
Quasi-Dependent Variables in Hybrid Automata∗

Sergiy Bogomolov
Albert-Ludwigs-Universität

Freiburg

Christian Herrera
Albert-Ludwigs-Universität

Freiburg

Marco Muñiz
Albert-Ludwigs-Universität

Freiburg

Bernd Westphal
Albert-Ludwigs-Universität

Freiburg

Andreas Podelski
Albert-Ludwigs-Universität

Freiburg

ABSTRACT
The concept of hybrid automata provides a powerful frame-
work to model and analyze real-world systems. Due to the
structural complexity of hybrid systems it is important to
ensure the scalability of analysis algorithms. We approach
this problem by providing an effective generalisation of the
recently introduced notion of quasi-equal clocks to hybrid
systems. For this purpose, we introduce the concept of
quasi-dependent variables. Our contribution is two-fold: we
demonstrate how such variables can be automatically de-
tected, and we present a transformation leading to an ab-
straction with a smaller state space which, however, still re-
tains the same properties as the original system. We demon-
strate the practical applicability of our methods on a range
of industrial benchmarks.

Categories and Subject Descriptors
G.1.7 [Numerical Analysis]: Ordinary Differential Equa-
tions; I.6.4 [Simulation and Modeling]: Model Validation
and Analysis

Keywords
Hybrid systems, quasi-dependent variables, model transfor-
mation, abstraction, reachability analysis

1. INTRODUCTION
Real-time systems often employ distributed architectures

where every component uses an independent clock for inter-
nal purposes. The classes of TDMA- [2] and EPL-based [3]
protocols are prominent examples of this particular class of
systems. In such settings, the information exchange among
the components proceeds periodically; components are as-
signed to certain time ranges for communication. In the end

∗Partly supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Cen-
ter SFB/TR 14 AVACS (http://www.avacs.org), and by
CONACYT (Mexico) and DAAD (Germany).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HSCC’14, April 15–17, 2014, Berlin, Germany.
Copyright 2014 ACM 978-1-4503-2732-9/14/04 ...$15.00.
http://dx.doi.org/10.1145/2562059.2562142.

of every period, the components reset their clocks to ensure
correct system behavior. This leads to an exponential blow-
up of the set of states to be considered due to the interleaving
semantics of distributed resets in timed automata.

We have attacked this problem in our previous work [4–6]
by proposing the notion of quasi-equal clocks for timed au-
tomata to efficiently reduce the system complexity. Intu-
itively, two clocks are quasi-equal if they always agree on
their values except possibly when those clocks are reset.

Hybrid automata provide an expressive framework to mo-
del and analyze real-world systems exhibiting complex con-
tinuous behavior described by differential equations. There-
fore, the handling of continuous dynamics takes an essential
part of the analysis run-time. Due to this reason, the re-
duction of the number of variables in the system and of in-
terleaving resets might lead to crucial performance improve-
ments. To this end, we propose to move from an equality
relation between quasi-equal clocks to a general dependency
relation and thus quasi-dependent variables. The notion of
quasi-equality is a special case of quasi-dependency of vari-
ables.

We present an approach consisting of two parts. First,
we detect quasi-dependent variables. Here, in some sense,
we transfer the idea of variable relations already explored
in program verification [7, 8] into the context of hybrid au-
tomata. Second, based on this knowledge, we reduce the
original system. This line of research is particularly moti-
vated by industrial time-based protocols where the timers of
the individual components advance at different rates.

The crux behind our detection algorithm is the applica-
tion of abstraction techniques while analyzing the relations
between variables. Both continuous and discrete evolution
can break the quasi-dependency between variables. How-
ever, interestingly, we only need to be precise while consid-
ering discrete jumps whereas in case of continuous evolution
we can just check which quasi-dependencies still hold in the
considered location. The intuition is that we can abstract
away constraints other than the ones reflecting the quasi-
dependencies because if a quasi-dependency holds before
computing continuous successors (which is checked without
precision loss in the preceding discrete step) then the con-
tinuous evolution obeys the quasi-dependency. The quasi-
dependent variables can also be detected by a hybrid model
checker, however, it would explore the state space of the
system in a great detail, whereas our detection algorithm
conducts a coarse analysis with the focus on the state space
parts relevant for establishing quasi-dependencies. These
ideas lead to an abstraction that is rather imprecise, yet

results in a dramatic performance improvement of quasi-
dependent variables detection.

Our transformation replaces quasi-dependent variables by
one representative variable and updates the system struc-
ture appropriately. Properties of the original system are
reflected, that is, a forbidden configuration is reachable in
the transformed system if and only if it is reachable in the
original system. System complexity is reduced in two ways.
First, we reduce the number of variables in the system. This
step alone leads to a more efficient system handling as the
underlying data structures become more compact. Further-
more, in many cases we can achieve an even larger perfor-
mance boost by completely avoiding interleavings of resets
of quasi-dependent variables.

The paper is organized as follows. Section 2 introduces
necessary preliminaries. Section 3 describes and discusses
the concept of quasi-dependency. The detection algorithm
is discussed and evaluated in Section 4, the transformation
in Section 5. We conclude the paper with Section 6.

Related Work.
The state space reduction for different classes of systems

by deriving dependencies between their variables has been
an active research topic since the inception of the area of
verification. In particular, deriving (affine) relationships be-
tween variables of a program is classical since [7, 8]. This
idea has also been successfully applied to the domain of
timed automata. Daws et al. [9] suggest an approach to
reduce the number of clocks in a single automaton based on
the notion of active and equal clocks. This work was ex-
tended by Daws et al. [10] to handle networks of automata.

Active clocks were used by Étienne [11] to analyze paramet-
ric timed automata. The work [12] proposes an abstraction
method for a restricted class of systems with multiple clocks
being activated in a sequential manner for some bounded
time. Clearly, with our approach we can handle timed au-
tomata as a subclass of hybrid automata, however, we im-
pose weaker structural requirements compared to the above
mentioned works.

In the scope of hybrid automata, dependency detection
and appropriate reduction becomes especially complicated.
The main efforts in this area were concentrated towards re-
ducing hybrid automata by finding appropriate (bi-)simu-
lation relations. In particular, Pappas [13] and van der
Schaft [14] presented a theoretical framework of bisimula-
tion for linear systems. The idea of simulation was extended
to its approximate version by Girard et al. [15] where the
distance between the observed behavior of the reduced and
original should be bounded. Finally, the notion of approx-
imate simulations was lifted to hybrid automata by Girard
et al. [16].

In this paper, we pose weaker requirements on the struc-
ture of the reduced system. Departing from strong bisimu-
lation towards weak bisimulation between the reduced and
original systems allows us to completely eliminate some con-
figurations which are induced by interleavings. In order to
ensure the preservation of the property to be checked, we
rewrite the property itself. In this way, we access the infor-
mation which is no longer explicitly encoded in the reduced
system.

2. PRELIMINARIES
In the following, we recall the definitions of hybrid au-

tomata [17], (non-Zeno) run, and observable behaviour for
self-containedness. In addition, we introduce the notions of
update point and instantaneous valuations. The latter de-
notes the non-empty, possibly non-singleton set of valuations
observable at a given point in time.

Given a set of real-valued variables Var , we use V to de-
note the set (Var → R) of valuations of Var . A hybrid au-
tomaton is a tuple H = (Loc ,Var ,Lab ,Edge ,Act , Inv , Init)
where Loc is a finite set of locations, Var is a finite set
of real-valued variables, Lab is a set of synchronisation la-
bels including the stutter label τ ∈ Lab, Edge ⊆ Loc ×
Lab × 2V

2

× Loc is a finite set of directed edges includ-
ing a stutter edge (`, τ, id , `) for each location ` ∈ Loc. An
edge (`, a, µ, `′) from location ` to `′ is labelled with a label

a ∈ Lab and a conditional update µ. Act : Loc → 2R
+
0 →V

is a function which assigns a set of activities f : R+
0 → V

to each location. The activity sets are time-invariant, i.e.,
for each t′ ∈ R+

0 , f ∈ Act(`) implies (f + t) ∈ Act(`), where
(f + t)(t′) = f(t + t′). Inv : Loc → 2V is a function which
assigns an invariant Inv(`) ⊆ V to each location `, and
Init : Loc → 2V is a function which assigns an initial value
invariant Init(`) ⊆ V to each location `. Locations ` with
Init(`) 6= ∅ are called initial locations.

A network N = {H1, . . . ,Hn} is a finite set of hybrid
automata each with variables Var and with pairwise dis-
joint sets of locations. We write H ∈ N if and only if
H ∈ {H1, . . . ,Hn}. We use Lab(H),Edge(H), etc. to de-
note the set of labels, edges, etc. of automaton H.

The operational semantics of a network N is defined by
the (labelled) transition system

T (N) = (Conf (N),Λ, { λ−→ | λ ∈ Λ}, Cini)

where Conf (N) = Loc × V , and Λ := (R+
0 × Act(N)) ∪⋃

1≤i≤n Labi is the set of transition labels. The set of con-

figurations Conf (N) consists of pairs of location vectors ~̀=
〈`1, . . . , `N 〉 ∈ ×ni=1Loc(Hi) and valuations. We write `s,i,
1 ≤ i ≤ N , to denote the location that automaton Hi
assumes in a configuration s = 〈~̀s, νs〉 and νs to denote

νs|Var . The set of initial configurations is Cini = {〈~̀, ν〉 ∈
Conf (N) | ν ∈ ∩1≤i≤nInit i(`i)}. There is a discrete tran-

sition s
a−→ s′ from configuration s = 〈(`1, . . . , `n), ν〉 to

configuration s′ = 〈(`′1, . . . , `′n), ν′〉 if and only if there are
edges (`i, ai, µi, `

′
i) ∈ Edgei, 1 ≤ i ≤ n, such that for each

i, either ai = a, or ai = τ and a /∈ Labi, and the edges are
enabled by valuation ν and ν′ is an effect of the updates
applied to ν, i.e. (ν, ν′) ∈

⋂
1≤i≤n µi, ν

′ ∈
⋂

1≤i≤n Inv(`′i).

There is a time transition s
d,f−−→s′ with delay d ∈ R+

0 from
configuration s to configuration s′ if and only if action f is
in
⋂

1≤i≤n Act(`s,i) and f (0) = νs, f (d) = νs′ , ∀ 0 ≤ t ≤
d • f (t) ∈

⋂
1≤i≤n Inv(`s,i).

Note that multiple automata in a network can take la-
belled edges simultaneously; asynchronous labelled edges are
only possible for local labels, i.e., labels that only occur in
the set of labels of a single hybrid automaton H ∈ N .

Figure 1 shows an example of a network N consisting of
the hybrid automata H1 and H2 with variables x and y.
Variables x and y with respective initial values 0 and −3
are set to 3 at the point in time 5. In the strict interleaving

`0 `1 `2

ẋ = 1

x ≤ 5

ẋ = 1

x ≤ 11

ẋ = 1

H1:
x := 0 x ≥ 5

x := 3

x ≥ 11

`0 `1 `2

ẏ = 2

y ≤ 7

ẏ = 2

y ≤ 27

ẏ = 2

H2:
y := −3 y ≥ 7

y := 3

y ≥ 27

Figure 1: Example of a network N of hybrid automata.

t1 2 3 4 5 6 7

Iπ

1

3

5

7

-1

-3

y

x x

y

Figure 2: Observable behavior of variables x and y from N .

semantics of networks of hybrid automata, these updates
occur one after the other.

A sequence π = 〈`0, ν0〉, t0
λ1−→ 〈`1, ν1〉, t1

λ2−→ · · · of time-
stamped configurations is called run of H if and only if
〈`0, ν0〉 ∈ Cini , t0 = 0, and for all i ∈ N0, we have λi+1 ∈ Lab
and ti = ti+1 or λi+1 ∈ {ti+1− ti}×Act , and the transition

relation 〈`i, νi〉
λi+1−−−→〈`i+1, νi+1〉. We use Π(H) to denote the

set of all runs ofH; a hybrid automaton need not have a run.
One run of network N in Figure 1 is π = 〈(`0, `0), (0,−3)〉,

0
5,f−−→ 〈(`0, `0), (5, 7)〉, 5 τ−→ 〈(`1, `0), (3, 7)〉, 5

τ−→ 〈(`1, `1), (3, 3)〉, 5 2,f−−→ 〈(`1, `1), (5, 7)〉, 7 · · ·
In the following, we assume infinite runs without Zeno

behaviour, i.e. where the sequence of time stamps diverges.
A configuration s is called reachable in H if and only if there
is a run π ∈ Π(H) such that s occurs in π.

Update Points and Instantaneous Valuations.
The observable behaviour of run π is a function Iπ : R+

0 →
V which assigns to each point in time the valuation defined
by an action during a non-zero delay in π, i.e. Iπ(t) :=
fi+1(t − ti) where i ∈ N0 is the (unique) index such that
ti ≤ t < ti+1 and λi+1 = (di+1, fi+1). Figure 2 shows the
observable behaviour of the network in Figure 1 correspond-
ing to the example run π above.

A point in time t ∈ R+
0 is called update point of π if and

only if a discrete transition occurs in π at t, i.e. if

∃ i ∈ N0 • 〈`i, νi〉, ti
ai+1−−−→〈`i+1, νi+1〉, ti+1 ∧ t = ti+1.

We use Uπ to denote the set of update points of π, the in-
dex may be omitted if clear from context. The instantaneous
valuations of π is a function Vπ : R+

0 → 2V \ {∅} which as-
signs to each point in time the (non-empty) set of valuations
that occur at that point in time, i.e.

Vπ(t) := {Iπ(t)} ∪ {νi | ti = t}.

We use Iπx : R+
0 → R and Vπx : R+

0 → 2R \{∅} to denote the
functions which are point-wise defined as Iπx (t) := Iπ(t)(x)

and Vπx (t) := {ν(x) | ν ∈ Vπ(t)} for t ∈ R+
0 , respectively.

We may omit the superscript if it is clear from the context.
In the following we assume that a set of forbidden config-

urations for network N is given in form of a configuration
formula CF . CF is any logical connection of basic formulae
over N which are given by the grammar β ::= ` | ¬` | ϕ
where ` ∈ Li, 1 ≤ i ≤ n, and where ϕ is any arithmetical
constraint over the variables in Var . A basic formula β is
satisfied by a configuration s ∈ Conf (N), denoted by s |= β,
if and only if `s,i = `, `s,i 6= `, and νs |= ϕ, respectively. We
say CF is reachable in N if only if there is a configuration s
reachable in T (N) which satisfies CF .

3. QUASI-DEPENDENT VARIABLES
In the following, we define quasi-dependency between vari-

ables in terms of the observable behaviour of a hybrid au-
tomaton. We discuss two alternative characterisations of
quasi-dependency and show how quasi-dependency induces
an equivalence relation.

Definition 1. (Quasi-f -Dependent Variables) Let x, y ∈
Var be two variables of the hybrid automaton H. We say
x quasi-depends on y via function f , denoted by x 'f y, if
and only if for each run of H and for each point in time,
the value of x in the observable behaviour is the value of f
applied to the value of y in the observable behaviour, i.e. if

∀π ∈ Π(H) ∀ t ∈ R+
0 • I

π
x (t) = f(Iπy (t)).

f is called dependency function for x wrt. y. ♦

In the example of the network N from Figure 1, the vari-
able x quasi-depends on y via dependency function f(z) =
2z−3. At time 5, there are configurations where their values
don’t satisfy f(y) = 2x− 3, but these configurations do not
contribute to the observable behaviour as there is no delay
possible afterwards (cf. Figure 2).

Note that dependency functions are in general not unique.
For example, if only value a occurs in the observable be-
haviour of variable x and only value b for variable y, then x
and y are quasi-dependent via any function f with f(a) = b.

We can alternatively state quasi-dependency using instan-
taneous valuations and update points. The instantaneous
values of quasi-dependent variables are related by the de-
pendency function f everywhere except for update points.
At update points, the values given by the observable be-
haviour have to adhere to f .

Lemma 3.1. Let x, y ∈ Var be two variables of the hybrid
automaton H such that x 'f y with dependency function f .
Then x 'f y if and only if ∀π ∈ Π(H) •

Vπx |R+
0 \U

= (f ◦ Vπy)|
R

+
0 \U
∧ ∀ t ∈ U • Iπx (t) = f(Iπy (t))

where f ◦ Vπy is the set-valued function which yields the set
of values obtained by applying f to all values in Vy. ♦

The following lemma states a third approach to quasi-de-
pendency: two variables are quasi-dependent if the accu-
mulated duration where their values are not related by the
dependency function is 0.

Lemma 3.2. Let x, y ∈ Var be two variables of the hy-
brid automaton H. Let π ∈ Π(H) be a run of H. Let
∆ : R+

0 → {0, 1} be the characteristic function of the points

in time where the value of x is not obtained by applying the
dependency function f to the value of y, i.e.

∆(t) =

{
1, if there exist v ∈ Vπx (t), w ∈ Vπy (t) s.t. v 6= f(w)

0, otherwise.

Then x 'f y implies

∫ ∞
0

∆(t)dt = 0. ♦

Note that Lemma 3.2 is only an implication. The op-
posite direction does not hold, e.g., with actions that non-
continuously change their value at isolated points during a
time transition. The integral is blind for such changes, in
the observable behaviour (and thus for Definition 1) they
are present.

Definition 2. (Quasi-Dependent Variables) Let x, y ∈ Var
be variables of hybrid automatonH. We say x quasi-depends
on y, denoted by x ≡ y, if and only if there exist dependency
functions f and g such that x 'f y and y 'g x. ♦

Quasi-dependency induces an equivalence relation as fol-
lows.

Lemma 3.3 (Equivalence Relation). Let H be a hy-
brid automaton. Quasi-dependency ≡ is an equivalence re-
lation on the variables Var of H. ♦

In the following, we use QDN to denote the set {Y ∈
Var/≡ | 1 < |Y |} of equivalence classes of quasi-dependent
variables of N with at least two elements. For each Y ∈
QDN , we assume a designated representative variable de-
noted by rep(Y). For each x ∈ Y , we use rep(x) to denote
rep(Y).

Lemma 3.4. Let x, y ∈ Var be variables of hybrid au-
tomaton H such that x 'f y and y 'g x. Then f is the
inverse of g, i.e.

∀π ∈ Π(H) ∀ t ∈ R+
0 • g(f(Iπy (t))) = Iπy (t). ♦

Note that the notion of quasi-dependency of variables
substantially generalizes the existing notion of quasi-equal
clocks from [4]. Firstly, timed automata are a subclass
of hybrid automata where all continuous variables increase
with rate 1 and can only be assigned to 0. Two clocks in
a timed automaton are quasi-equal if and only if they are
quasi-dependent via the identity function.

4. QUASI-DEPENDENCY DETECTION
For our detection of quasi-dependent variables in hybrid

automata, we consider the well-known symbolic semantics
of hybrid automata where sets of valuations are represented
by so called regions. For the rest of this section, letH denote
the hybrid automaton (Loc ,Var ,Lab ,Edge ,Act , Inv , Init).

Definition 3. (Symbolic Semantics) The symbolic seman-
tics of a hybrid automaton H is defined by the region tran-
sition system T (H) = (Conf ′(H),=⇒, Cini) where

• Conf ′(H) = Loc×(2V \{∅}) is the set of configurations,
consisting of pairs of a location and a set of valuations,

• Cini = {〈`, Z〉 ∈ Conf ′(H) | Z ⊆ Init(`)} is the set of
initial configurations, and

• =⇒ is the transition relation where

– there is a discrete transition 〈`, Z〉 =⇒ 〈`′, Z′〉
induced by edge (`, a, µ, `′) ∈ Edge if Z′ = {ν′ |
∃ ν ∈ Z • (ν, ν′) ∈ µ and ν′ ∈ Inv(`′)}, and

– there is a time transition 〈`, Z〉 =⇒ 〈`, Z′〉 if Z′ =
{ν′ | ∃ f ∈ Act(`), ν ∈ Z, t ∈ R+

0 • f(0) = ν ∧
f(t) = ν′ ∧ ∀ 0 ≤ t′ ≤ t • f(t′) ∈ Inv(`)}. ♦

We call configurations where no flow of positive duration
is possible, i.e. the only possible flow has duration zero, zero
time configurations.

Definition 4. (Zero time configuration) A configuration
〈`, Z〉 is called zero time, if and only if the invariant of `
does not allow time to elapse from any valuation in Z, i.e. if

∀ f ∈ Act(`), ν ∈ Z, t ∈ R+
0 • f (0) = ν ∧ f (t) ∈ Inv(`)

∧ ∀ 0 ≤ t′ ≤ t • f(t′) ∈ Inv(`) =⇒ t = 0.

We write zt(`, Z) if and only if 〈`, Z〉 is zero time. ♦

Note that the values of quasi-dependent variables are not
related by the dependency function at most in zero time con-
figurations, and that they may assume any value in zero-time
configurations without violating quasi-dependency. Stated
the other way around, quasi-dependecy is violated in each
non-zero time configuration where the values of the variables
are not related by the given dependency function. Thus our
analysis tries to establish that for each transition sequence
involving only zero-time configurations, whenever two vari-
ables are related by the quasi-dependency function when
entering a zero-time configuration, they will be related by
the quasi-dependency function again when entering a non
zero-time configuration.

To this end, our analysis uses precise values for variables
only during zero-time configurations. For non zero-time con-
figurations, the relax operator only preserves the information
which variables are related by which dependency function.

Definition 5. (Relax operator) The relax operator rlx ap-
plied to the configuration 〈`, Z〉 of H over-approximates the
region Z by a conjunction of the quasi-dependent functions
it entails. Formally, rlx(`, Z) := 〈`, Z′〉 where

Z′ =
∧
{y = f(x) | x, y ∈ Var and ∀ g ∈ Act(`), ν ∈ Z •

g(0)(x) = ν(x) ∧ g(0)(y) = ν(y)

=⇒ ∀ t ∈ R0
+ • g(t)(y) = f(g(t)(x))}.

Our abstraction function (see below) depends on whether
the given configuration is zero time. If it is zero time, then
the abstraction goes as precise as possible by preserving all
information in the given region. If the configuration is not
zero time, then the abstraction will preserve only quasi-de-
pendency relations. In practice, the number of zero time
configurations is often small compared to the number of
non-zero time configurations. Since for every non-zero time
configuration the abstraction function maps given regions to
much bigger ones, the size of the resulting abstract system
is then much smaller than the corresponding concrete one.

Definition 6. (Zero time abstraction function) The ab-
straction function αzt applied to a configuration 〈`, Z〉 leaves

〈(`0, `0), y = 2 · x− 3〉

〈(`1, `0), x = 3 ∧ y = 7〉

〈(`0, `1), x = 5 ∧ y = 3〉

〈(`1, `1), y = 2 · x− 3〉

〈(`2, `1), y = 2 · x− 3〉

〈(`2, `2), y = 2 · x− 3〉

Figure 3: Abstract region graph of networkN from Figure 1.

the configuration unaffected if the configuration is zero time
and it abstracts it using the relax operator otherwise, i.e.

αzt(〈`, Z〉) :=

{
〈`, Z〉 if zt(`, Z)

rlx(`, Z) otherwise.

The following lemma ensures that the abstraction function
applied to a configuration produces a configuration with a
bigger or equal region.

Lemma 4.1. The abstraction function is increasing and
idempotent, i.e., let 〈`, Z〉 ∈ Conf ′(H) be a configuration.

1. Z ⊆ Z′ if 〈`, Z′〉 = αzt(〈`, Z〉), and

2. αzt(αzt(〈`, Z〉)) = αzt(〈`, Z〉). ♦

Our technique generates an abstract region graph, where
quasi-dependent variables can be soundly detected by tra-
versing the graph. The following definition is constructive
in the sense that it tells how to construct the abstract region
graph: compute the initial configurations firstly and then for
each configuration, compute its successors using the abstrac-
tion function αzt. It is important to note that there are only
discrete transitions in the abstract region graph. This is be-
cause, by definition of the abstraction function there are two
possibilities: either a configuration is zero time, meaning it
does not have time successors, or the configuration is non-
zero time. In the latter case the relax operator is applied,
and yields a region which includes all time successors.

Definition 7. (Abstract region graph) H induces the ab-

stract region graph T #(H) = (Conf ′(H),=⇒#, C#
0) where

• =⇒#⊆ Conf ′(H)×Conf ′(H) is the transition relation.
There is a transition 〈`, Z〉 =⇒# αzt(〈`′, Z′〉) if there
is an edge (`, a, µ, `′) ∈ E such that Z′ = {ν′ | ∃ ν ∈
Z • (ν, ν′) ∈ µ and ν′ ∈ Inv(`′)} is not empty, and

• C#
0 = {αzt(〈`, Z〉) | 〈`, Z〉 ∈ Conf ′(H) ∧ Z = Init(`)}

is the set of initial configurations. ♦

Figure 3 shows the abstract region graph for the running
example. The abstract region graph simulates the region
transition system thus quasi-dependency detection on the
abstract region graph is sound.

Definition 8. (Simulation relation) A simulation relation
≤ for two region transition systems Ti = (Conf ′(H),=⇒i

, Cinii), i ∈ {1, 2}, is a binary relation on Conf ′(H) satisfy-
ing the following properties:

1. for all cini1 ∈ Cini1 there exists cini2 with cini1 ≤ cini2 ,

2. 〈`1, Z1〉 ≤ 〈`2, Z2〉 implies `1 = `2, Z1 ⊆ Z2, and

3. 〈`1, Z1〉 ≤ 〈`2, Z2〉 and 〈`1, Z1〉 =⇒1 〈`′1, Z′1〉 implies
that there exists a configuration 〈`′2, Z′2〉 such that
〈`2, Z2〉 =⇒2 〈`′2, Z′2〉 and 〈`′1, Z′1〉 ≤ 〈`′2, Z′2〉.

`0

x1 ≤ 1 ∧ x2 ≤ 2 ∧z ≤ 500
ẋ1, ż, ṫ = 1 , ẋ2 =2

`1

ẋ1, ż, ṫ = 1
ẋ2 =2

x1, x2, t, z := 0

x1 ≥ 1
x1, t := 0

x2 ≥ 2
x2, t := 0

x1 ≥ 1
∧x2 ≥ 2
∧z ≥ 500

Figure 4: Class B benchmark: x1 'f x2 via f(x) = 0.5 · x.

We say that T2 simulates T1 if and only if there exists a
simulation relation for T1, T2. ♦

Theorem 4.2. T #(H) simulates T (H). ♦

Quasi-dependency of two variables x and y via depedency
function f is checked on the abstract region graph T #(H)
by checking, for each non-zero time configuration 〈`, Z〉 of
T #(H) whether Z entails x = f(y). If there is a (pos-
sibly spurious) counter-example for the quasi-dependency,
the corresponding application of the relax operator removes
this dependency from the region.

Note that Definition 5 needs a given dependency function
candidate f . For linear hybrid automata, also known as
multi-rate automata, dependency function candidates can
easily be constructed from the locations’ actions (rates) and
initial values of variables. Further note that two variables
x, y having the same rate in each location does not imply
quasi-dependency between x and y; similarly, having differ-
ent rates for x and y in some (even reachable) location does
not imply that there is no quasi-dependency between them.

4.1 Experimental Results
We have implemented our approach in our tool sAsEt. We

have implemented regions as predicates over reals and use
the SMT solver Z3 [18] to compute the result of the relax
operator, whether a configuration is zero time, and whether
guards are satisfied. As Z3 is restricted to linear arithmetics,
the scope of our implementation is restricted to linear hybrid
automata. sAsEt is based on the Jahob system [19]. It takes
as input a network of hybrid automata in the SpaceEx [20]
format and computes successors on the fly.

Table 1 compares the run-time of sAsEt with SpaceEx on
two artificial benchmarks which represent two typical cases
for quasi-dependent variables in hybrid models. As SpaceEx
does not support the detection of quasi-dependency directly,
we introduced an auxiliary continuous variable t with rate
ṫ = 1 in all locations which is set to 0 on all edges. Then
checking for quasi-equality, e.g., for the running example
amounts to checking (y < 2x+ 3 ∨ y > 2x+ 3) ∧ t > 0.

In the Class A benchmark, there exists an ordering on
the assignments of quasi-dependent variables. This yields
a linear increase of the number of zero time configurations.
Both sAsEt and SpaceEx scale, but the non quasi-dependent
variables are early abstracted away by our approach yield-
ing a very small abstract region graph in comparison with
the one obtained by SpaceEx. In the Class B benchmark
(cf. Figure 4), there is non-determinism between the assign-
ments of quasi-dependent variables which yields an expo-
nential growth of the number of zero time configurations in

1AMD Opteron 6174, 2.2GHz, 16GB, Linux 2.6.32-5-amd64;
SpaceEx 0.9.7c (32bit); t(s) gives user+system time.

n
sAsEt SpaceEx

Cl. SMT-calls states t (s) iterat. t (s)

A 1 4 3 0.34 1003 2.35
2 5 4 0.64 1503 4.21
3 6 5 1.00 2003 6.79
4 7 6 1.48 2503 10.23

B 1 17 4 0.91 1502 7.52
2 71 8 5.12 3502 49.14
3 278 16 25.72 7502 283.70
4 1255 35 142.20 - -

Table 1: x0 'fi xi via fi(x) = x/i+ 1. Timeout 1200 sec.1

the interleaving semantics. Hence the number of SMT calls
grows exponentially. Yet in addition of being faster, the ab-
straction is more space efficient than SpaceEx. Note that
the use of SMT calls amounts to 80% of the computation
time.

5. TRANSFORMATION
In this section we present our transformation for net-

works of hybrid automata which reduces a given set of quasi-
dependent variables and reflects reachability of forbidden
configurations. For simplicity, we impose a set of syntacti-
cal criteria called well-formedness rules on networks.

Firstly, we introduce some notions which we need to state
our rules. Let W ⊆ V be a set of valuations. We use
vars(W) ⊆ Var to denote the set of variables that are con-
strained by W , i.e. vars(W) = {x ∈ Var | {ν(x) | ν ∈W} 6=
R}. Analogously, for update µ ⊆ V ×V and action f , we use
vars(µ) and vars(f), to denote the set of variables that are
constrained by µ and f , respectively. We use V(H) to de-
note the set of variables that are constrained by some initial
condition, location invariant, update, or action in H.

We use SEY (H) to denote the set of simple resetting edges
of hybrid automaton H where only quasi-dependent vari-
ables from Y ∈ QDN are constrained by the conditional up-
date and which have action τ , i.e., SEY (H) = {(`, τ, µ, `′) ∈
Edge(H) | vars(µ) ⊆ Y }. We use CEY (H) to denote the set
of complex resetting edges of H where quasi-dependent and
non-quasi-dependent variables occur in the conditional up-
date, or which have a label different from τ , i.e., CEY (H) =
{(`, a, µ, `′) ∈ Edge(H) | vars(µ) ∩ Y 6= ∅ ∧ (vars(µ) \ Y 6=
∅ ∨ a 6= τ)}. We use EY (H) = SEY (H) ∪ CEY (H) to denote
the set of resetting edges of H wrt. Y , and RESY (N) to
denote the set of automata in N which have a Y -resetting
edge, i.e., RESY (N) = {H ∈ N | EY (H) 6= ∅}.

We use SLY (H) and CLY (H) to respectively denote the
set of source and destination locations of simple and com-
plex resetting edges of H. A location ` (`′) is called reset
(successor) location wrt. Y in N if and only if there is a re-
setting edge in EY (H) from (to) ` (`′). We use RL−Y (RL+

Y)
to denote the set of reset (successor) locations wrt. Y in N .
We define RL−N :=

⋃
Y ∈QDN

RL−Y and similarly RL+
N .

Definition 9. (Well-formed Network) A network N is cal-
led well-formed if and only if it satisfies the following restric-
tions for each set of quasi-dependent variables Y ∈ QDN :

(R1) All resetting edges update at most one variable x ∈ Y ,
and, given x 'f y, the guard of the edge and the invariant
of its source location and the assignment, resp., determine

unique values CY , OY ∈ R, i.e.

∃CY , OY ∈ R ∀ (`, a, µ, `′) ∈ EY (N) ∃x ∈ Y •
∀ (ν, ν′) ∈ µ • ν|V\{x} = ν′|V\{x}
∧ ∀ ν ∈ (µ ↓1) ∩ Inv(`) • ν(x) = CY

∧ ∀ ν ∈ (µ ↓2) • ν(x) = OY ,

where µ ↓i denotes projection onto the i-th component.

(R2) There are no two resetting edges from one location, i.e.

∀ e1 = (`1, a1, µ1, `
′
1), e2 = (`2, a2, µ2, `

′
2) ∈ EY (N) •

e1 6= e2 =⇒ `1 6= `2.

(R3) All edges that synchronise on some label either all reset
a clock from Y or none does, i.e.,

∀ a ∈ Lab • (∃ e = (`, a, µ, `′) ∈ Edge(N) • e ∈ EY (N))

=⇒ (∀ e = (`, a, µ, `′) ∈ Edge(N) • e ∈ EY (N)).

(R4) No guard relates two or more variables from Y , i.e.

∀ e = (`, a, µ, `′) ∈ Edge(N) ∀x ∈ Y • (µ ↓1)|{x} (R
=⇒ ∀ y ∈ Y \ {x} • (µ ↓1)|{y} = R.

Note that network N from Figure 1 is well-formed.
In the following we describe our transformation proce-

dure K. It works with two given inputs, a well-formed net-
work N = {H1, . . . ,Hn} and a set of equivalence classes
QDN of quasi-dependent variables. The output is the trans-
formed network N ′ = {H′1, . . . ,H′n} ∪ {RY | Y ∈ QDN }
which consists of hybrid automata H′i = (Loc′(Hi), Var ′,
Lab′(Hi), Edge ′(Hi), Act ′(Hi), Inv ′(Hi), Init ′(Hi)) which
are obtained as modifications of the Hi, and one resetter
automaton for each equivalence class Y ∈ QDN .

The common set of variables Var ′ consists of the non-
quasi-dependent variables in N , one representative rep(Y)

for each equivalence class, and bookkeeping variables rstIHY
and rstOHY , H ∈ N . For each equivalence class Y ∈ QDN ,
the set of labels of H is extended by the fresh label resetY
if H ∈ RESY (N).

For each automaton H ∈ N , and for each complex edge
e ∈ CEY (H), the set of locations is extended by one fresh
location `ξY,e and the set of edges is extended by one edge
with label resetY and no guard and no assignment from the
source of e to `ξY,e . The source location of e is changed to be
`ξY,e , any guard on and any assignment of quasi-dependent
variables is removed from its µ. For each simple edge, its la-
bel τ is replaced by resetY and any guard on and assignment
of quasi-dependent variables is removed from its µ.

In order to keep track of whether a hybrid automaton is
ready to reset a quasi-dependent variable or has just reset its
variable, the assignments of all edges with a reset location
as destination are changed such that rstIHY is assigned 1, the
assignments of all non-resetting edges with a reset location
as source are changed such that rstIHY is assigned 0, and the
assignments of all resetting edges (including those redirected

to have source `ξY,e) is changed such that rstOHY is assigned

0. Note that rstIHY may also be assigned 1 on resetting edges
in case of loops.

For each location, any action f ∈ Act(H) is restricted to

Var ′ and modified such that rstIHY and rstOHY keep their
value over time, and such that the evolution of the rep-
resentative variables is unconstrained. Their evolution is

`0 `1 `2

x ≤ 5 x ≤ 11H′1:
rst

O1
Y := 1

rst
I1
Y := 1

reset

rst
O1
Y := 0

x ≥ 11

`0 `1 `2

2x− 3 ≤ 7 2x− 3 ≤ 27H′2:
rst

O2
Y := 1

rst
I2
Y := 1

reset

rst
O2
Y := 0

2x− 3 ≥ 27

`ini,RY `nstY

ẋ = 1
˙

rst
I1
Y = 0,

˙
rst

I2
Y = 0

˙
rst

O1
Y = 0,

˙
rst

O2
Y = 0

x ≤ 5

ẋ = 1
˙

rst
I1
Y = 0,

˙
rst

I2
Y = 0

˙
rst

O1
Y = 0,

˙
rst

O2
Y = 0

x ≤ 3reset

x := 3, rst
I1
Y := 0, rst

I2
Y := 0

rst
O1
Y = 0 ∧ rst

O2
Y = 0 ∧ x ≥ 3

RY :

x := 0

x ≥ 5 ∧ rst
I1
Y = 1 ∧ rst

I2
Y = 1

rst
O1
Y := 1

rst
O2
Y := 1

Figure 5: Network N ′ after applying the transformation.

determined by the resetter automata. The actions of the lo-
cations `ξY,e keep all values constant. For each location, the
valuations in the invariant and the initial valuations set are
modified such that they express the original guard in terms
of the representative variable and the dependency function.

For example, applying K to network N from Figure 1 with
the set of quasi-dependent variables Y = {x, y} yields the
automata H′1 and H′2 as shown in Figure 5. Note that only
the representative variable of Y remains, namely variable x.

The resetter for equivalence class Y is the hybrid automa-
ton RY with two locations `ini,RY and `nst,Y and two edges
(`ini,RY , resetY , µ1, `nst,Y) and (`nst,Y , τ, µ2, `ini,RY). The
first edge obtains a guard µ1 which checks whether the rep-
resentative variable of equivalence class Y equals CY and
whether the rstIHY evaluate to 1. µ1 assigns all rstIHY to 0
and the representative variable to OY . The second edge ob-
tains a guard µ2 which checks whether rstOHY evaluates to

0, and assigns 1 to rstOHY .
Both locations of RY inherit the actions for the represen-

tative variable x from the automaton constraining x. Addi-
tionally, from the same automaton, location `ini,RY inherits
the invariant of the reset location with an outgoing edge up-
dating x. Location `ini,RY is set as the initial location and
in `nst,Y we require that the value of the representative is

OY . The variables rstIHY and rstOHY keep their value over

time. rstIHY is initialised to 1 on initial locations which are

reset locations and to 0 otherwise; rstOHY is initialised to 1.
See Figure 5 for an example resetter. Note that the guard

and the update operation are delegated to the resetter. Fur-
ther note that well-formedness together with the counter
variables rstIHY enforces blocking multicast synchronisation,
i.e., always all automata from RESY (N) participate in the
reset.

To support all possible queries, we use the location `nst,Y
to summarise information from configurations that are in-
duced by interleaving updates of quasi-dependent variables.
The variables rstOHY are introduced to indicate how many
automata still need to take their reset edges. The following
function Ω (cf. Table 2) syntactically transforms properties
over a well-formed networkN into equivalent properties over
N ′ (cf. Theorem 5.2).

Function Ω treats queries for source or destination loca-
tions of resetting edges special, by referring these queries to
the summary location `nst,Y . For instance, for a simple re-
setting edge e ∈ SEY (H) of someH ∈ N , the source location
` of e can be assumed in N in different configurations: either
the reset time is not yet reached, or the reset time is reached
but H did not reset yet, while other automata in RESY (N)
may have reset their quasi-dependent variables already. In
N ′, all edges resulting from simple edges fire at once on the
synchronisation on resetY , so all source locations are left
together. With this synchronisation, the resetter moves to
`nst,Y , which represents all configurations of N where all
simple edges are in their source or destination location and
the variables updated on these edges have value CY or OY .
Thus the location ` is reachable in N if and only if, for N ′,
(i) `nst,Y is reachable, or (ii) ` is reached while being stable,
i.e., not being in `nst,Y .

Note that Ω(CF) consists of two parts: a transformation
of CF by Ω0 which uses fresh existentially quantified vari-
ables and a feasibility condition for these fresh variables.
Thereby we represent that, although involving two choices
of location and variable value each, there are actually only
two cases (not four) summarised by `nst,Y . Namely, assum-
ing the source location of a simple resetting edge implies
that the representative has value CY , and assuming the des-
tination location implies the value OY . Furthermore, we can
only assume either the source or the destination location of
the simple resetting edge. By R1, we only need to consider,
e.g., OY and CY as values of x̃, thus the existential quan-
tification can be rewritten into a big disjunction, and hence
is a proper configuration formula.

In the following, we observe that our transformation yields
a network whose stable configurations (see below) directly
relate to the stable configurations of N (one-to-one). For
unstable configurations from both networks the relation be-
tween them is more involved (one-to-many), i.e., this rela-
tion depends on information from simple and complex reset-
ting edges, as well as on values from rst-variables.

Definition 10. (Stable and Unstable Configurations) Let
N be a network and let Y ∈ QDN be a set of quasi-de-
pendent variables. A configuration s ∈ Conf (N) is called
stable wrt. Y ∈ QDN if and only if ∀x ∈ Y, x 'f rep(x) •
νs(x) = f(νs(rep(x))). We use SCYN to denote the set of
all configurations that are stable wrt. Y and SCN to denote
the set

⋂
Y ∈QDN

SCYN of globally stable configurations of N .
Configurations not in SCN are called unstable.

A configuration r ∈ Conf (N ′) of N ′ = K(N ,QDN) is
called stable wrt. Y if and only if the initial location `ini,RY

of resetter RY ∈ N ′ occurs in r, i.e., if `r = `ini,RY . ♦

The following definition allows us to define a weak bisim-
ulation relation between N and N ′.

Definition 11. (Delayed Edge) An edge e of a hybrid au-
tomaton H in network N is called delayed if and only if time
must pass before e can be taken, i.e., if

∀ s0
λ1−→E1 . . . sn−1

λn−−→En sn ∈ Π(H) • e ∈ En =⇒
∃ 0 ≤ j < n•λj ∈ R+

0 \{0}∧∀ j ≤ i < n•Edge(H)∩Ei = ∅.
Here, we write si

λi−→Ei si+1, i ∈ N+, to denote that the

transition si
λi−→ si+1 is justified by the set of edges Ei; Ei

is empty for time transitions, i.e., if λi ∈ R+
0 × Lab.

We say QDN -reset edges are pre/post delayed in well-
formed network N if and only if all edges originating in

Ω0(β) =


(` ∧ ¬`nst,Y) ∨ (`nst,Y ∧ ˜̀) , if β = `, ` ∈ SLY (N) ∪ (CLY (N) ∩RL−Y), Y ∈ QDN .
(¬` ∧ ¬`nst,Y) ∨ (`nst,Y ∧ ¬˜̀) , if β = ¬`, ` ∈ SLY (N) ∪ (CLY (N) ∩RL−Y), Y ∈ QDN .(
ϕ[x/rep(x) | x ∈ Var] ∧ ¬`nst,Y

)
∨
(
`nst,Y ∧ ϕ̃

)
, if β = ϕ, ϕ̃ = ϕ[x/x̃ | x ∈ Var], Y ∈ QDN .

β , otherwise

Ω(CF) = ∃ x̃1, . . . , x̃k ∃ ˜̀
1, . . . , ˜̀

m •

Ω0(CF) ∧
∧

1≤i≤k,1≤j≤m,
xj∈Xp∩Y,1≤p≤n,
`i∈Lp∩(RL−Y \RL

+
Y

)

(˜̀
i =⇒ x̃j = CY) ∧

∧
1≤i≤k,1≤j≤m,
xj∈Xp∩Y,1≤p≤n,
`i∈Lp∩(RL+

Y
\RL−

Y
)

(˜̀
i =⇒ x̃j = OY) ∧

∧
(`,a,µ,`′)
∈SEY (H),

`i∈{`,`′}

(˜̀
i =⇒ `′) ∧

∧
(`,a,µ,`′)
∈CEY (H),
`i=`

(˜̀
i =⇒ `ξY,e) ∧

∧
1≤i 6=j≤m,

1≤p≤n
`i,`j∈Lp,

¬(˜̀
i ∧ ˜̀

j)

Table 2: Formula transformation function Ω. Ω0(CF) denotes applying Ω0 to each basic formula in CF .

reset (successor) locations are delayed, i.e., if for all e =
(`, a, µ, `′) ∈ Edge(N), ` ∈ RL−N ∪ RL

+
N implies that e is

delayed. ♦

There are sufficient syntactic criteria for an edge e =
(`1, a1, µ1, `2) being delayed. For instance, if (`0, a0, µ0, `1)
is the only incoming edge to `1 and if the condition of µ0 is
(x ≥ C ∧ x ≤ C) and the condition of µ1 is (x ≥ D ∧ x ≤
D) and C < D, then e is delayed. It is also delayed if
(`0, a0, µ0, `1) is the only incoming edge to `1, µ0 updates x,
and the condition of µ1 is (x > 0).

Both patterns occur, e.g., in the FSN case-study (cf. Sec-
tion 5.1). There, the reset location is entered via an edge
following the former pattern, and the edges originating at
the reset successor location follow the latter pattern. Thus
QDN -reset edges are pre/post delayed in FSN.

Lemma 5.1. (Weak Bisimulation) Any well-formed net-
work N where QDN -reset edges are pre/post delayed, is
weakly bisimilar to N ′ = K(N ,QDN), i.e., there is a weak
bisimulation relation S ⊆ Conf (N)× Conf (N ′) such that

1. ∀ s ∈ Conf (N) ∃ r • (s, r) ∈ S
and ∀ r ∈ Conf (N) ∃ s • (s, r) ∈ S.

2. For all configuration formulae CF over N , ∀ (s, r) ∈
S • s |= CF =⇒ r |= Ω(CF) and ∀ r ∈ CONSQDN •
r |= Ω(CF) =⇒ ∃ s ∈ Conf (N)• (s, r) ∈ S ∧s |= CF .
Where r ∈ CONSQDN iff

∀Y ∈ QDN • νr(rstIHY) = |{`r,1, . . . , `r,n} ∩ RL−Y | ∧

`r,RY = `ini,RY =⇒ νr(rstOHY) = |Y | ∧ `r,RY =

`nst,RY =⇒ νr(rstOHY) = |{`r,1, . . . , `r,n} ∩ ΞY |.

3. For all (s, r) ∈ S, if s
λ−→ s′ with

(a) s, s′ /∈ SCYN , where Y ∈ QDN , and justified by
a simple resetting edge, or s /∈ SCYN , s′ ∈ SCYN ,
where Y ∈ QDN , and justified by a simple reset-

ting edge, then r
0−→ r and (s′, r) ∈ S.

(b) s ∈ SCYN , s′ /∈ SCYN , where Y ∈ QDN , and
justified by the set CE1

Y ⊆ CEY (N) of complex
resetting edges wrt. Y , or s, s′ ∈ SCYN , where
Y ∈ QDN , and justified by CEY ⊆ CEY (N), or
s, s′ ∈ SCYN , `r = `nst,RY for some Y ∈ QDN ,
and λ = d > 0, then there exist r′, r′′ such that

r
τ−→ r′

λ−→ r′′ and (s, r′), (s′, r′′) ∈ S.

(c) Otherwise there is r′ s.t. r
λ−→ r′ and (s′, r′) ∈ S.

and if r
λ
−→ r′ with

(a) r ∈ SCYN ′ , r′ /∈ SCYN ′ , where Y ∈ QDN , νr′

(rstOHY) < N , where N = νr(rstOHY), there exist

s1, . . . , sn where n = N − νr′(rstOHY), such that

s
τ
−→ s1

τ
−→ . . .

τ
−→ sn and (si, r

′) ∈ S, 1 ≤ i ≤ n.

(b) r ∈ SCYN ′ , r′ /∈ SCYN ′ , νr′(rstOHY) = νr(rstOHY),
where Y ∈ QDN , or `r = `nst,RY , `r′ 6= `nst,RY ,

Y ∈ QDN , then s
0
−→ s and (s, r′) ∈ S.

(c) Otherwise there is s′ s.t. s
λ
−→ s′ and (s′, r′) ∈ S.

Theorem 5.2. Let CF be a configuration formula over
well-formed network N with pre/post delayed QDN -resets.
CF is reachable in N iff Ω(CF) is reachable in K(N ,QDN).

5.1 Experimental Results
For our experimental evaluation1 we have chosen two in-

dustrial time-based protocols for wireless sensor networks
where the timers of the individual sensors advance at differ-
ent rates (each rate being constant). In our case studies we
have verified queries which were proposed by the respective
authors. Our first benchmark, the FSN fire alarm protocol
from [21] belongs to the class of TDMA protocols. It consists
of one controller and, in our setting, from 10 to 130 sensors.
Each sensor has only one (simple) resetting edge. We veri-
fied that the communication between controller and sensors
is successful, i.e., each message received by the controller is
replied to and reaches the transmitting sensor. The results
are reported in Table 3; we have used the same machine as
in Section 4.1. We compare the number of iterations and
analysis runtime needed by SpaceEx for the original and the
transformed systems (the latter denoted in the table by the
suffix K). Furthermore, we report time spent in the detec-
tion phase. It is important to note that the detection can
be done in a compositional manner by considering only pairs
of sensors and their variables. These detections can run in
parallel; the final set of quasi-dependent variables can be
derived using transitivity. Therefore, in column “Detect” of
Table 3, we show the results of pair-wise detection. Overall,
our approach shows better performance starting from the
smallest instances. Furthermore, our combined approach

1Tools and benchmarks are available for download [1].

Detect Check
pairs Σ t(s) iter. t(s) Σ

10 2086 47.18 47.18
10 K 9 27.68 41 0.14 27.82
11 4138 134.53 134.53
11 K 10 30.74 45 0.17 30.91
12 - - -
12 K 11 33.78 49 0.19 33.97

110 K 109 334.28 441 46.35 380.63
120 K 119 364.93 481 59.72 424.65
130 K 129 395.48 521 75.55 471.03

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100 110 120 130

C
h
e
ck

 t
(s

)

number of sensors

FSN
FSN-K

Table 3: Benchmark FSN: For each pair of quasi-dependent
variables, detect needs 41 SMT calls, 14 states.1

uses much less memory thus we can treat larger system in-
stances. Our approach scales up to 130 sensors whereas the
analysis of the original system runs out of memory already
for the instance with 12 sensors.

Our second case study [3] belongs to the class of EPL
protocols. Once again there is one controller with multiple
sensors, each sensor has a single (complex) resetting edge
where quasi-dependent and non-quasi-dependent variables
are updated. We verified that all sensors receive and ac-
knowledge each message sent by the controller. The results
for our settings range from 7 to 11 sensors and are presented
in Table 4. Although it always takes SpaceEx less time to
analyse the transformed system than to analyse the original
system, we observe that the speed-up is smaller than for the
FSN benchmark. This can be explained by the fact that we
are able to completely remove the interleaving “diamond” in
case of FSN because of only simple resetting edges, whereas
for EPL we only reduce the number of variables while still
having to analyze the interleavings induced by the update
of non-quasi-dependent variables in complex resetting edges.
Those interleavings also have an impact on the detection
phase performance as we need to consider more paths in the
abstract region graph. Still, we can observe that the analy-
sis of the original system runs out of memory for 10 sensors,
our approach can analyze larger instances.

As SpaceEx supports only continuous variables, we have,
for the sake of efficiency, represented values of the discrete
counter variables rstIHY and rstOHY by corresponding loca-
tions in the resetter automata.

Detect Check
pairs Σ t(s) iter. t(s) Σ

7 396 5.45 5.45
7 K 5 48.53 408 2.05 50.58
8 781 15.51 15.51
8 K 6 58.21 794 5.28 63.49
9 1550 43.75 43.75
9 K 7 68.25 1564 14.27 82.52

10 - - -
10 K 8 77.85 3102 41.89 119.74
11 K 9 87.49 6176 139.91 227.40

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10 11

C
h
e
ck

 t
(s

)

number of sensors

EPL
EPL-K

Table 4: Benchmark EPL: For each pair of quasi-dependent
variables, detect needs 120 SMT calls, 34 states.1

6. CONCLUSION
In this paper, we have presented techniques to efficiently

exploit the dependencies between continuous variables in hy-
brid automata.

The technical contribution comprises two methods: an au-
tomatic detection of quasi-dependent variables and a method
to automatically transform and reduce the original system.
The current prototypical implementation of our detection
algorithm is backed by a linear SMT solver. Although using
a rather straight-forward, constraint-based representation of
regions in the abstract region graph, we have been able to
achieve a significant performance speed-up. Thus, we can
expect to achieve even better performance when using elab-
orated data structures to represent regions. Our transfor-
mation technique shrinks the set of states emerging during
discrete updates of quasi-dependent variables due to the in-
terleaving semantics. This leads to an abstracted hybrid au-
tomaton with a much smaller state space, which, however,
reflects all properties of the original system.

Overall, a combination of our methods, i.e. the detection
part and consequent transformation, shows very promising
results compared to the application of the hybrid model
checker SpaceEx to original models. Although we have only
evaluated our approach on linear hybrid automata moti-
vated by industrial, time-based protocols where the timers
of the individual sensors advance at measurably different
rates, our theory is generic as it uses the SMT solver (for
the detecting part) and SpaceEx (for the analysis of a re-
duced hybrid automaton) as black-boxes. In particular, our
detection algorithm leverages the power of the underlying
SMT-solver, thus using dReal [22] or HySAT [23], which
can handle non-linear constraints, would immediately sup-
port detection for systems with non-linear behaviour. The

transformation does not depend on the class of continuous
dynamics at all.

Acknowledgments.
We thank Goran Frehse for his assistance with SpaceEx

during the preparation of our benchmark suite.

7. REFERENCES
[1] http://swt.informatik.uni-freiburg.de/

projects/CaseStudyRepository/hybridqdv.

[2] T.S. Rappaport. Wireless communications, volume 2.
Prentice Hall, 2002.

[3] G. Cena et al. Performance analysis of ethernet
powerlink networks for distributed control and
automation systems. CSI, 31(3):566–572, 2009.

[4] C. Herrera, B. Westphal, S. Feo-Arenis, M. Muñiz,
and A. Podelski. Reducing quasi-equal clocks in
networks of timed automata. In FORMATS, pages
155–170. Springer, 2012.

[5] C. Herrera, Westphal, and A. Podelski. Quasi-equal
clock reduction: More networks, more queries. In
TACAS. Springer, 2014.

[6] M. Muñiz, B. Westphal, and A. Podelski. Detecting
quasi-equal clocks in timed automata. In FORMATS,
pages 198–212. Springer, 2013.

[7] M. Karr. Affine relationships among variables of a
program. Acta Informatica, 6(2):133–151, 1976.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
pages 238–252. ACM, 1977.

[9] C. Daws and S. Yovine. Reducing the number of clock
variables of timed automata. In RTSS, pages 73–81.
IEEE, 1996.

[10] C. Daws and S. Tripakis. Model checking of real-time
reachability properties using abstractions. In TACAS,
pages 313–329. Springer, 1998.

[11] A. Étienne. Dynamic clock elimination in parametric
timed automata. In FSFMA, volume 31, pages 18–31.
Schloss Dagstuhl, 2013.

[12] R. Ben Salah et al. Compositional timing analysis. In
EMSOFT, pages 39–48. ACM, 2009.

[13] G. J. Pappas. Bisimilar linear systems. Automatica,
39(12):2035–2047, 2003.

[14] A. J. Van der Schaft. Equivalence of dynamical
systems by bisimulation. IEEE Trans. Automatic
Control, 49(12):2160–2172, 2004.

[15] A. Girarda and G. J. Pappas. Approximate
bisimulation relations for constrained linear systems.
Automatica, 43:1307–1317, 2007.

[16] A. Girard, A. A. Julius, and G. J. Pappas.
Approximate simulation relations for hybrid systems.
Discrete Event Dynamic Systems, 18(2):163–179, 2008.

[17] R. Alur, C. Courcoubetis, et al. The algorithmic
analysis of hybrid systems. TCS, 138(3):34, 1995.

[18] L. De Moura and N. Bjørner. Z3: An efficient smt
solver. TACAS, pages 337–340, 2008.

[19] K. Zee, V. Kuncak, and M. Rinard. Full functional
verification of linked data structures. In PLDI, pages
349–361. ACM, 2008.

[20] G. Frehse et al. SpaceEx: Scalable verification of
hybrid systems. In CAV, LNCS. Springer, 2011.

[21] D. Dietsch, S. Feo Arenis, B. Westphal, and
A. Podelski. Disambiguation of industrial standards
through formalization and graphical languages. In RE,
pages 265–270. IEEE, 2011.

[22] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT
solver for nonlinear theories over the reals. In CADE,
pages 208–214. Springer, 2013.

[23] M. Fränzle, C. Herde, et al. Efficient solving of large
non-linear arithmetic constraint systems with complex
boolean structure. JSAT, 1(3-4):209–236, 2007.

