear ranking function.
For termination proof consider the following ranking function into the domain
{0, ..., 3} well-founded by the less-than relation <.

if ©€{0,1,2},
if =€ {4,5},
if z =3,

otherwise.

O W NN =

It can be easily tested that the system (1a) (1d) is not satisfiable for the LASW
program

-10

N 0
2 1 (,) <! 10
—9-1) * ~10

By Theorem 2, this implies that no linear ranking function exists for the program
above. O

The following example illustrates an application of the algorithm based on The-
orem 1.

Example 8. We prove termination of the LASW program from Example 1. The
program translates to the system (AA’)(QI”,) < b, where:

T

11 00
A% [~10], AL 10
01 0-1

. -1
s (f). b (o
J -1

Let A1 = (A}, A5, M%) and Ay = (A}, AL, A\Y). The system (1a)—(1d) is feasible, it
has the following solutions:

! ! "

2 — A3 M1 W
I\ !
1 _>‘2 _)‘37

! "no\n

X AL > 0.

Since the system is feasible the program is terminating. We construct a linear

ranking function following the algorithm in Figure 1. We define r def A A"

5o " —A\ib, and 6 % —X,b, and obtain r = (A, — M), d = & = \,. Taking

! =1 we obtain the following ranking function.

(i.§) i—g ifi-j5>1,
27 - .
Pt 0 otherwise.

4 Application to General Programs

In this section we illustrate how our method for proving termination of program
loops can be used in the software model checking method for liveness properties
via transition invariants proposed in [PR03]. That method applies to general-
purpose programs (imperative, concurrent, ...); it is different from other ap-
proaches to special classes of infinite-state systems, e.g. [BS99]. We then provide
experimental results obtained by applying the transition invariants approach for
proving termination of singular value decomposition program.

Software model checking for liveness properties is a new approach for the au-
tomated verification of liveness properties of infinite-state systems by the com-
putation of transition invariants. A transition invariant is an over-approximation
of the transitive closure of the transition relation of the system. The presenta-
tion of a transition invariant as nothing but a finite set of unnested program
loops. One can characterize the validity of a liveness property via the existence
of transition invariants [PR03]. Namely, the liveness property is valid if each of
the unnested program loops is terminating.

That is, the general method for the verification of liveness properties de-
scribed in [PRO3] is parameterized by an algorithm that tests whether each
unnested program loop in the transition invariant is terminating. i.e., a proce-
dure implementing a termination test for simple while programs.

Proving termination of simple while programs built using linear arithmetic
expressions is required for the verification of a large class of software systems,
e.g., liveness properties for mutual exclusion protocols (bakery, ticket), termi-
nation proofs of imperative programs (sorting algorithms, numerical algorithms
dealing with matrices).

4.1 Sorting Program

This example illustrates the approach from [PR03] and the role of simple while
programs.

We consider the program shown in Figure 2 implementing a sorting algo-
rithm. For legibility, we concentrate on the skeleton shown on the right, which

int n,i,j,A[n];
i=n;
11: while (i>=0) { 11: if (i>=0) j=0;
j=0;
12: while (j<=i-1) { 12: if (i-j>=1) {
if (A[j1>=A[j+1]) j=j+1;
swap(A[j],A[j+11); goto 12;
j=j+1; } else {
i=i-1;
i=i-1; goto 11;
} }

Fig. 2. Sorting program and its skeleton.

consists of the statements st1, st2, st3.

11: if (i>=0) { (i,j):=(1,0); goto 12; } /* stl x/
12: if (i-j>=1) { (i,j):=(i,j+1); goto 12; } /* st2 x/
12: if (i-j<1) { (i,j):=(i-1,j); goto 11; } /* st3 x/

We read, for example, the first program statement as: if the current program
location is labeled by 11 and the “if” condition is satisfied then update the
variables according to the update expressions and change the current label la-
bel to 12. Note that the updates are performed simultaneously (“concurrent”
assignments in [Dij76]).

Each of the ‘simple’ programs below must be read as a one-line program.

11: if (true) { (i,j):=(Any,Any); goto 12; } /% al x/
12: if (true) { (i,j):=(Any,Any); goto 11; } /% a2 x/
11: if (i>=0) { (i,j):=(i-Pos,Any); goto 11; } /% a3 */
12: if (i>=0) { (i,j):=(i-Pos,Any); goto 12; } /% a4 */
12: if (i-j>=1) { (i,j):=(i-Nat,j+Pos); goto 12; } /% ab */

Note the nondeterministic update expressions, e.g., after execution of i:=Any
the value of variable i could by any integer, the update i:=i-Pos decrements
the value of i by at least one.

We notice that st1 is approximated by al, st2 by ab and st3 by a2. This
means that every transition induced by execution of the statement stl can
also be achieved executing a single step of al. In fact, every sequence of pro-
gram statements is approximated by one of al, ..., ab. We say that the set
{a1,...,ab} is a transition invariant in our terminology.

For example, every sequence of program statements that leads from 12 to
12 is approximated by a4 if it passes through 11, and by a5 otherwise. The
following table assigns to each ‘simple’ program the set of sequences of program
statements that it approximates. All non-assigned sequences are not feasible.

_

al|st1(st2|st3st1)*
(st2|st3st1)*st3
a3|st1(st2|st3st1)*st3
a4|(st2|st3st1)*st3st1(st2|st3stl)”

ablst2™

N

a

w

According to the formal development in [PRO3], the transition invariant
above is ‘strong enough’ to prove termination, which means: each of its ‘sim-
ple’ programs, viewed in isolation, is terminating.

Termination is obvious for ‘simple’ programs that do not refer to a loop in the
control flow graph, like the ‘simple’ programs a1 and a2. The ‘simple’ programs
of the form

1n: if (cond) {updates; goto 1n; }
translate to a while loop

1n: while (cond) { updates; }.

The ‘simple’ programs that translate to a while loop are in fact simple while
programs whose termination proofs we study in this paper.

Next, we describe an application of the transition invariants method with
termination test in Figure 1 as a subroutine for checking whether a transition
invariant is strong enough. We prove termination of a program implementing
singular value decomposition algorithm.

4.2 Program with Unbounded Nondeterminism

We consider the program shown in Figure 3. It has a nondeterministic choice
at the location labeled by 1. The value of the variable y is chosen nondeter-
ministically in the first branch. Termination proof for this program requires a
lexicographic ranking function. The program translates to the statements st1
and st2:

1: if (x>=0) { (x,y):=(x-1,Any); @goto 1; } /* stl x/

1: if (y>=0) { (x,y):=(x,y-1); goto 1; } /* st2 */

The transition invariant computed by our tool consists of the following ‘sim-
ple’ programs.

1: if (x>=0) { (x,y):=(x-Pos,Any); goto 1; } /* al x/

1: if (y>=0) { (x,y):=(Any,y-Pos); goto 1; } /* a2 x/

int x, y;
1: if (%) { if (x>=0) { x--; read(y); }
if (x>=0) {
x--; read(y);
}
} else {
if (y>=0) y--;
} y y if (y>=0) y--;
goto 1:

Fig. 3. Program with unbounded nondeterminism.

Both ‘simple’ programs, viewed in isolation, are terminating. Hence, the program
with unbounded nondeterminism, shown in Figure 3 is terminating.

4.3 Singular Value Decomposition Program

We considered an algorithm for constructing the singular value decomposition
(SVD) of a matrix. SVD is a set of techniques for dealing with sets of equations or
matrices that are either singular or numerically very close to singular [PTVF92].
A matrix A is singular if it does not have a matrix inverse A~! such that A4~ =
I, where I is the identity matrix.

Singular value decomposition of the matrix A whose number of rows m is
greater or equal to its number of columns n is of the form

A=UwvVT,

where U is an m x n column-orthogonal matrix, W is an n x n diagonal matrix
with positive or zero elements (called singular values), and the transpose matrix
of an n x n orthogonal matrix V. Orthogonality of the matrices U and V means
that their columns are orthogonal, i.e.,

vt =vvt =1

The SVD decomposition always exists, and is unique up to permutation of the
columns of U, elements of W and columns of V| or taking linear combinations of
any columns of U and V whose corresponding elements of W are exactly equal.

SVD can be used in numerically difficult cases for solving sets of equations,
constructing an orthogonal basis of a vector space, or for matrix approxima-
tion [PTVF92].

We proved termination of a program implementing the SVD algorithm based
on a routine described in [GVL96]. The program was taken from [PTVF92]. It
is written in C and contains 163 lines of code with 42 loops in the control-flow
graph, nested up to 4 levels.

10

We used our transition invariant generator to compute a transition invariant
for the SVD program. Proving the transition invariant to be strong enough
required testing termination of 219 LASW programs.

We applied our implementation of the algorithm on Figure 1, which was
done in SICStus Prolog [Lab01] using the built-in constraint solver for linear
arithmetic [Hol95]. Proving termination required 800 ms on a 2.6 GHz Xeon
computer running Linux, which is in average 3.6 ms per each LASW program.

5 Related Work

The verification of termination and other liveness properties of programs re-
quires the discovery of invariants as well as of ranking functions to prove
the termination of program loops. Here, we relate our work not to methods
for the automated discovery of invariants (see e.g. [Kar76,CH78, BBM97]), but
to the more closely related topic of methods for the automated synthesis of
ranking functions, a topic that has received increasing attention in the last
years [GCGL02,CS01,DGG00,Mes96,MNO01,CS02,5G91].

As a first general remark, a major difference between our work and all the
others lies in the fact that we obtain a completeness result.

A heuristic-based approach for discovery of ranking functions is described
in [DGGO0]. It inspects the program source code for ranking function candidates.
This method restricted to programs where the ranking function is exhibited
already in the source code.

The algorithm in [CS01] extracts a linear ranking function of an unnested
program loop by manipulating polyhedral cones; these represent the transition
relation of the loop and the loop invariant. Their approach depends on the
strength of the invariant generator, which they call in a subroutine to propose
bounded linear arithmetic expression. The algorithm requires exponential space
in the worst case. A generalization of that algorithm described in [CS02] for
programs with complex control structures detects linear ranking functions for
strongly connected components in the control-flow graph of more general pro-
grams. In both cases the algorithm is restricted to bounded nondeterminism.
Moreover, it cannot handle loops with non-monotonic decrease, such as in while
(x>=0) {x=x+1; x=x-1;}.

The method for discovery of nonnegative linear combinations of bound ar-
gument sizes for proving termination of logic programs in [SG91] relies on auto-
matically inferred inter-argument constraints. The duality theory of linear pro-
gramming is applied to discover combinations that decrease during top-down
execution of recursive rules; the determined combinations are bounded from
below since argument sizes are always positive. This method was applied for
inferring termination of constraint logic programs [Mes96], and in systems for
inferring termination of logic programs [MN01,GCGL02]. Carried over into the
context of imperative program loops, the inference of inter-argument constraints
corresponds to calls to the invariant generator, as in [CS01]; the same restrictions
as mentioned above apply.

11

6 Conclusion

We have presented the to our knowledge first complete algorithm for the synthe-
sis of linear ranking functions for a small but natural and well-motivated class
of programs, namely, unnested program loops built using linear arithmetic ex-
pressions (LASW programs). The method is guaranteed to find a linear ranking
function, and therefore to prove termination, if a linear ranking function exists.
The existence of a linear ranking function for an LASW program is equivalent to
the satisfiability of the system of linear inequalities derived from the program.

The termination check for LASW programs is a subroutine in the auto-
mated method for the verification of termination and other liveness properties
of general-purpose programs via the computation of transition invariants [PR03].

We have implemented the proposed algorithm using an efficient implemen-
tation of a solver for linear programming over rationals [Hol95]. We applied our
implementation to prove termination of a singular value decomposition program,
which required termination proofs for 219 LASW programs. This and other ex-
periments indicate the practical potention of the algorithm.

Considering future work, we would like to find a characterization of LASW
programs that do always have linear ranking functions, i.e., for which our al-
gorithm decides termination. Another direction of work is to handle unnested
program loops built using expressions other than linear arithmetic.

Acknowledgments. We thank Bernd Finkbeiner, Konstantin Korovin, and Uwe
Waldmann for comments on this paper. We thank Ramesh Kumar for his help
with the SVD example.

References

[BBM97] Nikolaj Bjgrner, Anca Browne, and Zohar Manna. Automatic generation
of invariants and intermediate assertions. Theoretical Computer Science,
173(1):49 87, 1997.

[BS99] Olaf Burkart and Bernhard Steffen. Model checking the full modal mu-
calculus for infinite sequential processes. Theoretical Computer Science,
221:251 270, 1999.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proc. of POPL 1978: Symp. on
Principles of Programming Languages, pages 84-97. ACM Press, 1978.

[CS01] Michael Colon and Henny Sipma. Synthesis of linear ranking functions. In
Tiziana Margaria and Wang Yi, editors, Proc. of TACAS 2001: Tools and
Algorithms for the Construction and Analysis of Systems, volume 2031 of
LNCS, pages 67-81. Springer-Verlag, 2001.

[CS02] Michael Colon and Henny Sipma. Practical methods for proving program
termination. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proc.
of CAV 2002: Computer Aided Verification, volume 2404 of LNCS, pages
442 454. Springer-Verlag, 2002.

[DGGO0] Dennis Dams, Rob Gerth, and Orna Grumberg. A heuristic for the auto-
matic generation of ranking functions. In Workshop on Advances in Verifi-
cation (WAVe’00), pages 1-8, 2000.

12

[Di76)

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall Series in
Automatic Computation. Prentice Hall, Englewood Cliffs, NJ, 1976.

[GCGLO2] Samir Genaim, Michael Codish, John P. Gallagher, and Vitaly Lagoon.

[GVLI6]
[Hol95]
[Kar76]

[Lab01]

[Mes96]

[MNO1]

[PRO3]

[PTVF92]

[Schs6]

[SGI1]

Combining norms to prove termination. In Agostino Cortesi, editor, Proc.
of VMCAI 2002: Verification, Model Checking, and Abstract Interpretation,
volume 2294 of LNCS, pages 126-138. Springer-Verlag, 2002.

Gene H. Golub and Charles F. Van Loan. Matriz Computations; 3rd edition.
Johns Hopkins Univ Press, 3rd edition, 1996.

Christian Holzbaur. OFAI clp(q,r) Manual, Edition 1.5.3. Austrian Re-
search Institute for Artificial Intelligence, Vienna, 1995. TR-95-09.
Michael Karr. Affine relationships among variables of a program. Acta
Informatica, 6:133-151, 1976.

The Intelligent Systems Laboratory. SICStus Prolog User’s Manual. Swedish
Institute of Computer Science, PO Box 1263 SE-164 29 Kista, Sweden, Oc-
tober 2001. Release 3.8.7.

Fred Mesnard. Inferring left-terminating classes of queries for constraint
logic programs. In Michael J. Maher, editor, Proc. of JICSLP 1996: Joint
Int. Conf. and Symp. on Logic Programming, pages 7-21. MIT Press, 1996.
Fred Mesnard and Ulrich Neumerkel. Applying static analysis techniques
for inferring termination conditions of logic programs. In Patrick Cousot,
editor, Proc. of SAS 2001: Symp. on Static Analysis, volume 2126 of LNCS,
pages 93 110. Springer-Verlag, 2001.

Andreas Podelski and Andrey Rybalchenko. Software model checking of
liveness properties via transition invariants. Technical report, Max-Plank-
Institut fiir Informatik, 2003.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian
P . Flannery. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, 1992.

Alexander Schrijver. Theory of Linear and Integer Programming. John
Wiley & Sons Ltd., 1986.

Kirack Sohn and Allen Van Gelder. Termination detection in logic pro-
grams using argument sizes. In Proc. of PODS 1991: Symp. on Principles
of Database Systems, pages 216-226. ACM Press, 1991.

13

