Co-definite Set Constraints

Witold Charatonik Andreas Podelski

Max-Planck-Institut fiir Informatik
Im Stadtwald, D-66123 Saarbriicken, Germany
{witold;podelski}@mpi-sb.mpg.de

Abstract

In this paper, we introduce the class of co-definite set constraints. This is a natural sub-
class of set constraints which, when satisfiable, have a greatest solution. It is practically
motivated by the set-based analysis of logic programs with the greatest-model semantics.
We present an algorithm solving co-definite set constraints and show that their satisfia-
bility problem is DEXPTIME-complete.

1 Introduction

Set constraints and set-based analysis form an established research topic. It combines theo-
retical investigations ranging from expressiveness and decidability to program semantics and
domain theory, with direct practical applications to type inference, optimization and verifi-
cation of imperative, functional, logic and reactive programs (see [1, 14, 20] for overviews).

In set-based analysis, the problem of reasoning about runtime properties of programs is
transferred to the problem of solving set constraints. The design of a system for a particular
program analysis problem (for a particular class of programs) involves two steps: (1) single
out a subclass of set constraints and devise an algorithm for solving set constraints in this
subclass, and (2) define a mapping P — ¢p from programs into this subclass and show the
soundness of the abstraction of P by a distinguished solution of ¢p. The advantage with
respect to other static-analysis methods is the common to all constraint-based approaches:
the logical formulation of the problems allows for their classification and for the reuse of
optimized implementations. It is thus important to classify the arising constraint-solving
problems and devise algorithms for them.

In this paper, we define the subclass of co-definite set constraints. This is a natural
subclass of set constraints which, when satisfiable, have a greatest solution. We present an
algorithm solving co-definite set constraints in DEXPTIME. The algorithm involves some novel
adaptations of standard techniques for solving set constraints to the new situation where the
solutions range over sets of infinite trees and must be constructed by co-induction (and not by
induction as with least solutions). We show how one can encode the problem of emptiness of
intersection of tree automata in a direct way. Thus, the satisfiability problem is DEXPTIME-
complete.

The new class of co-definite set constraints is practically motivated by the set-based anal-
ysis of reactive logic programs (called perpetual processes in [16]). Their semantics is defined
by the greatest fixpoint of the immediate consequence operator Tp, which at the same time is

the greatest model. The semantics is defined not over finite but over infinite trees.! Our al-
gorithm accounts for either case. In [21], we show that the greatest solution of the co-definite
set constraint ¢p that we assign to the program P is larger than the greatest model of P. The
error diagnosis for concurrent constraint programs (the static prediction of the inevitability
of failure or deadlock), which is presented in [21], is based on that fact and employs the
algorithm presented here.

Related work. Heintze and Jaffar [11, 12] formulated the general problem of solving set
constraints and gave the first decidability result for a subclass of set constraints which they
called definite, for the reason that all satisfiable constraints in the class have a least solution.
They have singled out this subclass for the analysis of logic programs with the (standard)
least model semantics. The present authors [7] have recently characterized the complexity for
this subclass (DEXPTIME). The general problem is NEXPTIME-complete [4, 5].

Definite and co-definite set constraints are not dual with respect to their syntax. We
must exclude constraints of the form f(z,y) C f(a,a) U f(b,b) which do not have a greatest
solution. They are also not dual with respect to the constraint solving problem (although the
two complexity characterizations might suggest this). Although one can directly dualize the
Boolean set operators and also the tree constructors, this is not the case for the projection
operator. The complement of the application of the projection is generally not the application
of the projection of the complement. The algorithm given in Section 4.2 in [11] does therefore
not compute the greatest solution. (The greatest solution of z = f(*l)l(f(a,a)) is {a}, but
starting from this constraint that algorithm yields x = 1 whose greatest solution is (). This
is because x = dual(f;) (f(a,a))) = f()(dual(f(a,a))) = f} (U f(Qa, HUF(T, Q) =T
and thus z = dual(T) = L1).

In definite set constraints, union is expressed via conjunction (e.g., aUb C y by a C yAb C y
and need not be dealt with explicitly. Co-definite set constraints employ union as an operator
over terms, and conjunction introduces intersection additionally. The next example shows
that our algorithm must combine (“multiply out”) intersections of unions of terms. (How can
this be done in single exponential time? - There are exponentially many union terms.) The
co-definite set constraint

y € fla,c) U fle,b) A (1)
y C fla,) UF(d,b)

is satisfiable in conjunction with a C f(_l)l(y) but unsatisfiable in conjunction with b C f(g)l(y)

Analyzing logic programs with the [east model semantics, Mishra [18] has used a class of
set constraints with a non-standard interpretation over non-empty path-closed sets of finite
trees, which also have a greatest solution. In that interpretation, f(z,y) C f(a,a)Uf(b,b) has
a greatest solution (which assigns both variables z and y the set {a, b}). Heintze and Jaffar [13]
have shown that Mishra’s analysis is less accurate than theirs in two ways, due to the choice
of the greatest solution and due to the choice of the non-standard interpretation, respectively.

'The reactive logic program P = p(f(z)) & p(x) illustrates the difference between infinite and finite
trees. When interpreted over finite trees, the greatest model is the empty set; otherwise, it is the singleton
containing the infinite tree f(f(f(...))). In either case, the execution of the call of p(x) does not fail. More
generally, one can characterize finite failure by the greatest model in the case of infinite trees, but not in the
case of finite trees. In [21] we use co-definite set constraints to approximate the greatest model; we have to
interpret them over sets of infinite trees in order to apply this approximation to the prediction of finite failure
of logic programs and of errors in concurrent constraint programs.

We show that the choice of the non-standard interpretation over path-closed sets of trees is not
traded with by a lower complexity. Our hardness proof for co-definite set constraints carries
over to Mishra’s set constraints. This is because the tree automata used in the reduction
can be chosen deterministic [22]. We give an algorithm solving Mishra’s set constraints in
exponential time for comparison and for completeness. Path-closed interpretations are a
subtle issue which has to be dealt with carefully.

2 Definitions

A (general) set expression e is built up by: variables, tree constructors, the Boolean set
operators and the projection operator [11]. If e does not contain the complement operator,
then e is called a positive set expression. A (general) set constraint is a conjunction of
inclusions of the form e C €.

Definition 1 A co-definite set constraint is a conjunction of inclusions ¢; C e, between
positive set expressions, where the set expressions e; on the left-hand side of C are furthermore
restricted to contain only variables, constants, unary function symbols and the union operator
(that is, no projection, intersection or function symbol of arity greater than one).

We assume given a ranked alphabet ¥ fixing the arity n > 0 of its function symbols f,g,...
and constant symbols a,b,..., and an infinite set Var of variables z,y, z,u,v,w,.... The
formulations and results in this paper apply to either case: finite trees, or infinite trees. We
then say simply #rees and use the notation Tx. We reserve Ty° for the set of infinite trees,
whose branches are infinite or finite.

We interpret set constraints over P(T%), the domain of sets of trees over the signature X.
That is, the values of variables are sets of trees, or: a valuation is a mapping « : Var — P(T%).
Tree constructors are interpreted as functions over sets of trees: the constant a is interpreted
as {a}, the function f applied to the sets Si,...,S, yields the set {f(¢t1,...,t,) | t1 €
Si,...,tn € Sp}. The application of the projection operator for a function symbol f and the
k-th argument position on a set S of trees is defined by f@;(S) ={t| Itr,...tn + tx =
b f(try e stpy ..o ty) € S}

The next remark (which is proven by checking all cases of possible inclusions) implies an
important property: if a co-definite set constraint is satisfiable, then it has a greatest solution.

Remark 1 The solutions of co-definite set constraints are closed under arbitrary union. O

For the formal treatment, we will use co-definite set constraints in a restricted form, which
we will simply call constraints.

Definition 2 (restricted syntax: constraints ¢) A constraint ¢ is a co-definite set con-
straint in the syntax given below.

T = gx|f(a)|nUn|L
© = a§x|x§7|x§f(7€)1(u)|<p1/\<p2

Since we can no longer express the empty set by a Nb, we have added the symbol L, which
is the neutral element wrt. U. By convention, the empty union is L (i.e., J = L); similarly,

NH=T.

l.xCyAnyCz—xCz2

2.2CnUy, yCr -2z C U

3. yAu C f(})l(ﬁ) = Niw CUjug; where ;U uij = f@;(fﬂa’)’)
4. yAugf(;)l(x)%ugJ_ if f@;(fﬁﬁ’):l
5. a Cxz Az CJ; filu;) — false if a# f; for all 4

6. a Cx Az C L — false

Table 1: Satisfiability-complete axiom scheme for constraints ¢

We write @ for the tuple (uy,...,u,) of variables and ¢ for the tuple (¢y,...,%,) of trees,
where n > 0 is given implicitly (e.g., in z C f(u) by the arity of the function symbol f). We
write @ C o for {u; C vi,...,up C vy}. As is usual, we identify a conjunction of constraints
with the set of all conjuncts.

We use Var(E) for the set of variables contained in the expression E, and Terms(yp) for
the sets of all flat terms 7 (i.e., without union) occurring in ¢. We use (y) for the set of all
function symbols occurring in ¢; this set is finite.?

Given a co-definite set constraint, we can transform it into an equivalent one of restricted
syntax easily. We eliminate function and union symbols on the left-hand side by using the
equivalences f(e) C ¢ iff e C f(*l)l(e’) and e; Uey C e iff e; C eAey C e. We flatten the
terms on the right-hand side by replacing intersection with conjunction and by introducing a
fresh variable for each subexpression occurring on the right-hand side of inclusions. Since we
are interested in the greatest solution of the initial constraint, it is enough to write only one
inclusion (instead of equality) between the new variable and the expression. For example, we
replace the inclusion z C f(*l)l(yl Nys) by z C f(*l)1 (y) Ny C y1 Ay C yo. The transformation
does not change the complexity measure. The number of new variables is linear in the size of
the initial constraint.

3 Algorithm

The algorithm for solving a constraint (y computes the fixpoint under the operator that,
applied to a constraint ¢, adds the direct consequences of ¢ under the axioms given in Table 1
to . The algorithm is presented in Table 2. In the case of Axioms 3 and 4, the operator
adds only the direct consequences that are obtained by applications where the constraint
is instantiated to ¢ (as opposed to: a subpart of).> Computing the expressions f(;;(x,fy)

*We do not want to assume that the signature ¥ is finite. This is important for the use of set constraints
in (modular) program analysis: the constructor alphabet is never fully known, or is assumed to be extensible.
3 Applying the axioms to subparts of a constraint with, say, m conjuncts would amount to applying the
axioms 2™ times. All applications to proper subparts are redundant. For example, u C v could be inferred
from ¢ = u C f(_l)l(m),m C f(v),z C a under Axiom 3; it is redundant wrt. the consequence v C L by

¥ = $o
Repeat
apply Axioms 1 and 2 to ¢
apply Axioms 3 and 4 to ¢ where « is instantiated to ¢
apply Axioms 5 and 6 to ¢
add all direct direct consequences to ¢
Until ¢ does not change or ¢ contains false
If ¢ contains false
then “ipq is unsatisfiable”
else “pyp is satisfiable” and @ := ¢ (“p is closed form of ¢g”)

Table 2: Algorithm solving a constraint g

in Axioms 3 and 4 is involved; we will discuss this in Section 3.3.

A constraint obtained as the fixpoint under the operator of the algorithm is in closed form,
and ¢ is the closed form of . Note that ¢ is not closed under all (possibly redundant)
consequences under the axioms in Table 1.

We will next introduce automaton constraints 1 (Section 3.1). These form a subclass
of co-definite set constraints which directly exhibit their greatest solution (Remark 2). We
can construct, with each constraint ¢, an automaton constraint ¥(y) (Section 3.2). We use
U(yp) for computing the expressions f(;)l(x,y) in Axioms 3 and 4 (Section 3.3). (To give
some intuition: As indicated by the example (1) in the introduction, we cannot apply the
projection operator on terms 7 directly but we have to first combine them and transform
them into expressions with intersections below the function symbol. This leads us out of the
restricted syntax of constraints ¢.) Furthermore, if the constraint ¢ is in closed form then it
has the same greatest solution as ¥(yp).

Before going into more detail, we summarize the main results of this section.

Theorem 1 The algorithm in Table 2 computes the closed form ¢ of the input constraint ¢
in single exponential time. The constraint ¢ is unsatisfiable if and only if ¢* contains false;
otherwise, the greatest solution of ¢ is presented by ¥(p).

Proof. See Propositions 1, 2 and 3 in Section 4. O
Theorem 2 The satisfiability problem for co-definite set constraints is DEXPTIME-complete.

Proof. See Propositions 3 and 4 in Section 5. O

3.1 Automaton constraints v

We assume given a set g-Var of variables ¢, ¢, ... which we want to distinguish from variables
z,y,... in Var. Later we will take variables ¢ that stand for intersections z; N ... Nz of
variables z; € Var.

instantiating v with ¢. Note that conjunction A is idempotent; the conjunct v C f(;;(x) in the axioms is, of

course, instantiated to a conjunct of .

Definition 3 (automaton constraint () An automaton constraint ¢ is a conjunction of
the form ¢ = A; ¢ C E; such that

e the variables ¢; are pairwise different, and
e each expression Ej; is either L or of the form {J; f;(g;).

A variable ¢ is unbounded in 1 if ¢ is different from all ¢;’s on the left-hand side in .

The interpretation of automaton constraints is as usual. A valuation is now a mapping from
g-Var to sets. The next remark justifies the name automaton constraint.

Remark 2 The value of a variable ¢ in the greatest solution of an automaton constraint
is the language L£(A¥(q)) of the top-down tree automaton A¥(g) constructed directly from
1; in particular, the emptiness of the value of ¢ can be tested in polynomial time.

We give the construction of the automata and the proof of the remark in the appendix since
we did not find it in the literature; it must, however, be folklore (cf. also [2]).

3.2 Constructing ¥(yp)

Given a constraint ¢, we can extract an automaton constraint WU (y) from ¢ which is equivalent
to its subpart consisting of the conjuncts of the form x C U, f;(4;). The variables ¢ in ()
stand for intersections x1 N ... N x, of variables x; € Var. We note N-Var the set that these
intersection variables ¢ form. We use also (.S as another notation for ¢ that stands for the
intersection of the variables in S C Var. The proper upper bounds T of a variable z in ¢ are
the terms of the form 7 = U, f;(u;) such that z C 7 lies in . Note that 7 may be L.

We next define their combination, for variables z as well as for intersections q.

Definition 4 (lub(z,), lub(q,»)) The least upper bound of the variable z in the con-
straint ¢ is an intersection of terms T,

Wbl) = U i) |2 € U f()) lies i .
J J

The least upper bound of an intersection ¢ = z1 N...Nxy, is lub(q,) = iz, lub(z;, @).

If does not have proper upper bounds in ¢ then lub(z,p) = T. Also, note that TN...NT =T
and 7TNT =7.

The expression E = [ub(q,) is an intersection of unions of proper terms f(u). We
transform such an expression F into a union of terms f(7) over intersections of variables g,
hereby using a variant of the disjunctive normal form (the computation of the standard one
would here require doubly-exponential time).

Definition 5 (FDNF) The full disjunctive normal form of E = NicrUjcy, fij(ij) is a
union of terms f(g) over intersection variables g,

FDNF(E) =U{f(NS1,-...NS) | f€ZEX, n=arity(f),
Si1 C Var(E),...,S, C Var(E),
Vieldjed;: f:fij/\uij,lESl/\.../\uij,nESn}.

for all ¢ € N-Var(y)

E, = lub(q,) (Definition 4)
E, = FDNF(E,) (Definition 5)
U(p) = Agen-Var(p) 4 € E; (Definition 6)
construct transition table of automata AY®) (q) (same for all q; Definition 10 in Appendiz)
for all ¢ € N-Var(y)
test emptiness of L(AY®)(q)) (Remark 2)
for all inclusions u C f(;)l(x) in ¢
Efy, = pre- f(;)l(E;, T(p)) (Definition 7)
f) (@, 0) == FONF(E},) (Definition 8)

Table 3: Subprocedure computing f@;(x,) for all inclusions u C f(;)l (x) in constraint ¢

Example 1 If £ = (f(u,v1) U f(u,v2)) N f(u,u) then FDNF(E) is the expression f(u,u N
v1) U f(u,uNwg) U...U f(uNwv; Nwg,uNup Nog) which contains redundant disjuncts. Using
the convention that |J@, we take E = a Nb and have FDNF(E) = L. If E = T then
FNDF(E)=T.

Given a constraint ¢, we note N-Var(y) the set of all ¢ standing for intersections z1N...Nxy,
of variables z; € Var(p) occurring in ¢. We now can give the construction of the automaton
constraint W(p) from the constraint .

Definition 6 (¥(y)) The automaton constraint corresponding to the constraint ¢ is

U(p) = A qC FDNF(lub(q,).
qeN-Var(yp)

We discard from ¥(¢p) all inclusions of the form ¢ C T.

3.3 Projection f(;)l(a:,w)

Given a conjunct u C f(;)l(x) in the constraint ¢, and the (unique) expression E, such that
z C E, lies in ¥(p), we want to express f(;;(EI) (the projection f(;)l applied to E,) as an
expression F, such that we can add v C E, to .

Assume that E, is of the form E, = f(q1,...,qn). Then one can infer v C L if the value
of at least one of q1, ..., g, is the empty set in the greatest solution of ¥(p) (we set E, = 1).
This is the case if one of the automata AY(#)(g;) constructed from ¥(y) recognizes the empty
set. This again can be expressed as

LAY (f (g1, ,q0))) =0 (2)

where we set L(AY(f(q1,---,qn))) = F(L(AY(q1)),--.,L(A¥(gn))). Otherwise (i.e., if the
values of q,...,q, are all nonempty, and condition (2) does not hold), one can infer u C g
(we set By = qi).

In general, E; is of the form E, = U; fi(¢i1,-.-,qn;)- Now, assume f(qi,...,q) is a
member of this union. If condition (2) is satisfied, then this member can be discarded from
the union. Otherwise, we add ¢ to the union which forms FE,,.

Definition 7 (pre-f(;)l (E,v)) The k-th pre-projection of f applied to an expression F =
U, fi(¢i1, - -, qin;) with respect to the automaton constraint), is the union of intersections

pre-fiy (B,) = U{ain | £ = fis LAY (filgin, - - gins))) # O}
We set FDNF (L) = L.

By applying the pre-projection we obtain expressions E such that the inclusions u C E
are not yet directly expressible in the restricted syntax of constraints ¢. We can, however,
transform a union of intersection variables into an intersection of unions using a variant of the
conjunctive normal form (the computation of the standard one would here require doubly-
exponential time). We then obtain an expression of the form E' =), U; uij. We can express
u C E' as the conjunction A\;u C U; uij, which we then can add to ¢, remaining within the
restricted syntax of constraints.

Definition 8 (FCNF) The full conjunctive normal form of a union of intersection variables
E = UierNjey, uij is an intersection of unions of variables z € Var,

FCONF(E)=(YJS|S CVar(E), Viel3jeJi: uj €S}
We set FOCNF (L) = 1.
Now, we can compose the operations defined above and obtain the full projection operation.

Definition 9 (f(;)1 (z,¢)) The k-th projection of f € ¥ applied to the variable 2 € Var wrt.
to the constraint ¢ is an intersection of unions of variables u;; € Var,

fiy (%) = FONF (pre-f s (FDNF (lub(, 9)), ¥(0)))-

Given a constraint ¢, we compute the projections f(;)l (z,) simultaneously for all variables z

such that an inclusion v C f(;)l(x) exists in . The corresponding subprocedure is presented
in Table 3.
4 Correctness of the algorithm

The next two lemmas simply express that both full normal forms preserve the meaning of an
expression.

Lemma 1 (FDNF) For any expression E of the form ;e ; Uje s, fij(@ij), the equality a(E) =
a(FDNF(E)) holds for every valuation c.

Proof. To see that a(E) C «(FDNF(E)), transform E into a disjunctive normal form.
Now, using the equality a(f(z) Ng(v)) = 0 for f # g and the equality «(f(uy,...,u,) N
flor, .. vp)) = alf(ur Nvi,...,uy Nvy)), we can transform the result to an expression
such that it is in disjunctive normal form and each disjunct satisfies the condition from the
definition of FDNF'(E).

To see that a(FDNF(E)) C «a(FE), take the partial ordering on tuples of intersections
defined by (N S1,--.,NSk) < (NS],...,NS,) (which we abbreviate by N S < N5 if S; C S!
holds for all 4 = 1,...,n. We observe that, if 1S < NS’, then a(f(NS) U f(NS')) C
a(f(NS)). Discard from FDNF(E) all disjuncts that are not minimal in this ordering, and
call the result F. By the observation above, a(FDNF(E)) = «(F). We have to show that
a(F) C a(E). Take any disjunct f()S) from F. We will show that the value of this disjunct
under « is equal to the value of some disjunct from the disjunctive normal form of E. We
know that for all ¢ € I there exists a j; € J; such that f;;, = f and u;;, € S. Hence, for all
k=1,...,arity(f), it holds that U;c;{uij, s} € Sk, and by the minimality of (]S these two
sets are equal. The expression (;c; f(;j;)) occurs in the disjunctive normal form of E and

a(f(NS)) = elNies f(@i,)- O

Lemma 2 (FCNF) For any expression E of the form U,;c; ey, wij, the equality o(E) =
a(FCNF (E)) holds for every valuation .

Proof. The proof is similar to the proof of Lemma 1; we can take the expression dual to
(replace unions with intersections and vice versa), compute the full disjunctive normal form
(this time over variables, not terms f(@)) and then take once more the dual, which is in
conjunctive normal form. O

Proposition 1 (Soundness) The axioms in Table 1 are valid. In particular, if a constraint
¢ is satisfiable then its closed form ¢© does not contain false.

Proof. The proof is done by inspection of each axiom. The validity of Axioms 3 and 4 follows
from consecutive applications of Lemma 1, Remark 2, and Lemma 2. O

Proposition 2 (Completeness) If the closed form ¢® of a constraint ¢ does not contain
false then ¢ is satisfiable. Moreover, the greatest solution of ¢ is the greatest solution of the
automaton constraint ¥(¢®).

Proof. Let a be the valuation defined by a(z) = L(A(z)), where A(z) is the automaton
corresponding to U(¢®) and the variable . By Remark 2, the unique extension of a to
N-Var(yp) is the greatest solution of ¥(¢®). Below we show that « satisfies each conjunct in
. Since ¢ implies ¥(¢®), this will show that « is the greatest solution of (.

The conjuncts of the form x C J; f;(#@;) are trivially satisfied, since FDNF (lub(z, %)) is
equivalent to an intersection of the expressions (J; fi(u;)).

We will show the satisfaction of the constraints C U; fi(@;) U U;y; (this includes the
case C y) indirectly. Suppose t ¢ «(U; fi(ui) U U;y;); we will show ¢ ¢ a(z). Since
t & a(y;) for all j, the variables y; cannot be unbounded in ¥(¢®). Hence, every variable
y; occurs in a constraint of the form y; C Uy fjk(@;x) in ¢¢ (which includes the case of
empty union y; € 1). Since t ¢ a(FDNF(lub(yj,goc))) for all j, there is a constraint of
the above form in ¢“ such that t & a(Uy, fjk(@jx)). By Axiom 2, ¢ contains a constraint

z C U; filui) UU; Uy fik(tjk) such that ¢ does not belong to the value of the right-hand side
of the inclusion under «. Hence, ¢t & a(x).

The proof for the constraints u C f(;)l(x) is similar. If ¢ & a(f(;)l(x)), then, by the
definition of projection, for all trees ¢1,...,%¢, such that ¢, = ¢t and n is the arity of f,
ft1,...,ty) & a(z). Let FDNF (lub(z,0%)) = U, f;(¢@). Then, for all t,...,t, as above,
b otn) & o(Ug| r=pccacnazoy f(@)- Hence, & & alUgi | =p.ccAtsi(ai) o) 9ik)-
By Axioms 3,4 and Lemma 2, ¢© contains a sequence of constraints equivalent to u C
Ui | f=f1.£0AU(@)) 20} Gk Hence, ¢ & a(u).

The last case are the constraints of the form a C z. Again, if a € a(z) then x is bounded
in U(¢®) and a does not occur in FDNF (lub(z,¢)). But then, by Axiom 5 or 6, false€ o,
which is a contradiction. O

5 Complexity

Proposition 3 (upper bound) The algorithm in Table 2 computes the closed form ¢ of
the input constraint ¢ in single exponential time.

Proof. For an input ¢ of size n, the number of flat terms and variables that occur in ¢ is
bounded by n. Each derived inclusion involves a variable in V(¢) on the left-hand side and a
union of variables and flat terms on the right-hand side. All these flat terms occur in ¢. Thus,
the number of derived inclusions is bounded by n - 2". At each iteration of the algorithm, the
consequences of all (pairwise combinations of) inclusions under Axioms 1-2 are computed.
This amounts to a cost of O((n2")?). Adding consequences of Axioms 3 and 4 is done in
exponential time (say, O(2")) by the lemmas below and by the polynomial time complexity of
the emptiness test for tree automata (also in the case of Biichi tree automata [24]). There may
be at most n2" iterations. Adding consequences of Axioms 5 and 6 costs at most n2™, since the
number of inclusions a C z is bounded by n and number of inclusions with z on the left-hand
side is bounded by 2”. Hence, the whole algorithm runs in time O(((n2")2 42"°) - n2" +n2").

Lemma 3 For any intersection g, FDNF (lub(q,)) can be computed in time exponential in
the size of .

Proof. Let E = lub(q,) and n be the size of ¢. To compute FDNF(FE), we check, for
all f € ¥(p) and all sequences (S1,...,S8)) such that S; C V(E) for i = 1,...,a(f), if
the condition from the definition of FDNF is satisfied. The size of V(E) is at most n, so
the number of terms f(S1,...,N Sq(s)) is bounded by |3()|(2™)F, where k is the maximal
arity of a symbol in (). Hence, the number of these terms is bounded by 2" for some
constant ¢ (note that & < n). To check the condition, we have to run through the constraints
z C U, fj(u;) such that z occurs in the intersection g. The number of such constraints is
bounded by n2". For each such constraint, checking if there exists a j such that f = f; and
uj1 € S1,- .+, Ujacf) € Sy(y) can be done in time polynomial in the size of the constraint and
the sequence (S1,...,S(y)) (which is polynomial in n). Therefore, the whole procedure runs
in time O(2™ - n2" - poly(n)), which is single exponential. O

Lemma 4 For any expression E = J;c; ey, tij, the expression FCNF(E) can be computed
in time exponential in the number of variables in V(E).

10

Proof. The proof is analogous to the proof of the lemma above. O

Proposition 4 (lower bound) The problem of the satisfiability of the co-definite set con-
straints is DEXPTIME-hard.

Proof. The proof follows by the reduction of the problem of the emptiness of the intersection
of tree automata [9].* For given n tree automata, let ¢, ..., ¢, be the constraints bounding
the variables X1,..., X, to the languages of the automata. Then, the constraint

aC f(_l)l(f(a,Xl N...NX,))

is satisfiable if and only if the intersection of the languages is nonempty. O
Since intersection corresponds to conjunction, one can expect the DEXPTIME lower
bound for every formalism of set constraints that can express regular sets of trees.

6 Path-closed set constraints

In this section we will consider the class of set constraints that was originally introduced by
Mishra [18] and which we call path-closed set constraints. The class is syntactically larger;
terms f(x1,...,2,) may occur also on the left-hand side of an inclusion (union on the left-
hand side is trivial). The interpretation is now over non-empty path-closed sets of trees. More
precisely, a valuation « satisfies the inclusion E C E’ between two expressions F and E' if
and only if «(E) is a non-empty set and PC(«a(E)) C PC(«(E")). Here, PC(X) denotes the
path-closure of the set X of trees, i.e., the smallest path-closed set of trees containing X. A
regular set X is path-closed if it is recognized by a deterministic top-down tree automaton [10].
If the constraint in this class is satisfiable, the greatest solution always exists. (This would
not be true if we added the empty set to the interpretation domain; take f(z,y) C L.)

We now define the algorithm for solving path-closed set constraints. In a first step, the
constraints of the form f(z1,...,2,) C 7 with n > 0 are replaced by z; C f(_l)l(T) A...Nxp C

f(:s (7). In a second step, the satisfiability of the obtained constraint is tested. This step uses
our previous algorithm modified as follows. We apply the rule

Uf(ﬁi) = f(UUi,la---aUUi,n)

for function symbols of arity n. Thus we obtain always a deterministic top-down tree au-
tomata. If the value of a variable is determined to be the empty set, then the algorithm
results “unsatisfiable”.

The correctness of the algorithm follows from the fact that for any sequence Si1, ..., Smn
of non-empty sets it holds that PC(U;X; f(Si1,-.-,Sin)) = PC(f(Uix, Si1,---,Uix1 Sin))s
and from the following lemma.

Lemma 5 In the interpretation over path-closed sets defined above, the formula f(z1,...,zy)
C 7 and the formula z; C f(_l)l(T) Ao Nxy C f(;;(T) are equivalent.

“The lower bound requires that the signature contains at least two function symbols, one of them having
arity > 2.

11

Proof. For the one direction, we assume «(f(z1,...,%,)) C «(r). We prove that for
any i = 1,...,n, a(z;) C a(f(;)l(T)). Take any tree t; € a(z;). We need to find trees
t1y.enybiz1ytit1y- -ty such that f(t1,...,t,) € a(7). This is trivial from the non-emptiness
of a(zy),...,a(x,).

For the other direction, we assume «(x;) C a(f(;)1 (7)) for all i. We prove a(f(x1,...,2,)) C
PC(a(r)). Take any f(t1,...,tn) € a(f(z1,...,2,)). We know that t; € a(z;), so t; €
Oé(f(;)l(T)). By the definition of projection, there exist trees t},... ,t;:_l,tg"'l, ..., t for all i
such that f(t,...,t;,...,t%) € a(7). Then, f(t1,...,t,) € PC(a(7)) holds.? O

Theorem 3 The satisfiability problem of path-closed set constraints is DEXPTIME-complete.

Proof. We have shown the upper bound. The lower bound follows from Seidl’s character-
ization of the problem of the emptiness of the intersection for deterministic top-down tree
automata [22]. O

7 Conclusion

We have defined a class of set constraints which arises in program analysis and error diagnosis,
and we have given the complexity-theoretic characterization of its constraint-solving problem.
We have applied our techniques also to the already existing class of path-closed set constraints
and characterized its complexity too.

We now need to refine the abstract fixpoint strategy of our algorithm in order to im-
prove its practical efficiency. In succession to the technical report [6] on which this paper is
based, Devienne, Talbot and Tison [8] have already given a strategy for our algorithm which
can achieve an exponential speedup. Unfortunately, their setup relies on bottom-up tree au-
tomata (in bit-vector representation) and thus, as the authors point out, applies to the case
of finite trees only. Our algorithm uses top-down tree automata and accounts for both cases
(where, again, the case of infinite trees is the only relevant one for analyzing the operational
semantics).

Kozen has given an equational axiomatization of the algebra of sets of trees in [15]. It
would be useful to modify this axiomatization in order to account for the projection operator
and thus fix the algebraic laws underlying our algorithm.

To our knowledge, this is the first time that automata over infinite trees have been used
to represent solutions of set constraints. The represented sets of infinite trees appear in
the v-level in the hierarchy of the fixpoint calculus of Niwinski [19]. The essential difference
between the fixpoint expressions on the v-level and our set constraints formalisms seems to be
the projection operator; for the addition of intersection to the fixpoint expressions see [3]. The
question arises whether the formalism of set constraints can be extended to have solutions in
all levels, i.e., to be able to express all Rabin-recognizable sets. This is related to the addition
of fixpoint operators as in [17] (there, however, not over infinite trees but arbitrary first-order
domains).

’The complexity of the satisfiability test does not change if we add the empty set to the interpretation
domain. Applying the equivalence:

flzi,...;zn) Creo (@ CLH)V.. V@, CLV@ LA .. Az € LA f(z1,...,2,) C 1)

to all constraints of the form f(zi,...,z,) C 7 gives an exponential number of constraints, each of which can
be solved in exponential time; thus, the whole algorithm is single exponential.

12

Appendix

A Automaton constraints and automata

A (finite non-deterministic top-down tree) automaton is a tuple A = (X', Q, 9, ¢sfinit, QT)
consisting of its finite alphabet X' C X, finite set of states @, (non-deterministic) transition
function § : @ x X' — P(Q) (where @ stands for the set of all tuples over @), initial state gs finit
and the set Q1 of all-accept states. The tree automaton A accepts a tree ¢t (or: ¢ lies in the
language L(A) recognized by A) iff there exists a run of A on ¢; this acceptance condition
works for finite as well as for infinite trees. In the case of infinite trees, the automaton
corresponds to a Bilichi tree automaton where all states are final states. The emptiness of
such an automaton can be tested in polynomial time [23]. A run of A on the tree t assigns
to the root the initial state and to each node of ¢ a state ¢ such that: if ¢ is labeled with the
function symbol f € X' of arity k, then the states assigned to the k successor nodes form a
tuple that lies in the set dy(q, f). If the label of the node of ¢ is a constant symbol, then the
set 0y (g, f) must contain the empty tuple. If the state assigned to the node is an all-accept
state, ¢ € Q, then the successor nodes are assigned any states (whether the node label f
lies in the alphabet ¢’ or not).

Given an automaton constraint 1, we first define the family of automata A% (q) (one for
each variable ¢ € g-Var, all with the same transition table d,,) and then show that it recognizes
exactly the greatest solution of).

Definition 10 (A¥(¢)) The automaton corresponding to the automaton constraint ¢ and
the variable ¢y € g-Var(y) is the tuple A¥(qo) = (X(¢), Var(), dy,qo) where

e the alphabet is the set X(¢)) of function symbols occurring in 1;
e the states are the variables ¢ occurring in ;

e the set 0y(q, f), i.e., the transition function d, applied on a state ¢ and a function
symbol f, is

— the set {g; | f; = f} if ¢ C U, f;(q;) is a conjunct in ¢ (which is then unique),
— the empty set) if ¢ C L is a conjunct in ;

e the initial state is qo;
e the all-accept states are the unbounded variables in .

If the variable gy € q-Var does not occur at all in 1, then A¥(qo) = (0, {q0o},0, g0, {q0}) (an
automaton accepting Ty,).

It is clear that L£(A¥(q)) is the empty set if ¢ C L is in ¢ and the set Tx of all trees if ¢ is
unbounded in ¥. More generally, the statement below holds.

Observation 1 The valuation « : ¢ — L(A¥(q)) is the greatest solution of the automaton
constraint 1.

13

Proof. We will first show that any solution § of v is smaller than the valuation a. We
extend [to a mapping over all states of the automata by setting 3(T) = Tx. We will show
that B(q) C a(q) for all states ¢. If 3(q) is empty, then the inclusion is trivially satisfied;
otherwise, take any tree ¢t € $(q). By induction of the depth of the positions p in ¢, we will
construct a run of A¥(g) on t that satisfies the following invariant: If A% (q) is in state ¢’ at
position p, then the subtree ¢|, of ¢ rooted at p belongs to 3(¢).

For the root position, the initial state is ¢ and ¢t € 3(q). Let AY(q) be in state ¢’ at position
p such that ¢|, € 5(¢'). If t|, is a tree of the form f(¢1,...,,), then we will continue the
construction of the run at the positions p.1,...,p.n. If ¢’ is T or an unbounded variable in),
then the automaton goes to the state T in all positions p.1,...,p.n. Since AY(T) recognizes
the set T%; of all trees, our invariant is satisfied. Now suppose ¢ is not unbounded. Since 3 is a
solution, on the right-hand side of the inclusion constraining ¢ in ¢ must occur an expression
of the form f(qi,...,qn), with t|, € B(f(q1,-..,qn)), that is, t; € 5(g;) for i =1,...,n. But
then, by the definition of AY(q), (q1,...,qn) € 0y(¢', f). By taking this transition we satisfy
the invariant and are thus able to extend the definition of the run to all positions in ¢. Hence,
t € a(q).

For the other direction of the proof, we will show that « satisfies every inclusion g C
E in 9. Again, if £L(A¥(q)) is empty, nothing is to show; otherwise, we take an element
t = f(ty,...,t,) from L(AY(q)). By the definition of £L(A¥(q)), there exists a run of AY(q)
on t, starting from ¢q. Let (q, f,q1,...,q,) be the first transition used in this run. By the
definition of a run, there are runs on #; starting from ¢;, and, hence, t; € £(AY(¢;)). That
is, t € f(L(AY(q1)),...,L(AY(qn))) = f(alqr),...,a(g,). By the definition of A¥(q), the
expression F is of the form E = f(q1,...,q,) U E'. Therefore, t € a(E). O

References

[1] A. Aiken. Set constraints: Results, applications and future directions. In Proceedings of the
Workshop on Principles and Practice of Constraint Programming, LNCS 874, pages 326—335.
Springer-Verlag, 1994.

[2] A. Arnold and M. Nivat. Formal computations of non deterministic recursive program schemes.
Mathematical Systems Theory, 13:219-236, 1980.

[3] A. Arnold and D. Niwinski. Fixed point characterization of weak monadic logic definable sets of
trees. In M. Nivat and A. Podelski, editors, Tree Automata and Languages, pages 159-188. North
Holland, 1992.

[4] L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In Fighth
Annual IEEE Symposium on Logic in Computer Science, pages 75-83, 1993.

[5] W. Charatonik and L. Pacholski. Set constraints with projections are in NEXPTIME. In Pro-
ceedings of the 35" Symposium on Foundations of Computer Science, pages 642-653, 1994.

[6] W. Charatonik and A. Podelski. Set constraints for greatest models. Techni-
cal Report MPI-I-97-2-004, Max-Planck-Institut fiir Informatik, April 1997. www.mpi-
sb.mpg.de/~podelski/papers/greatest.html.

[7] W. Charatonik and A. Podelski. Set constraints with intersection. In G. Winskel, editor, Twelfth
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 362-372. IEEE, June
1997.

[8] P. Devienne, J.-M. Talbot, and S. Tison. Solving classes of set constraints with tree automata.
Technical Report IT-303, Laboratoire d’Informatique Fondamentale de Lille, May 1997.

14

[9]

[10]
[11]

[12]

T. Frithwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for logic programs.
In Sizth Annual IEEE Symposium on Logic in Computer Science, pages 300-309, July 1991.

F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, 1984.

N. Heintze and J. Jaffar. A decision procedure for a class of set constraints (extended abstract).
In Fifth Annual IEEE Symposium on Logic in Computer Science, pages 42-51, 1990.

N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic programs. In
Seventeenth Annual ACM Symposium on Principles of Programming Languages, pages 197-209,
January 1990.

N. Heintze and J. Jaffar. Semantic types for logic programs. In F. Pfenning, editor, Types in
Logic Programming, pages 141-156. MIT Press, 1992.

N. Heintze and J. Jaffar. Set constraints and set-based analysis. In Proceedings of the Workshop on
Principles and Practice of Constraint Programming, LNCS 874, pages 281-298. Springer-Verlag,
1994.

D. Kozen. Logical aspects of set constraints. In 1993 Conference on Computer Science Logic,
LNCS 832, pages 175-188. Springer-Verlag, Sept. 1993.

J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-Verlag, Berlin,
Germany, second, extended edition, 1987.

D. A. McAllester, R. Givan, C. Witty, and D. Kozen. Tarskian set constraints. In Proceedings,
11*" Annual IEEE Symposium on Logic in Computer Science, pages 138-147, New Brunswick,
New Jersey, July 1996. IEEE Computer Society Press.

P. Mishra. Towards a theory of types in Prolog. In IEEE International Symposium on Logic
Programming, pages 289-298, 1984.

D. Niwinski. On fixed-point clones. In L. Kott, editor, Proceedings of the 13th International
Conference on Automata, Languages and Programming, volume 226 of Lecture Notes in Computer
Science, pages 464—473. Springer-Verlag, 1986.

L. Pacholski and A. Podelski. Set constraints - a pearl in research on constraints. In G. Smolka,
editor, Proceedings of the Third International Conference on Principles and Practice of Constraint
Programming - CP97, volume 1330 of Springer LNCS, Berlin, Germany, October 1997. Springer-
Verlag.

A. Podelski, W. Charatonik, and M. Miiller. Set-based error diagnosis of concurrent constraint
programs. submitted for publication, 1997.

H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing Letters, 52:57—60,
1994.

W. Thomas. Handbook of Theoretical Computer Science, volume B, chapter Automata on Infinite
Objects, pages 134-191. Elsevier, 1990.

M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal
of Computer and System Sciences, 32, 1986.

15

