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Summary

The technical contribution of the thesis is to present—to the best of our knowl-
edge, for the first time—an approach to the formal verification of business rules
programs. We propose a verification method for proving correctness properties
for a business rules program in a compositional way. The approach enables
rule authors and tool developers to understand, express formally, and prove,
properties of the execution behavior of business rules programs. The concep-
tual contribution of this thesis is to present the enabling framework for treating
business rules as a topic of scientific investigation in semantics and program
verification.
Multitier architectures increasingly use business rules to encode the appli-

cation tier (the so-called business logic). The authoring and the execution of
business rules programs is supported by a Business Rules Management System
(BRMS). A business rules program consists in a set of mutually independent
rules, that is, conditional update statements authored in a modular, case-by-
case approach. A business rules program is declarative in that it does not specify
the control flow; the set of rules are executed on a set of objects, exhaustively
for each rule and each object, in any order.
Until now, the emphasis in research has been on optimizing the efficient

execution of business rules programs by a BRMS. A variety of compilation
and execution schemes have been developed, including the well-known Rete
algorithm. The verification of business rules programs has been neglected as a
topic of scientific research. The need for correctness is, however, no less obvious
for business rules programs than it is for safety-critical systems, even though
the risks at stake are economic and usually not life-threatening.
The thesis is structured in three main parts.
In the first part, we present a formal definition of the execution behavior of

business rules programs. Previous descriptions of business rules execution de-
pended on the intrinsics of a specific compilation scheme. The very first issue in
the formalization task is the diversity of compilation and execution schemes used
in existing BRMS. We have designed a general, yet formally simple, framework
that enables us to describe the execution behavior of business rules programs
and to single out the main differences between the various execution schemes.
The formalization of the execution behavior of business rules programs allowed
us to observe that the apparent simplicity of business rules is only superficial.
Indeed, the interplay between executions of one or several rules on one or sev-
eral, possibly shared, objects (selected nondeterministically from a finite, but
unbounded set) can become extremely complex, even for small examples.
An execution is formally a sequence of states. To account for the unbound-

edness of the set of objects in each state, we model a state as a first-order logic
structure. We account for the diversity of execution schemes, including recent
alternatives to the Rete algorithm, by introducing concepts that allow us to
distinguish between the applicability and the eligibility of a rule.
In the second part of the thesis, we introduce correctness specifications for

business rules programs. Previously, the only way to assess the correctness of a
business rules program was to examine each of its rules and its possible behaviors
when applied to various objects. The expected global effect of a program had
to be expressed in natural language, which could result in misunderstandings
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between authors of programs and their users. The difficulty in formally defining
the correctness of business rules programs stems from the gap between the local
behavior of the single application of a rule and the global effect of a whole
business rules program on a set of objects. The local behavior involves only
the object on which the rule is applied, whereas the global behavior involves
the whole, finite but unbounded, set of objects on which the program is run.
We define the meaning of a Hoare triple for a program and global assertions
as a conservative extension of the meaning of a Hoare triple for a single rule
application and local assertions. We thus obtain correctness specifications that
follow the modular and declarative nature of a business rules program.
In the third and final part of the thesis, we propose a compositional verifi-

cation method for business rules programs. The challenge of compositionality
stems from the possibility of interferences between rule applications during the
execution of a program. Proving a correctness property of a business rules pro-
gram cannot simply follow the decomposition of the program into its syntactic
constituents, i.e., the rules. Borrowing the intuition of the Owicki-Gries method
for parallel programs, we present a proof system that features an extended no-
tion of compositionality, suitable for business rules programs. By our proof
system, a global Hoare triple for a program can be derived from local Hoare
triples for its individual rules. We show that the proof system is sound and
relatively complete (we use relative completeness in the same sense as for Hoare
logic). We derive proof rules for important classes of business rules programs
and assertions, as special cases of the general proof rule. We use several ex-
amples to illustrate the practical application of the general proof rule and its
specializations.
In a non-technical appendix to the thesis, we demonstrate the practical po-

tential of our formal approach in the context of an existing commercial Business
Rules Management System. This BRMS comes with a lightweight analysis en-
gine (named “Rule Static Analysis”). We show that its various analysis and
verification features can be given a solid foundation thanks to the approach to
the formal verification of business rules programs presented in this thesis.
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