
Verification of

Business Rules Programs

Bruno Berstel – Da Silva

Dissertation

zur Erlangung des Doktorgrades

der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

July 11, 2012

Bruno Berstel –Da Silva
Verification of Business Rules Programs

Version 1.0.1
Built on July 12, 2012

Dekan: Prof. Dr. Bernd Becker

Erstgutachter: Prof. Dr. Andreas Podelski
Zweitgutachter: Prof. Dr. Georg Lausen
Vorsitz: Prof. Dr. Bernhard Nebel
Beisitz: Prof. Dr. Peter Thiemann

Summary

The technical contribution of the thesis is to present—to the best of our knowl-
edge, for the first time—an approach to the formal verification of business rules
programs. We propose a verification method for proving correctness properties
for a business rules program in a compositional way. The approach enables
rule authors and tool developers to understand, express formally, and prove,
properties of the execution behavior of business rules programs. The concep-
tual contribution of this thesis is to present the enabling framework for treating
business rules as a topic of scientific investigation in semantics and program
verification.
Multitier architectures increasingly use business rules to encode the appli-

cation tier (the so-called business logic). The authoring and the execution of
business rules programs is supported by a Business Rules Management System
(BRMS). A business rules program consists in a set of mutually independent
rules, that is, conditional update statements authored in a modular, case-by-
case approach. A business rules program is declarative in that it does not specify
the control flow; the set of rules are executed on a set of objects, exhaustively
for each rule and each object, in any order.
Until now, the emphasis in research has been on optimizing the efficient

execution of business rules programs by a BRMS. A variety of compilation
and execution schemes have been developed, including the well-known Rete
algorithm. The verification of business rules programs has been neglected as a
topic of scientific research. The need for correctness is, however, no less obvious
for business rules programs than it is for safety-critical systems, even though
the risks at stake are economic and usually not life-threatening.
The thesis is structured in three main parts.
In the first part, we present a formal definition of the execution behavior of

business rules programs. Previous descriptions of business rules execution de-
pended on the intrinsics of a specific compilation scheme. The very first issue in
the formalization task is the diversity of compilation and execution schemes used
in existing BRMS. We have designed a general, yet formally simple, framework
that enables us to describe the execution behavior of business rules programs
and to single out the main differences between the various execution schemes.
The formalization of the execution behavior of business rules programs allowed
us to observe that the apparent simplicity of business rules is only superficial.
Indeed, the interplay between executions of one or several rules on one or sev-
eral, possibly shared, objects (selected nondeterministically from a finite, but
unbounded set) can become extremely complex, even for small examples.
An execution is formally a sequence of states. To account for the unbound-

edness of the set of objects in each state, we model a state as a first-order logic
structure. We account for the diversity of execution schemes, including recent
alternatives to the Rete algorithm, by introducing concepts that allow us to
distinguish between the applicability and the eligibility of a rule.
In the second part of the thesis, we introduce correctness specifications for

business rules programs. Previously, the only way to assess the correctness of a
business rules program was to examine each of its rules and its possible behaviors
when applied to various objects. The expected global effect of a program had
to be expressed in natural language, which could result in misunderstandings

v

vi

between authors of programs and their users. The difficulty in formally defining
the correctness of business rules programs stems from the gap between the local
behavior of the single application of a rule and the global effect of a whole
business rules program on a set of objects. The local behavior involves only
the object on which the rule is applied, whereas the global behavior involves
the whole, finite but unbounded, set of objects on which the program is run.
We define the meaning of a Hoare triple for a program and global assertions
as a conservative extension of the meaning of a Hoare triple for a single rule
application and local assertions. We thus obtain correctness specifications that
follow the modular and declarative nature of a business rules program.
In the third and final part of the thesis, we propose a compositional verifi-

cation method for business rules programs. The challenge of compositionality
stems from the possibility of interferences between rule applications during the
execution of a program. Proving a correctness property of a business rules pro-
gram cannot simply follow the decomposition of the program into its syntactic
constituents, i.e., the rules. Borrowing the intuition of the Owicki-Gries method
for parallel programs, we present a proof system that features an extended no-
tion of compositionality, suitable for business rules programs. By our proof
system, a global Hoare triple for a program can be derived from local Hoare
triples for its individual rules. We show that the proof system is sound and
relatively complete (we use relative completeness in the same sense as for Hoare
logic). We derive proof rules for important classes of business rules programs
and assertions, as special cases of the general proof rule. We use several ex-
amples to illustrate the practical application of the general proof rule and its
specializations.
In a non-technical appendix to the thesis, we demonstrate the practical po-

tential of our formal approach in the context of an existing commercial Business
Rules Management System. This BRMS comes with a lightweight analysis en-
gine (named “Rule Static Analysis”). We show that its various analysis and
verification features can be given a solid foundation thanks to the approach to
the formal verification of business rules programs presented in this thesis.

Acknowledgments

I carried out this thesis as a remote-working student, first of the Max-Planck
Institut für Informatik of Saarbrücken, then of the Institut für Informatik of
the Albert-Ludwigs-Universität in Freiburg. At the same time I was a soft-
ware engineer at ILOG, and then at IBM after this company acquired ILOG.
My thanks go to Nitsan Seniak for proposing me the subject of rule program
verification within ILOG; to Hassan Aït-Kaci for establishing the connection
with Andreas Podelski; and to Andreas Podelski, my supervisor, for offering
me to reify our thoughts as a PhD thesis, and for his support and guidance
throughout the years. It is also an honor for me to count Prof. Lausen as the
Zweitgutachter, as well as Prof. Nebel and Prof. Thiemann as the members of
my defense committee.
Achieving the present work in an industrial environment would not have

been possible without the initial agreement of Jean-François Abramatic, and
overall the creativity in management demonstrated by Nitsan Seniak and An-
toine Melki. More generally, I would like to thank the members of the “BEAR
R&D Governance” team within ILOG for their patience.
Substantial advances in this work have been achieved during a six months

period spent in the Modélisation et Vérification team of the LIAFA laboratory in
Paris Diderot university. I am most grateful to Ahmed Bouajjani for welcoming
me. This stay was a major step for me, thanks to the friendly atmosphere and
stimulating discussions. My thoughts go to Mihaela Sighireanu, Tayssir Touili,
Cezara Drăgoi, Constantin Enea, Mathilde Bouvel, and Ahmed Rezine, as well
as the whole “Vérif” team.
Within ILOG I have also benefited from enriching conversations and ex-

changes. I was nurtured by the outcomes of the RVS project, which included
Hassan Aït-Kaci, Ulrich Junker, Michel Leconte, and Andreas Podelski; by the
proofreading and most relevant comments of Hassan, Michel, Philippe Bonnard,
and Hélène Kencker; and by the fruitful discussions with Hugues Citeau, Amina
Chniti, Aurélie Baton, Marie Girard, and Philippe Laborie. Very special thanks
are deserved by Michel for his continuous support, sustained stimulation, and
for passing down the demand for accuracy inherited from my father.
During the long process that this work has represented for me, the right

words were found on several occasions by Ulrich Junker and Claire David to
help me find the required energy.
Last, but far from least, I am specially grateful to my wife and children for

their support and their care.

vii

Contents

Acknowledgments vii

1 Introduction 1

1.1 Business Rules Management Systems 1
1.1.1 From Business Policies to Business Rules 1
1.1.2 A Brief Genealogy of Business Rules Management Systems 2
1.1.3 Industrial Context . 3

1.2 Motivation . 4
1.3 Summary of Contribution . 7
1.4 Thesis Outline . 8

2 Related Work 11

2.1 Rule-Based Paradigms: Model vs. State 11
2.2 Formalization and Verification of Rule Programs 14
2.3 Verification of Pointer and Concurrent Programs 16

I Rule Programs 19

3 Syntax of Rules and Rule Programs 21

3.1 Signature . 21
3.2 Symbols . 22
3.3 Expressions and Formulas . 23

3.3.1 Parameterized Languages of Expressions and Formulas . . 23
3.3.2 Well-Typed Expressions and Formulas 25
3.3.3 Formulas Are Flat . 26
3.3.4 Theory Used in Examples 26

3.4 Assignment . 27
3.5 Rules . 27

3.5.1 Rule Variables . 28
3.5.2 Rule Guard . 29
3.5.3 Rule Action . 29

3.6 Rule Programs . 30

4 States and State Assertions 31

4.1 States Are First-Order Logic Structures 32
4.1.1 Domain . 32
4.1.2 Variable Valuations . 32

ix

x CONTENTS

4.1.3 Interpretation of Expressions 33
4.1.4 Interpretation of Formulas 34
4.1.5 States . 37

4.2 State Assertions . 37
4.2.1 Assertions . 38
4.2.2 Global Assertions . 38
4.2.3 Assertions Focused on a Rule 39

4.3 Transition Assertions . 39
4.3.1 Forward Transition Assertions 39
4.3.2 Backward Transition Assertions 40
4.3.3 Global Transition Assertions 41

4.4 Semantics of Assignment . 41
4.4.1 Update of an Attribute 41
4.4.2 Executing an Assignment 42
4.4.3 Assignment as a Relation Between States 43

4.5 Rule Guard and Action . 43
4.5.1 Rule Guard . 43
4.5.2 Rule Action . 44

5 Operational Semantics of Rule Programs 45

5.1 Rule Program Execution, Informally 45
5.2 Working Memory . 48

5.2.1 Type-System Compliant States 49
5.2.2 Objects as Instances of Types 50
5.2.3 Preservation Properties 51

5.3 Rule Execution . 52
5.3.1 Rule Instance . 52
5.3.2 Applicability of a Rule Instance 53
5.3.3 Application of a Rule Instance 53
5.3.4 Execution of a Rule Instance 55
5.3.5 Executions of a Rule . 55

5.4 Rule Program Execution . 57
5.4.1 Configurations . 57
5.4.2 Initial Configuration . 57
5.4.3 Transition Between Configurations 58
5.4.4 Executions of a Rule Program 59

5.5 Selection Strategies . 61
5.6 Eligibility Strategies . 62

5.6.1 Identity Eligibility Strategy 63
5.6.2 Refraction Eligibility Strategy 64
5.6.3 Sequential Execution Strategy 66
5.6.4 One-Shot Eligibility Strategy 67

II A Hoare Logic for Rule Programs 71

6 Correctness of Rule Programs 73

6.1 Preliminaries . 73
6.1.1 Fixing the Execution Strategy 73
6.1.2 Correctness Formulas, Proofs, Proof Systems 74

CONTENTS xi

6.2 Correctness Formula for a Single Rule 75
6.3 Rules Compared to Conditional Statements 78

6.3.1 Loop-Free Programs . 78
6.3.2 Rules vs. Conditional Statements 80

6.4 Correctness Formula for a Rule Program 81
6.4.1 Syntax and Semantics . 82
6.4.2 From Rules to Rule Programs 83

7 Correctness of Programs: A Comparison 87

7.1 Correctness of Loop-Free Parallel Programs 87
7.1.1 Loop-Free Parallel Programs 88
7.1.2 Loop-Free Parallel Program Derived from a Rule Program 90
7.1.3 Rule Programs vs. Loop-Free Parallel Programs 91

7.2 Correctness of Parallel Programs 92
7.2.1 Ghost Variables . 93
7.2.2 while Programs . 94
7.2.3 Parallel Programs . 95
7.2.4 Parallel Program Derived from a Rule Program 96
7.2.5 Rule Programs vs. Parallel Programs 99

7.3 Correctness of Nondeterministic Programs 101
7.3.1 Nondeterministic Programs 101
7.3.2 Nondeterministic Program Derived from a Rule Program 103

III Proof Rules for Rule Programs 107

8 Main Steps in Rule Program Verification 109

8.1 Interferences in Rule Programs 110
8.1.1 Cross-Rule Interference 110
8.1.2 Interference due to Aliasing 111

8.2 Unary Rules . 112
8.3 A First Proof Rule . 114
8.4 Usage . 118

8.4.1 Use the Proof Rule Bottom-Up 119
8.4.2 What to Look for . 119
8.4.3 Application of the Verification Method 120

8.5 Incompleteness . 122

9 A Verification Method for Rule Programs 125

9.1 Taking Eligibility into Account 125
9.1.1 Eligibility Ghost Variables 126
9.1.2 Eligibility-Aware Assertions 127
9.1.3 Eligibility-Aware Execution 128
9.1.4 Eligibility-Aware Correctness Formulas 131

9.2 Interference Freedom . 133
9.2.1 Cross-Rule Interference 133
9.2.2 Interference due to Aliasing 134

9.3 General Proof Rule . 135
9.4 Relative Completeness . 139
9.5 Application of the Verification Method 146

xii CONTENTS

9.5.1 Approach . 146
9.5.2 Example . 148

10 Specialized Proof Rules 157

10.1 Eligibility-Aware Unary Rules . 157
10.1.1 Proof Rule . 158
10.1.2 Example . 160

10.2 Aliasing-Free N-ary Rule Programs 164
10.3 Disjointness in Rule Programs . 167

10.3.1 Disjoint Unary Rules . 167
10.3.2 Disjoint Rule Programs 170

11 Conclusion and Future Work 173

A Verification in an Industrial Business Rules Management Sys-

tem 179

A.1 Preliminaries . 179
A.2 Rule Applicability . 181
A.3 Impact Analysis . 184
A.4 Redundancy . 187
A.5 Confluence and Completeness . 189
A.6 Safety . 191
A.7 Discussion . 192

List of Figures 195

List of Proof Rules 197

Bibliography 199

Index 213

