
Using Constraints to Verify Properties of Rule
Programs

Bruno Berstel†∗

∗Software Engineering
Universität Freiburg
Freiburg, Germany

Email: berstel@informatik.uni-freiburg.de

Michel Leconte†

†IBM
Gentilly, France

Email: michel.leconte@fr.ibm.com
Email: bruno.berstel@fr.ibm.com

Abstract—Rule-based programming has been gaining interest
in the industry for several years, through the growing use of
Business Rules Management Systems. A demand for verification
of semantic properties on rule programs has thus emerged. In
this paper we present an approach to rule program verification,
using constraints to model program executions and verification
properties, and a Constraint-Based Programming Solver (CP
Solver) to compute the answers to verification questions. We also
study the use of constraint-based programming in rule program
verification, and the consequences of this usage on the CP Solver
compared to combinatorial optimization problems.

Keywords-rule-based programming; program analysis; pro-
gram verification; constraint-based programming; constraint
satisfiability.

I. INTRODUCTION

Programs made of production (or condition-action)
rules [1]–[5], which are at the basis of Business Rules Man-
agement Systems (BRMS) [6], [7], are gaining more and more
interest in the industry, as a way to externalize the behaviours
of applications, thus lowering the cost of frequent changes due
for instance to regulation updates or to competitive pressure.

Program verification problems, that is, the question of
whether a program satisfies a given property, can be mod-
elled using constraints [8], [9], and expressed as implication
problems [9], or as satisfiability or non-satisfiability problems.
Using a Constraint-Based Programming Solver (CP Solver)
to solve such problems [8], [10] has the advantage of being
able to address a large class of formulas. This comes at the
price of completeness, but practical experience shows that it
is most of the time effective [11]. The solutions that are found
correspond to answers (witnesses or counterexamples) to the
program verification questions.

The purpose of this paper is to present an approach to
the verification of rule programs, based on constraints and
the use of a CP Solver. It also presents an extensive use of
constraints, from modelling programs and properties to solving
satisfiability problems to get verification results. In addition we
study the challenges that rule program verification represents
for a CP Solver. Section II gives an industrial motivation to

This work has been partially supported by the “CAVERN” ANR-07-SESUR-
003 project.

the problem of rule program verification and introduces an
example rule program that will be used throughout the paper.

Unlike sequential programming languages, rule-based pro-
gramming languages are declarative, meaning that the rules are
enumerated independently from each other, and the program
has no main entry. The semantics of a rule program is thus
defined with an implicit rule execution procedure (the rule
engine) in mind. Modelling the semantics of a rule program
for verification thus requires that the implicit rule engine be
explicited. Moreover, it so happens that several alternative rule
engine semantics exist and are used in BRMSs. Section III
presents a simple rule language, a general semantics for rule
engines, and how they can be modelled using constraints.

The properties of interest to rule program verification in-
clude those of interest to general program verification, such
as safety properties and termination. They also include more
specific properties such as confluence of the rule program.
Section IV reviews verification properties, and presents how
they can be modelled as constraint problems.

Section V details the computation to perform to determine
whether the example program is confluent or not. Then Sec-
tion VI discusses the consequences that rule program verifica-
tion has on a CP Solver, and gives directions to accomodate
them.

II. MOTIVATION AND EXAMPLE

Business policies define how a company, small or large,
should be run. Policies take various forms, from informal
manuals, to methodologies, to standards. In some cases they
can be automated, that is, implemented as software to be
executed by a computer.

It is also often the case that companies have to implement
changes in policy. These change may come from new regu-
lations (such as laws addressing environmental concerns, or
new accounting standards), or may be part of the strategy of
the company, for instance to implement a new pricing policy.

When business policies are both automated and changing,
their implementation as rules provides a decisive advantage in
terms of agility. In particular, modern business rules manage-
ment systems give the ability to the business, non-IT user to

express rules in a user-friendly environment, using a natural-
language-like rule language.

As a running example in this paper, we will consider a
company running an e-commerce web site. Customers of this
company have a registered profile on the site, which includes
the customer’s age and category (Silver, Gold, or Platinum).
During a session on the site, a customer puts items in his/her
shopping cart.

The pricing policy of the company, and hence the business
rules implementing it, aim at computing a discount on each
shopping cart, based on the customer profile and on the cart
value. In our example we have three rules:
• The gold-discount rule implements a policy that in-

crements the discount granted to Gold customers by 10
points, if their shopping cart is worth $2,000 or more.

• The platinum-discount rule implements a policy that
increments the discount granted to Platinum customers
by 15 points, if their shopping cart is worth $1,000 or
more.

• The upgrade rule implements a policy that promotes
Gold customers to the Platinum category, if they are aged
60 or more.

Using the rule language introduced in Section III the three
rules informally exposed above would be implemented as
shown in Fig. 1. In an industrial BRMS the business user
would enter them in a structured natural language, which the
system would then translate into a language close to the one
used in Fig. 1, yielding a program ready for execution by a rule
engine. Or for our purpose, ready for analysis by translation
into constraints.

rule gold-discount:
when:
category == Gold, // customer category
value >= 2000 // shopping cart value

then:
discount := discount + 10; // cart discount

end

rule platinum-discount:
when:
category == Platinum,
value >= 1000

then:
discount := discount + 15;

end

rule upgrade:
when:
category == Gold,
age >= 60

then:
category := Platinum;

end

Fig. 1. The implementation of the three rules of the running example.

A number of properties can be checked on such a program;
see Section IV for a survey of some of them. In particular, the
reader may have noticed that there is an ambiguity between the

upgrade and discount policies. If a Gold customer is eligible
to both being granted the Gold discount and being upgraded
to the Platinum category, then this customer may end up with
either a 15 % or a 25 % discount, depending on whether the
upgrade or the gold-discount is executed first.

Although rule engines are deterministic and will consis-
tently compute the same discount for the same input data,
such an ambiguity is a hazard for the business application
and should be reported to the user. Section V details how the
system will detect this ambiguity using the approach proposed
in this paper.

Pragmatically, the issue would typically be fixed by setting
priorities on the rules.

III. FROM RULES TO CONSTRAINTS

In this section we define a simple rule language, together
with the operational semantics of the programs written in
this language. We then describe how we go from rules to
constraints, with a word on the computation of execution
traces.

A. A Simple Rule Language

1) Syntax: The signature Σ of symbols used to write our
rule programs includes constant symbols for Booleans, integer
and real numbers, as well as finite enumerations of symbolic
values (such as the Silver/Gold/Platinum customer category).
Il also includes variable symbols, as well as the arithmetic
(including multiplication) and comparison operators, and the
logical connectors ∧, ∨ and ¬. Variable symbols are in finite
number, their set is noted Var.

A rule is made of a guard and an action. The guard of a
rule is a formula built on constants and variable symbols using
the operators and connectors. The action is a list of variable
assignments. A rule program is an unordered collection of
rules.

Although it supports the main features needed to illustrate
our approach, the rule language considered here is purposedly
simplistic. In particular, real BRMSs include the whole range
of classical programming constructs in the actions of rules,
from local variables to conditionals, to loops, etc. These are to
be modeled using dedicated techniques (e.g. [10], [12], [13]).

The concrete syntax should be obvious from the example
programs such as the one in Fig. 1. Of notice however, is the
fact that conditions in a rule guard are implicitely connected
by a conjunction.

2) Semantics: The domain D of the values handled by
the rule programs include self-interpreted Booleans, numbers,
and symbolic enumerations. The operators and connectors are
interpreted in the classical way.

A program state is a valuation of the variables, that is,
a function from Var to D. A state allows us to interpret
an expression, or a formula—that is, a rule guard or, as
we shall see, a property to verify. We note s(e) the value
of an expression e in a state s, resulting from the classical
interpretation of operators applied on the valuation of variables
provided by s. We say that a formula ϕ holds in a state s, and

we write s |= ϕ, if the valuation of variables provided by s
makes the formula valid.

In the context of rule-based programming, the current state
is referred to as the working memory. When a rule guard holds
in the current state, the rule is said to be applicable on the
working memory.

A rule program P is executed by a rule engine with the
following semantics. An engine semantics has two parameters:
a rule eligibility strategy E , and a conflict set resolution
strategy C. Their roles are explained below.

1) Set the working memory WM to the initial state.
2) Build the set A = {r = (g, a) | r ∈ E(P) ∧WM |= g}

of all applicable and eligible rules. This set is called the
agenda of the rule engine.

3) If A is empty, the execution ends.
4) Otherwise, choose a rule r = C(A) in the agenda.
5) Update the working memory by executing the action of

r. That is, if the action of r is the assignment x := e,
replace the current state WM with a new state WM ′

such that

WM ′ : v 7→
{

WM (e) if v is x
WM (v) otherwise

If the rule action contains several assignments, execute
them in sequence.

6) Go to step 2.
The purpose of the rule eligibility strategy E is to avoid triv-

ial infinite loops caused by applying again and again the same
rule. Indeed consider for instance rule platinum-discount:
once this rule has been applied, its guard is still true; as a
result, the rule could be applied indefinitely. The rule eligibility
strategy defines what a “trivial” loop is, and avoids them
by making some rules ineligible. Several eligibility strategies
exist, the historical one being refraction [3]. In short, refraction
forbids that the engine applies a rule a second time if the rule
guard has not become false since the last time the rule was
applied.

The purpose of the conflict set resolution strategy C is to
pick the next rule to execute from the agenda. Again, several
such strategies exist. Assigning a priority to each rule is a
standard one. In practice, a rule engine always chooses the
same rule in the same situation, even when the conflict set
resolution strategy does not totally sort the rules (for instance,
when several rules have the same priority). For this it resorts to
secondary criteria with no business meaning, such as the name
of the rule. In our program analyses, which are conducted
from a business user’s perspective, the rule engine semantics is
modeled using only the primary, business-meaningful criteria
of the conflict set resolution strategy.

3) Program traces: As described at step 5 of the semantics
of a rule program, the execution of a rule causes a state
transition. As a consequence, the execution of a rule program
is made of a sequence of state transitions, characterized by the
initial state and the sequence of executed rules.

A rule program execution may be finite or not, even in
the presence of the rule eligibility strategy, which purpose is

to avoid trivial loops and not all infinite executions. In the
remainder of this paper, we shall consider rule programs with
finite executions, which can be achieved for instance by using
a rule eligibility strategy that allows at most one execution for
each rule.

Given a rule program P = {R1, . . . , Rn}, we call r1 ◦ . . . ◦
rm an execution trace of P if there exists at least one state
from which an execution of P can be triggerred, composed
of the sequence of rules r1, . . . , rm, with rj ∈ P for j =
1, . . . ,m.

An execution trace establishes a relation between states. The
state pair (s, s′) is in the relation defined by the trace r1 ◦ . . .◦
rm if the successive execution of r1 from s, then of r2 from
the resulting state, etc., ends with the execution of rm leading
to state s′. We note this s r1◦...◦rm−−−−−−→ s′. A trace is called valid
if it establishes a non-empty relation.

For a given initial state, a rule program may have several
executions, if the conflict set resolution strategy used by the
engine allows it. Even though these several executions will
transition through different sequences of states, they may all
end up in the same final state, or not. Computing the execution
traces for a rule program depends on the strategies chosen for
the engine; the authors have investigated trace computation
algorithms for several strategies, yet they have no method
generalizing across strategies.

B. State Constraints and Transition Constraints

The state constraints (or simply constraints) we consider
are first-order logic formulas over the signature Σ defined in
Section III-A. The translation of the guard of a rule is thus
straightforward.

We also consider transition constraints, which are first-order
logic formulas over the signature Σ′, defined as Σ augmented
with new variable symbols obtained by adding a prime to
each variable symbol in Var. A transition constraint is thus
a formula containing both primed and unprimed variables.

Each assignment in the action of a rule is translated into a
transition constraint stating the equality between the primed
version of the assigned variable and the expression being
assigned to it. To these we must add the equalities between the
primed and unprimed versions of all the other, non-assigned
variables. The resulting conjunction forms the translation of
the rule action into a transition constraint.

Given a rule r, let us note g the state constraint resulting
from the translation of its guard, and a the transition constraint
describing its action. The relation r→ defined by the trace
consisting of only one execution of r can be described by the
transition constraint ρ(r) ≡ g ∧ a. In this constraint, a binds
the values of variables in the initial and final states, and g
restricts this binding to the initial states where r is applicable.
Example. The guard of the gold-discount rule will be
translated into category = Gold ∧ value ≥ 2000, while the
assignment in the action of this rule will be translated into
discount ′ = discount + 10. As noted above, the complete
translation of the action also includes identity assignments for
the other variables. Thus, the complete translation of the action

of gold-discount is discount ′ = discount + 10 ∧ age ′ =
age ∧ category ′ = category ∧ value ′ = value .

The transition constraint ρ(r1 ◦ r2) for the relation r1◦r2−−−−→,
defined by the trace consisting of one execution of r1 followed
by one execution of r2, is built from the transition constraints
g1 ∧ a1 for r1−−→ and g2 ∧ a2 for r2−−→ as follows. We first
introduce a syntactic transformation: given a formula ϕ, we
define the formula primed(ϕ) by replacing all variable symbols
in ϕ with the same variable symbols equiped with a prime (an
additional one for variables already primed). The transition
constraint ρ(r1 ◦r2) is then g1∧a1∧primed(g2)∧primed(a2),
expressing that the action of r2 is executed from those states
resulting from the execution of r1 where it is applicable.

Example. The transition constraint for the successive execu-
tions of the rules upgrade and platinum-discount is:

category = Gold ∧ age ≥ 60

∧ category ′ = Platinum ∧
∧

v is not category

v′ = v

∧ category ′ = Platinum ∧ value ′ ≥ 1000

∧ discount ′′ = discount ′ + 15 ∧
∧

v is not discount

v′′ = v′

which after simplification amounts to:

category = Gold ∧ age ≥ 60 ∧ value ≥ 1000
∧ category ′ = Platinum ∧ discount ′ = discount + 15
∧ age ′ = age ∧ value ′ = value

The primed variable elimination in the example above
allowed us to rewrite the transition constraint as a constraint
on unprimed and single-primed variables. For the sake of
simplicity, we shall consider in the remainder of this paper
that the transition constraints of traces, no matter how long,
bind unprimed variables and variables with only one prime.

An execution trace t is valid, that is, the relation r→ is non-
empty, if and only if the transition constraint ρ(t) is satisfiable.

Note that a formula ρ over Σ′ is to be interpreted by
a valuation 〈s, s′〉 based on a pair of states s and s′. The
valuation 〈s, s′〉 is defined as giving the same value as s to
unprimed variables, and to each primed variable the value
that s′ gives to the corresponding unprimed variable. When
a valuation 〈s, s′〉 makes a formula ρ over Σ′ valid, we note
〈s, s′〉 |= ρ.

As noted before, a rule program can have multiple execution
traces, of unbounded lengths. These traces are described by the
collection of the corresponding transition constraints. Com-
puting all of them can be tricky and/or costly with complex
rule eligibility and conflict set resolution strategies. However,
it is sometimes sufficient in practice to use approximations
of the set of all traces, to find bugs in rule programs. Such
approximations include simplifying the rule eligibility strategy
in a way that introduces no spurious executions, or considering
bounded length executions [9]. An extreme, yet sometimes
useful approximation is to consider only traces consisting in
one rule execution.

IV. VERIFICATION OF PROPERTIES AS CONSTRAINT
PROBLEMS

As mentioned in the introduction, rule program verification
includes verifying safety properties on the program executions,
as well as termination and confluence of the rule program.

In this section we study how the verification of safety and
confluence properties can be formulated as the satisfiability or
unsatisfiability of a constraint problem.

To express these properties, state and transition constraints
are used. It sometimes happens that a property has to hold only
for executions starting from a given set of initial states. These
initial states are specified by an assertion, which is usually
noted init.

A. Safety

A safety property is an assertion safe defining a set of states,
which represent desirable termination states for the program.
A program is considered safe if for all states s and s′ and all
execution traces trace of the program such that s |= init and
s trace−−→ s′, then s′ |= safe.

Verifying a safety property is done by refutation on all
program traces. That is, all program traces are considered and
for each one, it is tested whether the transition constraint

init ∧ ρ(trace) ∧ ¬ primed(safe) (1)

is satisfiable, that is, two states s and s′ can be found such
that 〈s, s′〉 makes (1) valid. If the constraint is unsatisfiable
then the program is safe; otherwise solutions can be provided
to the user as examples of unsafe executions.

Example. On the running example program, one may want to
verify that customer cannot be downgraded, that is, their cate-
gory cannot be changed from Platinum to Gold or Silver. This
could be expressed by init ≡ safe ≡ category = Platinum.

B. Confluence

A rule program is considered confluent when from any
initial state, all program executions will lead to the same
final state. This property is also referred to as consistency,
or semantic interference-freedom [14]. A non-confluent rule
program is the sign of either a design or an implementation
error.

Again, the verification of a rule program confluence is done
by refutation. A rule program is non-confluent if there exist
two traces trace1 and trace2 for which an initial state can
be found from which both traces are applicable and lead to
distinct states. That is, there exist two traces and three states
s, s′1, s

′
2 such that

s |= init and s trace1−−−−→ s′1 and s trace2−−−−→ s′2 and ¬(s′1 ' s′2)

where s1 ' s2 means that for any variable symbol v, s1(v) =
s2(v).

Let us define, for any trace t, the transition constraints ρ1(t)
and ρ2(t) by replacing in the transition constraint ρ(t) all
the primed variable symbols with the same variable symbols
indexed by 1 (resp. 2). The non-confluence of a rule program

can then be assessed by testing, for each pair (trace1, trace2)
of traces, whether the transition constraint (2) is satisfiable

init ∧ ρ1(trace1) ∧ ρ2(trace2) ∧ ¬ samefinal (2)

with samefinal defined as the pairwise equality of all the
primed variables in their indexed-by-1 and indexed-by-2 ver-
sions.

Thus, the rule program is confluent if for each pair of
execution traces of the rule program, no states s, s′1, s

′
2 can be

found that make (2) valid, where s gives values to unprimed
variables, and s′1 and s′2 give values to primed variables in-
dexed by 1 and 2, respectively. If on the other hand such states
can be found for some pair of traces, the initial state s and
the traces provide two conflicting executions demonstrating
the non-confluence of the rule program.

V. NON-CONFLUENCE OF THE RUNNING EXAMPLE

In this section we describe the computations to follow in
order to verify the confluence of the running example rule
program. As just seen, the process consist in considering all
pairs (trace1, trace2) of execution traces for this program, and
test whether the constraint (2) is satisfiable.

Let us assume no particular knowledge on the initial state,
that is, init ≡ true. Also, in our case

samefinal ≡ age ′1 = age ′2 ∧ category ′1 = category ′2
∧ value ′1 = value ′2 ∧ discount ′1 = discount ′2

The valid execution traces of the running example rule
program can be enumerated as follows:
• gold-discount

• platinum-discount

• upgrade

• upgrade ◦ platinum-discount
• gold-discount ◦ upgrade ◦ platinum-discount
Among these traces, the only ones whose transition con-

straints are pairwise compatible (the conjunction of the guards
of the first rules in other pairs of traces is unsatisfiable) are

trace1 ≡ upgrade ◦ platinum-discount
trace2 ≡ gold-discount ◦ upgrade ◦ platinum-discount

The transition constraints for these traces are computed as
shown in the last example of Section III-B. After simplifica-
tions, the non-confluence constraint (2) expresses as follows
for the example program:

category = Gold ∧ age ≥ 60 ∧ value ≥ 2000
∧ category ′1 = Platinum ∧ discount ′1 = discount + 15
∧ category ′2 = Platinum ∧ discount ′2 = discount + 25
∧ age ′1 = age ′2 = age ∧ value ′1 = value ′2 = value
∧ (category ′1 6= category ′2 ∨ discount ′1 6= discount ′2)

This constraint satisfiability problem is then submitted to the
constraint solver, which will answer “the constraint has solu-
tions”. This indicates that the rule program is non-confluent.
The constraint solver is then asked to provide a solution.

Depending on the labelling strategy, the solution may for
instance be:

age = 60 age ′1 = 60 age ′2 = 60
category = Gold category ′1 = Plat. category ′2 = Plat.

value = 2000 value ′1 = 2000 value ′2 = 2000
discount = −128 discount ′1 = −113 discount ′2 = −103

The business rules management system then presents the
solution to the user in an error message such as: The rule
program is ambiguous. For instance, starting with a customer
age equal to 60, a customer category equal to Gold, and a
cart value equal to $2,000, the execution of rules upgrade

and platinum-discount will not yield the same result
as the execution of rules gold-discount, upgrade, and
platinum-discount.

VI. CONSEQUENCES FOR THE CP SOLVER

The constraint problems that derive from program verifica-
tion questions carry specificities that challenge the efficiency
of a “plain” CP Solver. The challenge essentially results from
the combination of slow convergence of propagation and large
domains of variables.

The large domains phenomenon relates to the fact that input
variables are commonly ranging over all the possible values
that can be represented in the computer. For integer variables,
there are thus typically 232 or 264 such values. This comes
in contrast with using a CP Solver to solve combinatorial
problems, where the domains of the variables is usually not
so unreasonably large.

Slow convergence during propagation (also known as slow
propagation) appears when the time to reach the fix point of
domain reduction is proportional to the size of the domains of
the variables. This phenomenon is never desirable, but has a
major impact when variables have extremely large domains.

As noted in [15], the slow propagation phenomenon is
somehow unavoidable in general. In some constraint problems
(such as the linear ones of Examples 2 and 3), if there is
a solution, then there is one inside some bounds which can
be computed [16]. This is not always true, as Example 1
demonstrates.
Example 1. Consider the constraints x > ux for integer
variables x and u. Suppose also that x can take any 32-bit
values and that u ∈ {0, 1}. Here x and u satisfy the constraint
if and only if u is zero and x is positive.

The CP Solver implements the usual interval reduction to
propagate constraints. Here, the propagation will remove one
by one all negative or null values from the domain of x. The
fix point is x ∈ [1, 231] and u ∈ {0, 1}. Reaching this fix point
requires 231 steps.

Note that, as the propagation is incomplete on this example,
the value 1 is still in the domain of u when the fix point
is reached. If at some point u is instanciated to 1, then
the constraint x > ux becomes unsatisfiable. To prove this,
propagation will reduce the domain of x by removing only
the minimum and the maximum values from its domain at
each step, taking 230 additional steps.

Special procedures have however been developed to address
some cases of slow propagation.

Example 2. Consider the constraints x < y and y < x. In this
example each constraint propagation step removes only one
value from the domains of variables.

The procedure described in [17] allows a CP Solver to
prevent the case of slow propagation illustrated in Example 2.
This procedure detects the infeasibility of such constraints by
looking for cycles in a graph built from the constraint problem.

Example 3. Consider the constraint 2x+2y = 1. Here also the
domain reduction removes only the bounds of the domains at
each constraint propagation.

The kind of slow propagation illustrated in Example 3
appears with integer linear constraints, and can be addressed
as proposed in [18] by enriching the domains of variables with
a congruence domain. On the constraint from Example 3 the
CP Solver will recognize that the variables should be both odd
and even, and conclude to the infeasibility of the constraints.

It must be noted that slow propagation is not always the
sign of an unsatisfiable constraint problem, as Example 1
demonstrates. On the other hand, an unsatisfiable problem
involves more propagation cycles, thus raising the impact
of slow propagation. And since, as exposed in Section IV,
properties are frequently proven by refutation, the verification
of a bug-free program will produce an unsatisfiable constraint
problem. As a result, verifying a bug-free program (and the
major portions of programs are bug-free, after all) is very
sensitive to slow propagation.

We use a home-made finite domain CP Solver, which is an
Object-Oriented Library in Java along the lines of [19].

To address the challenges linked with slow propagation
and large domains in our CP Solver, we use the congruence
domains [18] together with usual interval propagation. The
BRMS user can also specify bounds on variables, indicating
for example that the age of a customer is between 0 and 100.
Such a specification is however totally optional.

In addition, we adopt the pragmatic approach of stopping
the reduction of a domain after a given number of steps in
the same cycle of propagation. For instance, in Example 2 we
may stop the propagation before the fixpoint is reached, that is,
before the domains of x and y become empty. These domains
would then look like [−a, a] for some constant a. However
we refrain from concluding from such an interruption that the
problem is unsatisfiable, as justified by Example 1.

VII. CONCLUSION

In this paper we have described a constraint-based approach
to the verification of rule programs, and we have studied the
consequences of rule program verification specificities for a
CP Solver.

To this end, we have first presented a simple rule language
and explicited the semantics of rule engines. We have then
described how to translate rule programs and verification
properties into constraint satisfiability problems, and detailed

the computation by which a verification system proves an
example program to be non-confluent.

Then we have studied some specific challenges that veri-
fication of rule programs represents for a CP Solver. These
challenges come from the fact that the domains of the in-
put variables are commonly very large, combined with the
(generally unavoidable) phenomenon of slow convergence in
propagation. We have presented the approach used in our CP
Solver to adress these challenges.

REFERENCES

[1] H. A. S. Allen Newell, Human problem solving. Englewood Cliffs, NJ,
USA: Prentice Hall, 1972.

[2] R. Davis, B. G. Buchanan, and E. H. Shortliffe, “Production rules as
a representation for a knowledge-based consultation program.” Artif.
Intell., vol. 8, no. 1, pp. 15–45, 1977.

[3] C. Forgy, “Rete: A fast algorithm for the many patterns/many objects
match problem.” Artif. Intell., vol. 19, no. 1, pp. 17–37, 1982.

[4] E. Baralis and J. Widom, “An algebraic approach to static analysis of
active database rules.” ACM Trans. Database Syst., vol. 25, no. 3, pp.
269–332, 2000.

[5] B. Berstel, P. Bonnard, F. Bry, M. Eckert, and P.-L. Patranjan, “Re-
active rules on the web,” in Reasoning Web, ser. LNCS, G. Antoniou,
U. Aßmann, C. Baroglio, S. Decker, N. Henze, P.-L. Patranjan, and
R. Tolksdorf, Eds., vol. 4636. Springer, 2007, pp. 183–239.

[6] ILOG JRULES, ILOG, 2006, http://www.ilog.com.
[7] DROOLS, JBoss, 2006, http://www.drools.org.
[8] A. Gotlieb, “Euclide: A constraint-based testing framework for critical

C programs,” in ICST. IEEE Computer Society, 2009, pp. 151–160.
[9] H. Collavizza, M. Rueher, and P. V. Hentenryck, “CPBPV: A constraint-

programming framework for bounded program verification,” in CP, ser.
LNCS, P. J. Stuckey, Ed., vol. 5202. Springer, 2008, pp. 327–341.

[10] H. Collavizza and M. Rueher, “Exploring different constraint-based
modelings for program verification,” in CP, ser. LNCS, C. Bessiere,
Ed., vol. 4741. Springer, 2007, pp. 49–63.

[11] ——, “Exploration of the capabilities of constraint programming for
software verification.” in TACAS, ser. LNCS, H. Hermanns and J. Pals-
berg, Eds., vol. 3920. Springer, 2006, pp. 182–196.

[12] M. M. Brandis and H. Mössenböck, “Single-pass generation of static
single-assignment form for structured languages,” ACM Trans. Program.
Lang. Syst., vol. 16, no. 6, pp. 1684–1698, 1994.

[13] M. N. Wegman and F. K. Zadeck, “Constant propagation with condi-
tional branches,” ACM Trans. Program. Lang. Syst., vol. 13, no. 2, pp.
181–210, 1991.

[14] D. Shao, S. Khurshid, and D. E. Perry, “SCA: a semantic conflict
analyzer for parallel changes,” in ESEC/SIGSOFT FSE, H. van Vliet
and V. Issarny, Eds. ACM, 2009, pp. 291–292.

[15] L. Bordeaux, Y. Hamadi, and M. Y. Vardi, “An analysis of slow
convergence in interval propagation,” in CP, ser. LNCS, C. Bessiere,
Ed., vol. 4741. Springer, 2007, pp. 790–797.

[16] S. A. Seshia and R. E. Bryant, “Deciding quantifier-free presburger for-
mulas using parameterized solution bounds,” CoRR, vol. abs/cs/0508044,
2005.

[17] J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap, “Beyond finite
domains,” in PPCP, ser. LNCS, A. Borning, Ed., vol. 874. Springer,
1994, pp. 86–94.

[18] M. Leconte and B. Berstel, “Extending a CP solver with congruences as
domains for program verification,” in CSTVA ’06, B. Blanc, A. Gotlieb,
and C. Michel, Eds. IEEE Computer Society Press, 2006, pp. 22–33.

[19] J.-F. Puget and M. Leconte, “Beyond the glass box: Constraints as
objects,” in ILPS, 1995, pp. 513–527.

[20] C. Bessiere, Ed., Principles and Practice of Constraint Programming
- CP 2007, Providence, RI, USA, Proceedings, ser. LNCS, vol. 4741.
Springer, 2007.

