
Directional Type Inference for Logic Programs

Witold Charatonik� Andreas Podelski

Max�Planck�Institut f�ur Informatik

Im Stadtwald� D������ Saarbr�ucken

fwitold�podelskig�mpi�sb�mpg�de

Abstract

We follow the set�based approach to directional types proposed by Aiken and Lakshman����
Their type checking algorithm works via set constraint solving and is sound and complete
for given discriminative types� We characterize directional types in model�theoretic terms�
We present an algorithm for inferring directional types� The directional type that we
derive from a logic program P is uniformly at least as precise as any discriminative
directional type of P � i�e�� any directional type out of the class for which the type checking
algorithm of Aiken and Lakshman is sound and complete� We improve their algorithm
as well as their lower bound and thereby settle the complexity �DEXPTIME�complete	 of
the corresponding problem�

� Introduction

Directional types form a type system for logic programs which is based on the view of a
predicate as a directional procedure which� when applied to a tuple of input terms� generates
a tuple of output terms	 There is a rich literature on types and directional types for which we
can give only some entry points	 Directional types occur as predicate pro
les in ���
� as mode
dependencies in ��
� and simply as types in ��� �� �
	 Our use of the terminology �directional
type� stems from ��
	
In ��
� Aiken and Lakshman present an algorithm for automatic type checking of logic

programs wrt	 given directional types	 The algorithm runs in NEXPTIME� they show that
the problem is DEXPTIME�hard in general and PSPACE�hard for discriminative types	 The
algorithm works via set constraint solving� its correctness relies on a connection between the
well�typedness conditions and the set constraints to which they are translated	 The connection
is such that the type check is sound and complete for discriminative types �it is still sound
for general types�	

Our results� In this paper� we answer two questions left open in ��
	 First� we give an
algorithm for inferring directional types	 Second� we establish the DEXPTIME�completeness
of the problem of directional type checking wrt	 discriminative types	
Before presenting details� we must make precise our notion of type inference �there may

be others�	 A program can have many directional types	 For example� we can give the
predicate append �de
ned as usual� the directional type �list� list��� � �list� list� list�� but
also ����� list� � �list� list� list�� as well as the least precise type ������� � �������	 A
directional type T for a program P assigns input types Ip and output types Op to each
predicate p of P	 As is common in static analysis� we assume that the logic program comes
with a query which� wlog	� consists of just one atom main�t�	 Clearly� the choice of T makes
sense only if the input type Imain for the query predicate main contains at least the expected

�On leave from University of Wroc�law� Poland�

�

set of input terms for main 	 Ideally� among all those directional type T that satisfy this
condition� we would like to infer the uniformly �i	e	� for the input types and output types of
all predicates� most precise one	
The uniformly most precise directional type Tmin�P� of a program P together with a

speci
cation of the query input terms does exist� as we will show	 It is� however� not e�ectively
computable in general	 This is naturally the place where abstraction comes in	 We can
compute a directional type Tsb�P�� a regular approximation of Tmin�P� which is de
ned
through the set�based abstraction �a la Heintze and Ja�ar ���
	 There is no objective criterion
to evaluate the quality of the approximation of a non�regular set by a regular one in the
sense that the most precise approximation does not exist� this fact applies also to our type
inference procedure	 We can show� however� that Tsb�P� is uniformly more precise than any
discriminative directional type of P� i	e	� any directional type out of the class for which the
type check of Aiken and Lakshman is sound and complete	
The above comparison is interesting for intrinsic reasons and it indicates that our type

inference procedure produces �good� directional types	 We exploit it furthermore in order
to derive a type checking algorithm whose complexity improves upon the one of the original
algorithm in ��
	 A simple re
nement of the arguments given in ��
 su�ces to make the lower
bound more precise	 We thus settle the complexity �DEXPTIME�complete� of the problem of
directional type checking of logic programs wrt	 discriminative types	
Technically� our results are based on several basic properties of three kinds of abstraction

�and their interrelation�� the set�based abstraction �obtained by Cartesian approximation��
the set�valued abstraction �obtained by replacing membership constraints with set inclusions��
and path closure	 These properties� that we collect in Section �� are of general interest� in
particular� the abstraction by path closure keeps reappearing �see� e	g	� ���� ��� ��� ��� ��
�	
Furthermore� we establish that the directional types of a program P are exactly the models
of an associated logic program PInOut 	 In fact� PInOut is a kind of �magic set transformation�
�see� e	g	� ���
� of P	 We obtain our results �and the soundness and completeness results in ��
�
by combining the model�theoretic characterization of directional types with the properties of
abstractions established in Section �	 In fact� by having factored out general properties of
abstractions from the aspects proper to directional types� we have maybe given a new view
of the results in ��
	

Other related work� Rouzaud and Nguyen�Phong ���
 describe a type system where
types are sets of non�ground terms and express directionality� but these sets must be tuple�
distributive	� Our types need not be tuple�distributive	 In ���
� Codish and Demoen infer
type dependencies for logic programs	 Their techniques �abstract compilation� are quite dif�
ferent from ours and the derived dependencies express all possible input�output relationships	
Probably the work of Heintze and Ja�ar is the one that is most closely related to ours	 This is
not only due to the fact that we use set�based analysis ���
 to approximate the type program	
Some of their papers ���� ��
 contain examples where they compute for each predicate p a
pair of sets Callp and Retp� which can be viewed as �ground� directional type Callp � Retp	
We are not aware� however� of a general� formal treatment of directional types inference in
their work	 Boye in ��
 �see also ��� �
� presents a procedure that infers directional types for
logic programs	 The procedure is not fully automatic �sometimes it requires an interaction
with the user�� it requires the set of possible types to be
nite� and no complexity analysis

�For regular sets of ground terms� all four notions� discriminative� tuple�distributive� path�closed and

recognizable by a deterministic top�down tree automaton� are equivalent�

�

is given	 In our aproach� any regular set of terms is an admissible type� our procedure is
fully automatic in the presence of a query for the program �or lower bounds for input types�
and it runs in single�exponential time	 We refer to ��
 for comparison with still other type
systems	 Most of those interpret types as sets of ground terms� while we interpret types as
sets of non�ground terms	 Most type systems do not express the directionality of predicates	

Future work� One of the obvious directions for future work is implementation	 We already
have a working prototype implementation on top of the saturation�based theorem prover
SPASS ���
	 The
rst results are very promising� due to speci
c theorem�proving techniques
like powerful redundancy criteria� one obtains a decision procedure for the emptiness test that
is quite e�cient on our examples	 We believe that by using the tree�automata techniques
suggested in ���
 together with automata minimization �and conversion to the syntax of
ground set expressions�� we can further improve the e�ciency of our implementation and the
readability of the output	

� Abstractions

Preliminaries� We follow the notation and terminology of ��
 unless speci
ed otherwise	 For
example� we use the symbols p� q� p�� � � � for predicates �instead of f� g� f�� � � � as in ��
� and
write p�t� for predicate atoms �instead of f t�	 Wlog	� all predicates are unary	 Terms t are
of the form x or f�t�� � � � � tn�	 We may write t�x�� � � � � xm
 for t if x�� � � � � xm are the variable
occurrences in t� �we distinguish between multiple occurrences of the same variable�� and
t�t�� � � � � tm
 for the term obtained from t by substituting tj for the occurrence xj 	 A logic
program P is a set of Horn clauses� i	e	� implications of the form p��t��� p��t��� � � � � pn�tn�	 A
program comes with a query ��the main loop�� which� wlog	� is speci
ed by one atom main�t�	
The interpretation of programs� which is de
ned as usual� may be viewed as a mapping
from predicate symbols to sets of trees	 Programs may be viewed as formulas whose free
variables are set�valued �and are referred to via predicate symbols�� hence as a large class of
set constraints	
We will not use �positive� set expressions and set constraints as in ��
 but� instead� logic

programs� for specifying sets of trees as well as for abstraction	 Positive set expressions� which
denote sets of trees� can be readily translated into equivalent alternating tree automata� which
again form the special case of logic programs whose clauses are all of the form

p�f�x�� � � � � xn��� p���x��� � � � � pm��x��� � � � � p�n�xn�� � � � � pmn�xn�

where x�� � � � � xn are pairwise di�erent	 A non�deterministic tree automaton is the special
case where m� � � � � � mn � �� i	e	� a logic program whose clauses are all of the form
p�f�x�� � � � � xn�� � p��x��� � � � � pn�xn�	 A set of trees is regular if it can be denoted by a
predicate p in the least model of a non�deterministic tree automaton	
A uniform program ���
 consists of Horn clauses in one of the following two forms	 �In a

linear term� each variable occurs at most once	�

� p�t�� p��x��� � � � � pk�xm� where the term t is linear	

� q�x�� p��t��� � � � � pm�tm� where t�� � � � � tm are any terms over �	

A uniform program can be transformed �in single�exponential time� into an equivalent non�
deterministic tree automaton ���� ��� �
	

�

Set�based abstraction� We use set�based analysis in the sense of ���
 but in the formulation
using logic programs as in ���� ��� �
 �instead of set constraints as in ���
 and ��
�	

De�nition � �P�� the set�based abstraction of P� The uniform program P� is obtained

from a program P by translating every clause p�t�� body� whose head term t contains the n

variables x�� � � � � xn� into the �n� �� clauses

p��t� � p��x
�
��� � � � � p��x

m�
� �� � � � � pn�x

�
n�� � � � � pn�x

mn
n �

pi�xi� � body �for i � �� � � � � n�

where �t is obtained from t by replacing the mi di�erent occurrences of variables xi by di�erent

renamings x�i � � � � � x
mi

i � and p�� � � � � pn are new predicate names�

The least model of the program P� expresses the set�based abstraction of P� which is de
ned
in ���
 as the least
xpoint of the operator �P 	 The operator �P is de
ned via set�based
substitutions in ���
� it can also be de
ned by �for a subset M of the Herbrand base�

�P�M� � fp��t��x���� � � � � xm�m
� j p��t��� p��t��� � � � � pn�tn� � P�

��� � � � � �m ground substitutions�

p��t����� � � � � pn�tn��� �M
			

p��t��m�� � � � � pn�tn�m� �Mg

where x�� � � � � xm are the variable occurrences in t� �we distinguish between multiple occur�
rences of the same variable�	 As noted in ���
� the logical consequence operator associated
with P� is equal to the set�based consequence operator� i	e	� TP� � �P 	 We recall that the
logical consequence operator associated with the program P is de
ned by

TP �M� � fp��t��x��� � � � � xm�
 j p��t��� p��t��� � � � � pn�tn� � P�

� ground substitution�

p��t���� � � � � pn�tn�� �Mg�

The set�based abstraction can be formalized in the abstract interpretation framework ���
 by
the application of the Cartesian approximation C to the semantics�de
ning
xpoint opera�
tor TP � i	e	� TP� � C�TP � �see ���
� roughly� C maps a set of tuples to the smallest Cartesian
product containing it�	 Thus� we have

TP� � �P � C�TP��

We note the following fact� keeping symmetry with Remarks � and � on the two other ab�
stractions of TP that we will introduce	 Given two set�valued functions F and F �� we write
F � F � if F is smaller than F � wrt	 to pointwise subset inclusion� i	e	� F �x� � F ��x� for all x	

Remark � �Set�based approximation� The direct�consequence operator associated with

P� approximates the one associated with P� i�e��

TP � TP� �

�

Proof� Obvious by de
nition	 �

The following statement will be used for the soundness of our type inference algorithm �The�
orem ��	 Its converse does� of course� not hold in general �the least models of P may be
strictly smaller than the least models of P��	

Proposition � Each model M of the set�based abstraction P� of a program P is also a

model of P�

Proof� A ground instance of a clause of P is also a ground instance of the corresponding
clause of P�	 �

Set�valued abstraction� The second abstraction that we consider is also de
ned via a pro�
gram transformation� an atom p�t� is simply replaced by an inclusion t � p	 The transformed
program is interpreted over the domain of sets of trees� i	e	� the valuations are mapping
� � Var � �T� 	 These mapping are extended canonically from variables x to terms t� i	e	� t�
is a set of trees	 We repeat that an interpretation M� i	e	� a subset of the Herbrand base�
maps predicates p to sets of trees pM � ft � T� j p�t� �Mg	 The inclusion t � p holds inM
under the valuation � if t� is a subset of pM	

De�nition 	 �P�� the set�valued abstraction of P� Given a program P� its set�valued

program abstraction is a program P� that is interpreted over sets of trees �instead of trees��

It is obtained by replacing membership with subset inclusion� i�e�� it contains� for each clause

p��t��� p��t��� � � � � pn�tn� in P� the implication

t� � p� � t� � p�� � � � � tn � pn� ���

The models of the program P� are� as one expects� interpretations M �subsets of the Her�
brand base� such that all implications all valid inM	 An implications of the form ��� is valid
in M if for all valuations � � Var � �T� � if ti� is a subset of p

M
i for i � �� � � � � n then also

for i � �	
The models of P� are the
xpoints of TP� � the direct consequence operator associated

with P�� which is de
ned in a way analogous to TP �using set�valued substitutions instead
of tree�valued substitutions�	 Hence� we will be able to use the following remark when we
compare models of P� with models of P� �Proposition ��	

Remark 	 �Set�valued approximation� The direct�consequence operator associated with

P� approximates the one associated with P� i�e��

TP � TP� �

Proof� If� for some subset M of the Herbrand base� TP �M� contains the ground atom p��t��
because M contains the ground atoms p��t��� � � � � pn�tn� and p��t�� � p��t��� � � � � pn�tn� is a
ground instance of some clause of P� then the singleton ftig is a subset of the denotation of pi
under M �for i � �� � � � � n� and� hence� the singleton ft�g is a subset of the denotation of p�
under TP��M�	 �

The next statement underlies the soundness of the type checking procedure of ��
 �cf	 Theo�
rem � in ��
�	 It says that being a model wrt	 P� is a su�cient condition for being a model
of the program P	 �The model property wrt	 P� is nothing else than an entailment relation
between set constraints� the entailment can be tested in NEXPTIME�	

�

Proposition 	 Each model M of the set�valued abstraction P� of a program P is also a
model of P�

Proof� If c 	 p�t�� � p��t��� � � � � pn�tn� is a ground instance of a clause of P� then ft�g �
p � ft�g � p�� � � � � ftng � pn is a ground instance of the corresponding implication of P

�

�which holds inM ifM is a model of P�� and� thus� c also holds�	 �

The converse of the statement above does not hold in general	 Take� for exam�
ple� the program P de
ned by the clause p�f�x� x�� � q�f�x� x�� and the four facts
q�f�a� a��� q�f�a� b��� q�f�b� a��� q�f�b� b��	 Then P� consists of the implication f�x� x� � p�
f�x� x� � q and the four inclusions f�a� a� � q� f�a� b� � q� f�b� a� � q� f�b� b� � q	 Then
M � fp�f�a� a���� p�f�b� b��� q�f�a� a��� q�f�a� b��� q�f�b� a��� q�f�b� b��g is a model of P but
M is not a model of P�	 �This example transfers� in the essence� Example � in ��
 from the
setting of directional types to a general setting	� The converse of the statement in Proposi�
tion � does� however� hold in the special case of path closed models �Proposition �� which we
will introduce below	
The least
xpoint of TP� is in general not regular	 To see this note that it is equal to the

least
xpoint of TP if� for example� P is the length program	 This example also shows that
the least model of P� is in general not contained in every model of P�	 This is the case�
however� in the special case where the model of P� is path closed �Proposition ��	

Path closed models� A �regular
 set of trees of trees is path closed if it can be de
ned
by a deterministic �
nite
 tree automaton	 A deterministic
nite tree automaton translates
to a logic program which does not contain two di�erent clauses with the same head �mod�
ulo variable renaming�� e	g	� p�f�x�� � � � � xn�� � p��x��� � � � � pn�xn� and p�f�x�� � � � � xn�� �
p���x��� � � � � p

�
n�xn�	 A discriminative set expression as de
ned in ��
 translates to a determin�

istic
nite tree automaton� and vice versa	 That is� discriminative set expressions denote
exactly path�closed regular sets	 It is argued in ��
 that discriminative set expressions are
quite expressive and are used to express commonly used data structures	 Note that lists� for
example� can be de
ned by the program with the two clauses list�cons�x � y�� � list�y� and
list�nil�	
The following fact is the fundamental property of path closed sets in the context of set

constraints �see also Theorem �� and Lemma �� in ��
�	 It will be directly used in Proposi�
tion �	 For comparison� take the constraint f�x� y� � f�a� a�
 f�b� b�� here� ff�a� a�� f�b� b�g
is set that is not path closed� and the union of the �set�valued� solutions �� � x� y �� fag and
�� � x� y �� fbg is not a solution	 Also� take the constraint f�x� y� � �� here� the union of
the solutions over possibly empty sets �� � x �� fag� y �� � and �� � x �� �� y �� fag is not a
solution	

Lemma � Solutions of conjunctions of inclusions t � e between terms t interpreted over

nonempty sets and expressions e denoting path closed sets of trees are closed under union�

i�e�� if S is a set of solutions� then de	ned by �x� �
S
f��x� j � � Sg is again a solution�

Proof� The statement follows from the fact �shown� e	g	� in ���
� that inclusions of the form
f�x�� � � � � xn� � e are equivalent to the conjunction

x� � f����� �e�
 � � �
 xn � f���n��e�

�

in the interpretation over nonempty sets if the upper bounds e denote path closed sets	 �

The following statement underlies the completeness of the type checking procedure of ��
 for
discriminative directional types �see Theorem ��� Lemma �� and Theorem �� in ��
�	

Proposition
 Each path closed model M of a program P is also a model of P�� its set�

valued abstraction�

Proof� Assume that the clause p��t��� p��t��� � � � � pn�tn� is valid inM �i	e	� it holds under
all ground substitutions � � Var �� T�� under the interpretation of the predicates p�� p�� � � � � pn
byM�� and that � is a substitution mapping variables to nonempty sets such that

t�� � p�� � � � � tn� � pn

holds inM	 We have to show that also t�� � p� holds in M	 The assumption yields that�
for every ground substitution � � Var �� T� such that ��x� � ��x� for all x � Var�

t�� � p�� � � � � tn� � pn

holds inM	 Thus� also t�� � p� holds inM	 Since we have that

� t�� � p� is equivalent to t�!� � p� where !� is the set substitution de
ned by !��x� �
f��x�g�

� � is the union of all !� such that ��x� � ��x� for all x � Var�

� solutions of t� � p�� where p� is interpreted byM as a path closed set� are closed under
union �Lemma ���

the inclusion t� � p� also holds inM under the substitution �	 �

Path closure abstraction� The path closure PC of a set M of trees is the smallest path
closed set containing M 	 We consider a third abstraction of the operator TP by composing
the path closure PC with TP 	 We note that we do not know whether the least
xpoint of the
operator PC � TP is always regular� or whether it is always a path�closed set	 The following
comparison of two of the three abstractions that we have de
ned so far will be used in the
proof of Proposition �	 �The operators PC � TP and TP� are not directly comparable	�

Remark
 �Set�based approximation and path closure� The path closure abstraction

of the direct�consequence operator of P approximates also its set�based abstraction� i�e��

TP� � �PC � TP ��

Proof� We use the equality TP� � �P 	 If p��t��x���� � � � � xm�m
� � �P�M� because
p��t��j�� � � � � pn�tn�j� � M � then p��t��j� � TP�M�� for j � �� � � � �m	 But then we have
p��t��x���� � � � � xm�m
� � �PC � TP��M�	 �

We will use the following statement later in order to compare the directional types obtained by
our type inference procedure with the subclass of discriminative directional types for which
the type check in ��
 is sound and complete	 �Note that the path closure of a model of a
program is in general not itself a model� and that the least model of P� is in general not
contained in the path closure of P�	

�

Proposition � The least model of P�� the set�based abstraction of a program P� is contained
in every path closed model of P�� the set�valued abstraction of a program P�

Proof� By Remark �� TP� � �PC � TP � and thus� by Remark �� TP� � �PC � TP��	 If M
is a path�closed model of P�� then it is also a
xpoint of PC � TP � and hence it contains the
least
xpoint of TP� � i	e	� the least model of P

�	 �

� Directional Types and Type Programs

A type T is a set of terms t closed under substitution ��
	 A ground type is a set of ground
terms �i	e	� trees�� and thus a special case of a type	 A type judgement is an implication
t� � T�
 � � � tn � Tn � t� � T� built up from membership constraints between terms and types
that holds under all term substitutions � � Var� T��Var�	

De�nition
 �Directional type of a program �
� ��� A directional type of a program P
is a family T � �Ip � Op�p�Pred assigning to each predicate p of P an input type Ip and an

output type Op such that� for each clause p��t��� p��t��� � � � � pn�tn� of P� the following type

judgements hold�
t� �Ip� � t� �Ip�

t� �Ip�
 t� �Op� � t� �Ip�
���

t� �Ip�
 t� �Op�
 � � �
 tn�� �Opn�� � tn �Ipn

t� �Ip�
 t� �Op�
 � � �
 tn �Opn � t� �Op�

We then also say that P is well�typed wrt	 T � A program together with its query main�t�
is well�typed wrt� T if furthermore the query argument t is well�typed wrt� the input type

for main �i�e� the type judgement t �Imain holds��

De�nition � �Ordering on directional types� We de	ne that T � �Ip � Op�p�Pred is

uniformly more precise than T � � �I �p � O�p�p�Pred if Ip � I �p and Op � O�p for all predicates p�

The least precise directional type for which any program �possibly together with a query� is
well�typed is T� � �� � ��p�Pred assigning the set of all terms to each input and output
type	 In the absense of a query� the most precise one is T� � �� � ��p�Pred assigning the
empty set to each input and output type	 This changes if� for example� a query of the form
main is present �see Section ��	

De�nition � �Sat�T �� the type of terms satisfying T ���� Given the ground type T � the
set Sat�T � of terms satisfying T is the type

Sat�T � � ft � T��Var� j ��t� � T for all ground substitutions � � Var� T�g�

Remark � The clause p��t�� � p��t��� � � � � pn�tn� is valid in some model M if and only if

the type judgement

t� � Sat�p��� t� � Sat�p��
 � � �
 tn � Sat�pn�

holds in M �i�e�� under the interpretation of p�� p�� � � � � pn by M��

�

Proof� Membership of the application of substitutions to terms in sets of the form Sat�E� is
de
ned by the application of ground substitutions to the terms in E	 �

A directional type of the form T � �Sat�Ip� � Sat�Op��p�Pred� for ground types Ip� Op �
T�� satis
es a type judgement if and only if the corresponding directional ground type
Tg � �Ip � Op�p�Pred does	
We will next transform the well�typedness condition in De
nition � into a logic program

by replacing t �Ip with the atom pIn�t� and t �Op with pOut�t�	

De�nition � �PInOut � the type program for P� Given a program P� the corresponding

type program PInOut de	nes an in�predicate pIn and an out�predicate pOut for each predicate p

of P� Namely� for every clause p��t��� p��t��� � � � � pn�tn� in P� PInOut contains the n clauses

de	ning in�predicates corresponding to each atom in the body of the clause�

pIn� �t��� pIn� �t��

pIn� �t��� pIn� �t��� p
Out
� �t��

���

pInn �tn�� pIn� �t��� p
Out
� �t��� � � � � p

Out
n���tn���

and the clause de	ning the out�predicate corresponding to the head of the clause�

pOut
� �t��� pIn� �t��� p

Out
� �t��� � � � � p

Out
n �tn��

If the program P comes together with a query main�t�� we add the clause mainIn�t�� true

to PInOut 	 The next statement extends naturally to a characterization of the well�typedness
of a program together with a query	

Theorem � �Types and models of type programs� The program P is well�typed wrt�

the directional type

T � �Sat�Ip�� Sat�Op��p�Pred

�with ground types Ip� Op� if and only if the subset of the Herbrand base corresponding to T �

MT � fp
In �t� j t � Ipg
 fp

Out�t� j t � Opg�

is a model of the type program PInOut �

Proof� The validity of the well�typing conditions under ground substitutions is exactly the
logical validity of the clauses of PInOut in the model MT 	 The statement then follows by
Remark �	 �

We next de
ne two abstractions of type programs	 We will use P�
InOut for type inference

�Section �� and P�InOut for type checking �Section ��	 Given a directional type T � the inter�

pretation of P�InOut by the corresponding subsetMT is the set constraint condition which is
used in ��
 to replace the well�typedness condition in De
nition �	

De�nition � �Abstractions of type programs� The set�based type program P�
InOut is

the set�based abstraction of PInOut � and the set�valued type program P�InOut is the set�valued

abstraction of PInOut � i�e��

P�
InOut � �PInOut �

��

P�InOut � �PInOut �
��

�

A discriminative type is introduced in ��
�� it is of the form Sat�T � where T � T� is a path
closed regular set �which is� a ground type denoted by a discriminative ground set expression
in the sense of ��
�	 This de
nition extends canonically to directional types	 The following
direct consequence of Theorem � and Propositions � and � restates the soundness and the
conditional completeness of the type check in ��
	

Theorem 	 ��Discriminative� types and models of set�valued type programs�
A directional type of the form T � �Sat�Ip� � Sat�Op��p�Pred is a directional type of the

program P if the corresponding subset MT of the Herbrand base is a model of P�InOut � the

set�valued abstraction of the type program of P� For discriminative directional types T � the
converse also holds�

Proof� The
rst part follows from Proposition � together with Theorem �� the second from
from Proposition � together with Theorem �	 �

� Directional Type Inference

We consider three di�erent scenarios in which we may want to infer directional types from a
program	
��� The program comes together with a query consisting of one atom main without argu�

ments �and there is a clause main � p��t��� � � � � pn�tn� calling the actual query�	 In this case�
we are interested in inferring the most precise directional type T such that P together with
the query main is well�typed	
According to the model�theoretic characterization of the well�typedness of a program

together with a query �Theorem ��� we must add the clause mainIn � true to PInOut 	 This
means that T� � �� � ��p�Pred is generally not a directional type of a program together
with the query main and� hence� it is nontrivial to infer a precise one	
��� The program comes together with a query consisting of one atom main�t� and a lower

boundMmain for the input type of main is given �the user hereby encodes which input terms
to the query predicates are expected�	 In this case� we are interested in inferring the most
precise directional type T � �Ip � Op�p�Pred for P such that the input type for main lies
above the lower bound for main � i	e	� such that Mmain � Imain 	
For example� take the program de
ning the predicate reverse�x � y� including the de
nition

of append together with the query reverse�x � y�	 If the expected input terms are lists �for x�
and non�instantiated variables �for y�� i	e	� the lower bound speci
ed is Mrev � �list ���� then
the type inferred by our algorithm for reverse is �list ��� � �list � list� and the type inferred
by our algorithm for append is �list � ��
��� � �list � ��
� list�� where ��
 is the type of all
singleton lists	
��� Lower bounds Mp for the input types Ip of all predicates p of P are given	 This may

be done explicitly for some p and implicitly� with Mp � �� for the others	 In this case� we are
interested in inferring the most precise directional type T � �Ip � Op�p�Pred for P such that
the input types for p lie above the given lower bounds� i	e	� such that Mp � Ip for all p	
In a setting with program modules� for example� the lower bounds that are explicitly

speci
ed may be the query goals of exported predicates	
The scenario ��� resembles the one imagined by Aiken and Lakshman in the conclusion

of ��
	 Note that in our setting� however� the sets Mp need not already be input types	 For
example� if the inputs for x and y in append�x � y � z � are expected to be lists of even length

��

only� i	e	� the lower bound for Iapp is given by Mapp � �evenlist � evenlist ���� then we would
infer the set of all lists as the input type for x� i	e	� Iapp � �list � evenlist ��� �note that there
are recursive calls to append with lists of odd length�	
We obtain ��� as the special case of ��� where the lower bounds for all input types are the

empty set� ��� is the special case of ��� where the lower bounds for all input types but main

are given as the empty set	 Hence� it is su�cient to formulate the type inference only for the
case ���	

De�nition
 �Inference of the set�based directional type Tsb�P� �Mp�p�Pred�� Given

a program P and a family of lower bounds Mp for the input types of the predicates p of

the program� we infer the set�based directional type

Tsb�P� �Mp�p�Pred� � �Sat�Ip�� Sat�Op��p�Pred

where Ip and Op are the denotations of the predicates pIn and pOut in the least model of the

program

P�
InOut
 fpIn�x��Mp�x� j p � Predg� ���

The de
nition of type inference above leaves open in which formalism the lower bounds are
speci
ed and how the inferred directional types are presented to the user	 There is a wide
variety of formalisms that coincide in the expressive power of regular sets of trees and that
can be e�ectively translated one into another and� hence� for which our type inference yields
an e�ective procedure	
More concretely� we propose to represent the lower bounds Mp through logic programs

in restricted syntax �see Section �� that corresponds directly to alternating tree automata
�and also to the positive set expressions considered in ��
� an even more restricted syntax
corresponds to non�deterministic tree automata and to positive set expressions without inter�
section�	 We attach these logic programs to the program in ��� as de
nitions of the sets Mp	
Then� we can apply one of the known algorithms �see� e	g	� ���� ��� ��� �
� in order to compute�
in single�exponential time �in the size of the program P and the programs for the sets Mp�� a
logic program that corresponds to a non�deterministic tree automaton and that is equivalent
to the program in ��� wrt	 the least model and� thus� represents Tsb�P� �Mp�p�Pred�	 The
representation of sets by a non�deterministic tree automaton is a good representation in the
sense that� for example� the test of emptiness can be done in linear time	
If� in De
nition �� we replace P�

InOut with PInOut � then we obtain the uniformly most
precise directional type Tmin�P� wrt	 given lower bounds for input types	 In general� we
cannot e�ectively compute Tmin�P� �e	g	� test emptiness of its input and output types�	
We repeat that the following comparison of the set�based directional type of P with dis�

criminative directional types of P is interesting because these form the subclass of directional
types for which the type check in ��
 is sound and complete	

Theorem
 �Soundness and Quality of Type Inference� The program P is well�typed

wrt� the set�based directional type Tsb�P� �Mp�p�Pred�� Moreover� this type is uniformly more

precise than every discriminative directional type of P whose family of input types contains

�Mp�p�Pred�

Proof� The two statements are direct consequences of Propositions � and �� respectively�
together with Theorem �	 �

��

� Complexity of Directional Type Checking

Theorem � The complexity of directional type checking of logic programs for discriminative

types is DEXPTIME�complete�

Proof� The DEXPTIME�hardness follows from re
ning the argument in the proof of The�
orem �� in ��
 with the two facts that ��� discriminative types are denoted by path closed
sets� and ��� testing the non�emptiness of a sequence of n tree automata is DEXPTIME�hard
even if the automata are restricted to deterministic ones �which recognize exactly path closed
sets� ���
	
We obtain a type checking algorithm in single�exponential time as follows	 The input is

the program P and the discriminative directional type

T � �Sat�Ip�� Sat�Op��

where all types Ip and Op are given by ground set expressions �a special case of which are reg�
ular tree expressions or non�deterministic tree automata�	 Ground set expressions correspond
to alternating tree automata which are self�dual� i	e	� we can obtain ground set expressions
eIp and fOp representing the complement by a syntactic transformation in linear time	 We can
translate ground expressions into logic programs de
ning predicates pIp and pOp such that
they denote Ip and Op wrt	 the least�model semantics �and similarly predicates peIp and pfOp

for eIp and fOp�	
We now use one of the well�known single�exponential time algorithms ���� ��� ��� �
 to

compute �the non�deterministic tree automaton representing� the least model of the set�based

abstraction P� of a logic program P	 We apply such an algorithm to the program P�
InOut �T �

that we obtain from P�
InOut by adding the clauses p

In�x�� pIp�x� and pOut�x�� pOp�x� and
the logic programs de
ning pIp and pOp	
We use the result in order to test whether the denotations of pIn and pOut under the

least model of the program PInOut �T � are exactly Ip and Op	 This holds if and only if T
is a directional type of P �otherwise� we have a proper inclusion for at least one p� see the
correctness proof below�	 The test works by testing whether the intersection of �the non�
deterministic tree automaton representing� the denotations of pIn and pOut under the least
model of the program PInOut �T � with the complements peIp and pfOp

is empty	 This can be

done in one pass by taking the conjunction of PInOut �T � with the logic programs de
ng peIp
and pfOp

and testing the emptiness of predicates de
ned as the intersection of pIp and peIp �and
pOp and pfOp

�	

The correctness of the algorithm follows with Theorem � and Proposition � and �	 In de�
tail� Given a discriminative directional type T and a program P� we have that P is well�typed
wrt	 T i� the corresponding subsetMT of the Herbrand base is a �path closed� model of PInOut

by Theorem �	 If this is the case thenMT is equal to the least modelM� of PInOut �T �� since
MT � M� by de
nition of PInOut �T �� and MT � M� holds by Proposition � �note that
MT is a path closed model of PInOut and of the additional clauses translating T and� thus�
contains the least one�	 On the other hand� ifMT is equal to the least model of P

�
InOut�T ��

then T is a directional type by Proposition � and Theorem �	 �

We note that the procedure above yields a semi�test �in the same sense as the one in ��
� for
well�typedness wrt	 the class of general directional types� since the equivalence between the

��

inferred type and the given one is a su�cient �but generally not necessary� condition for well�
typedness wrt	 the given type	 We repeat that it implements a full test wrt	 discriminative
directional types	

Acknowledgments

We thank David McAllester for turning us on to magic sets and thereby to directional types	
We thank Harald Ganzinger for useful comments	

References

��� A� Aiken and T� K� Lakshman� Directional type checking of logic programs� In B� L� Charlier�
editor� �st International Symposium on Static Analysis� volume
�� of Lecture Notes in Computer

Science� pages �
���� Namur� Belgium� Sept� ����� Springer Verlag�

��� K� R� Apt� Declarative programming in Prolog� In D� Miller� editor� Logic Programming �

Proceedings of the ���� International Symposium� pages ���
�� Vancouver� Canada� ���
� The
MIT Press�

�
� K� R� Apt� Program veri�cation and prolog� In E� B�orger� editor� Speci�cation and Validation

methods for Programming languages and systems� pages ������ Oxford University Press� �����

��� K� R� Apt and S� Etalle� On the uni�cation free Prolog programs� In A� M� Borzyszkowski and
S� Sokolowski� editors� Mathematical Foundations of Computer Science ����� ��th International

Symposium� volume ��� of lncs� pages ����� Gdansk� Poland�
� Aug��
 Sept� ���
� Springer�

��� J� Boye� Directional Types in Logic Programming� PhD thesis� Department of Computer and
Information Science� Link�oping University� �����

��� J� Boye and J� Maluszynski� Two aspects of directional types� In L� Sterling� editor� Proceedings
of the �	th International Conference on Logic Programming� pages �������� Cambridge� June�
�
�
 ����� MIT Press�

��� J� Boye and J� Maluszynski� Directional types and the annotation method� Journal of Logic

Programming�

�
	��������� Dec� �����

�
� F� Bronsard� T� K� Lakshman� and U� S� Reddy� A framework of directionality for proving
termination of logic programs� In K� Apt� editor� Proceedings of the Joint International Conference
and Symposium on Logic Programming� pages
���

�� Washington� USA� ����� The MIT Press�

��� W� Charatonik� D� McAllester� D� Niwi�nski� A� Podelski� and I� Walukiewicz� The Horn mu�
calculus� To appear in Vaughan Pratt� editor� Proceedings of the �
th IEEE Annual Symposium
on Logic in Computer Science�

���� W� Charatonik� D� McAllester� and A� Podelski� Computing the least and the greatest model
of the set�based abstraction of logic programs� Presented at the Dagstuhl Workshop on Tree
Automata� October �����

���� W� Charatonik and A� Podelski� Set constraints for greatest models� Techni�
cal Report MPI�I���������� Max�Planck�Institut f�ur Informatik� April ����� www�mpi�
sb�mpg�de��podelski�papers�greatest�html�

���� M� Codish and B� Demoen� Deriving polymorphic type dependencies for logic programs using
multiple incarnations of prop� In B� L� Charlier� editor� Proceedings of the First International

Static Analysis Symposium� Lecture Notes in Computer Science
��� pages �
������ Springer
Verlag� �����

��

��
� M� Comini� G� Levi� M� C� Meo� and G� Vitiello� Proving properties of logic programs by abstract
diagnosis� In M� Dam� editor� Analysis and Veri�cation of Multiple�Agent Languages� volume
���� of LNCS� pages ������ Springer�Verlag� June �����

���� P� Cousot and R� Cousot� Inductive de�nitions� semantics and abstract interpretation� In Proc

POPL ��	� pages

���� ACM Press� �����

���� P� Cousot and R� Cousot� Formal language� grammar and set�constraint�based program analysis
by abstract interpretation� In Record of FPCA ��� � Conference on Functional Programming

and Computer Architecture� pages �����
�� La Jolla� California� USA� ����
 June ����� SIG�
PLAN�SIGARCH�WG��
� ACM Press� New York� USA�

���� P� Devienne� J��M� Talbot� and S� Tison� Set�based analysis for logic programming and tree
automata� In Proceedings of the Static Analysis Symposium� SAS��
� volume �
�� of LNCS�
pages �������� Springer�Verlag� �����

���� T� Fr�uhwirth� E� Shapiro� M� Vardi� and E� Yardeni� Logic programs as types for logic programs�
In Sixth Annual IEEE Symposium on Logic in Computer Science� pages
���
��� July �����

��
� J� Gallagher and D� A� de Waal� Regular approximations of logic programs and their uses�
Technical Report CSTR������� Department of Computer Science� University of Bristol� �����

���� N� Heintze� Practical aspects of set based analysis� In K� Apt� editor� Proceedings of the Joint

International Conference and Symposium on Logic Programming� pages �������� Washington�
USA� ����� The MIT Press�

���� N� Heintze and J� Ja�ar� A �nite presentation theorem for approximating logic programs� In
Seventeenth Annual ACM Symposium on Principles of Programming Languages� pages ��������
January �����

���� N� Heintze and J� Ja�ar� Set constraints and set�based analysis� In Proceedings of the Workshop on

Principles and Practice of Constraint Programming� LNCS
��� pages �
����
� Springer�Verlag�
�����

���� G� Janssens and M� Bruynooghe� Deriving descriptions of possible values of program variables�
Journal of Logic Programming� �
���
	�������
� �����

��
� P� Mishra� Towards a theory of types in Prolog� In IEEE International Symposium on Logic

Programming� pages �
����
� ��
��

���� Y� Rouzaud and L� Nguyen�Phuong� Integrating modes and subtypes into a Prolog type�checker�
In K� Apt� editor� Proceedings of the Joint International Conference and Symposium on Logic

Programming� pages
����� Washington� USA� ����� The MIT Press�

���� H� Seidl� Haskell overloading is DEXPTIME�complete� Information Processing Letters� ���������
�����

���� C� Weidenbach� Spass version ����� Journal of Automated Reasoning� �
��	��������� �����

���� E� Yardeni and E� Shapiro� A type system for logic programs� volume �� chapter �
� pages ��������
The MIT Press� ��
��

��

