
Formalizing Both Refraction-Based and
Sequential Executions of Production Rule

Programs

Bruno Berstel-Da Silva

Institut für Informatik
Albert-Ludwigs-Universität Freiburg

Germany

Abstract Production systems are declarative, in that they do not ex-
plicitly specify the control flow. Yet, the concept of a production system
does not include the definition of a given control strategy. The control be-
tween rules in a production rule program is, in practice, defined by each
implementation of a production rule engine. Engines have traditionally
been implemented using the Rete algorithm. Since the turn of the cen-
tury, however, production systems have evolved into industrial products
known as Business Rules Management Systems (BRMS). BRMS have in-
troduced new compilation and execution schemes, which are often called
sequential in contrast with the incremental behavior of Rete. This change
in execution scheme came with a change in semantics for rule programs.
In this paper, we propose a formal description of the execution of pro-
duction rule programs. Existing descriptions either ignore the control
strategy, or assume a Rete semantics. Ours isolates the handling of rule
eligibility in the control strategy, which allows us to describe the sequen-
tial execution semantics of rule programs, as well as the Rete semantics,
and others.

1 Introduction

Business Rules Management Systems (BRMS) [7,11,16,21,22,26] are industrial
products that have gained substantial consideration as a way to lower the cost
of frequent changes in business policies [18,29]. The contribution of BRMS is to
externalize the business logic of an application as a rule program, and to provide
business experts with tools to author and manage these rules collaboratively.

The rules in question are of the condition-action type, also known as pro-
duction rules. As such, BRMS can be seen as descendants of production systems
[12,19], in the tradition of OPS5 [3,13]. Indeed, the rule engines present in most
BRMS compile and execute rule programs with variants of the Rete algorithm
[14,15,20], which is at the heart of OPS5. However, with the transition from
production systems to BRMS, rule programs have evolved from medium-sized
programs implementing inference algorithms to massive programs performing
simpler tasks [28]. In this context, the concern for the implementors of rule



engines has shifted from providing smart control strategies in the execution
of programs to designing new compilation schemes that would ensure a high
throughput in the processing of data.

This new generation of compilation and execution algorithms is often referred
to as sequential [10,17,23], both due to the way they consume input data and
in contrast with the incremental behavior of Rete. Yet, the gain in performance
has been achieved at the price of a change in the execution semantics of the
rule programs. The main difference between the Rete and sequential semantics
is that the former allows rule programs to implement complex inference schemes,
whereas the latter makes assumptions (a stable working memory, a static rule
set, etc.) that opens the door to faster execution. This disruption in seman-
tics is usually acceptable for the users of BRMS, because their rule programs,
although important in size, implement simple algorithms that do not require
evolved inference mechanisms.

This paper is organized as follows. In Sect. 2, we expose our formal description
of rule program execution. Then, in Sects. 3 and 4, we review some selection
and eligibility strategies; in particular, we provide the formalization of Rete’s
refraction semantics and of the sequential semantics of modern BRMS. Finally,
in Sect. 5 we illustrate both semantics and their formalizations on an example
rule-based application, which we introduce in Sect. 1.2.

1.1 Related Work

Up to now, and to the best of our knowledge, there have been only few formal-
izations of the execution behavior of production rule programs with the Rete
semantics, and none with the sequential semantics. Such a formalization is how-
ever useful to develop tools that help understand, verify, test, and more generally
analyze, rule programs. In this paper, we present a logic-based description of rule
programs and of their execution, with a focus on the distinction between the ap-
plicability and the eligibility of a rule.

In the traditional presentations of Rete, eligibility is one step of the control
strategy, called refraction. By isolating the eligibility strategy, our formalization
allows us to depict the execution of rule programs with either Rete’s refrac-
tion semantics, the sequential semantics, or others. It is based on first-order
logic; we also use objects with attributes to reflect the fact that rule programs
in BRMS handle object-oriented data provided by an embedding application.
We model states as first-order logic structures and rule execution as relations
between states.

Production systems have been formalized in a number of ways, either based
on first-order logic or not. In [27] and in previous publications, Schmolze and
Snyder have explored the connection between production rules and term rewrit-
ing systems. However, their approach focuses on confluence and termination
properties, and does not aim at describing the execution behavior of production
systems.

Production systems have also been studied from the viewpoint of active
databases (see [1] for a survey). Again, confluence and termination is the main



focus, and the composition of rules into a rule program execution is not ad-
dressed. Safety properties are treated in [2], and mapped to constraint satisfia-
bility problems on the transition constraints that describe the execution of the
rule program. However, the construction of these constraints is not studied. In
[4], propositional production systems are modeled with µ-calculus, and produc-
tion systems with variables are modeled with fixed-point logic. This approach
leads to using first-order logic structures as we do.

The formalizations of production systems that address their execution be-
havior are due to Fages and Lissajoux [9], to Cirstea et al. [6], and to Damásio
et al. [8,25]. These formalizations are based on first-order logic, with [8] relying
on Answer-Set Programming. All consider the execution of rule programs by
the Rete algorithm. However, [9] explicitly discards the control strategy from
its scope and provides a nondeterministic view of rule program execution. On
the other hand, [6] includes the control strategy in its formal description of rule
program execution, but does not go into any detail; furthermore, the examples
given implement an explicit control flow and hence do not exhibit the role of the
control strategy. Finally, [8] does include the control strategy in its formalization
of rule programs semantics.

1.2 Running Example

Acme.com is an e-commerce company. It wants to introduce a rewarding program
in which customers earn bonus points, and chooses to implement it with a BRMS.
Customers are entered into the system with their current bonuses and their
purchases, to be processed by the rule program R = {P, S} that implements the
rewarding program.

The first rule in the program grants a customer bonus points, based on his/her
purchases. Namely, if the value of the purchase p exceeds $ 100, the customer c
earns 10% of the purchase value in bonus points.

P(c, p) : c = p.buyer & p.value ≥ 100 ⇀ c.bonus := c.bonus + p.value× .1

The second rule implements a sponsorship mechanism: if a customer s sponsors
another customer c, then a transfer of bonus points occurs; the transfer only
occurs if the sponsor has at least 200 points.

S(s, c) : s = c.sponsor & s.bonus ≥ 200 ⇀ s.bonus := s.bonus− 50 ;
c.bonus := c.bonus + 30

This short example introduces rules, with a guard that determines when the
rule applies, and an action that indicates how the rule execution will evolve the
system state by performing updates on object attributes. The attributes in this
example program are bonus, value, buyer , and sponsor . Objects are held by rule
variables: the rule variables in P are c and p, those in S are s and c. These
concepts are formalized in Sect. 2.

In contrast with industrial rule languages or with RIF-PRD [25], our lan-
guage does not include adding objects to, or removing objects from, the working



memory. However, like industrial rule languages, it regards the update of an
object attribute as a single operation.

2 Formal Description of Rule Program Execution

2.1 Expressions, States, Rules, Programs

A rule program implements part of the logic of a larger application. To this end,
the rules handle the data of the application, in the format defined by the ap-
plication itself. In practice, they use the data types of the embedding language,
such as Booleans, numbers, enumerations, and, in an object-oriented context,
the classes defined by the application. From a formal viewpoint, the application
introduces a theory Θ, which contributes to the signature of the rule language
with a set of function symbols (including constants), and provides their inter-
pretation. Classically, the theory Θ can include Booleans with logical connectors
(∧, ∨, ¬...), numbers with arithmetic operators (+, −, ×...), uninterpreted func-
tions with equality, etc. In our framework, we assume that Θ includes at least
Booleans, without quantifiers, and objects with attributes as defined below. The
running example exposed in Sect. 1.2 also includes numbers.

Objects have a unique identity. The identities of two objects can be compared
for equality; no other operation is available on the identity of objects. Object
attribute symbols are unary function symbols.

In our rule language, objects are handled through variables. Expressions
are built in the classical, inductive way on the signature inherited from Θ. They
include arithmetic and Boolean expressions, but also attribute references. An
attribute reference denotes the value of an object’s attribute; it is written in
dotted postfix notation. For example, p.age refers to the attribute with symbol
age of the object held by the variable p.

A state is a first-order logic structure. The common domain to all states is
provided by the theory Θ; we note it D. As mentioned previously, it includes at
least the Booleans and the objects, the infinite set of which we noteO. The inter-
pretation function Is of a state s interprets function symbols as specified by the
theory Θ—typically, logical connectors and arithmetic operators are interpreted
in the classical way. Attribute symbols are interpreted by partial functions from
O to D. For an attribute symbol f , we note Is(f) or fs the function that inter-
prets f in s. The definition domain of this partial function is noted Dom(fs).

A rule r = (~o, g, a) consists of the tuple ~o = (o1, . . . , om) of its rule vari-
ables, the Boolean expression g called its guard, and its action a, described
further below. The arity of r, noted |r|, is m. A rule instance is a tuple
R = (r,O1, . . . , Om) where O1, . . . , Om ∈ O are objects. The objects in a rule
instance provide values for the rule variables, which are used to interpret the
rule guard and action, as described below.

A rule instance R = (r,O1, . . . , Om) is applicable in a state s if the guard g of
r holds in this state and on the objects O1, . . . , Om. That is, if the interpretation
of the Boolean expression g by state s, with each variable oj mapped onto the



object Oj for j = 1, . . . ,m, yields true. The guard g is interpreted as false by s
if one has Oj /∈ Dom(fs) for any attribute reference oj .f that appears in g.

When a rule instance R = (r,O1, . . . , Om) is applied, the action a of the
rule is executed on the objects in the instance. A rule action is a sequence
of assignments to attributes of rule variables. An assignment is a statement
ojk .fk := ek that denotes the update of the attribute fk for the object held by
ojk with the value of the expression ek. Its semantics, when executed from a
state s, is to produce a new state s′, in which all attribute and function symbols
are interpreted as in s, with the exception of fk. In state s′, the attribute symbol
fk is interpreted by the partial function fs

′

k with the same domain as fsk , and
such that

∀O ∈ Dom(fsk) fs
′

k (O) =

{
Is′(e[Oj/oj ]mj=1) if O = Ojk
fsk(O) otherwise .

To summarize, given a rule r = (~o, g, a), a rule instance R = (r,O1, . . . , Om)
is applicable in a state s if the guard g holds in s and on the objects O1, . . . , Om.
When R is applicable in s, then the application of R in s produces a new state
s′ that results from the execution of the action a from s on O1, . . . , Om. We note
this application s R−→ s′.

A rule program R = {r1, . . . , rn} is a finite set of rules. A rule program is
executed on a finite set of objectsM⊂ O, called the working memory. The set
of all rule instances that can be formed out of rules in R and objects in M is
noted I(R,M) = {(r, ~O) | r ∈ R, ~O ∈ O|r|}. Given a state s, the subset of rule
instances that are applicable in s is noted As.

2.2 Execution of a Rule Program

To formally describe the execution of a rule program, we introduce the notion
of a configuration of the rule engine, as a pair 〈E, s〉, where E ⊆ I(R,M) is a
set of rule instances and s is a state. In such a configuration, E denotes the set
of eligible rule instances in s.

With this definition, we say that an execution of a rule program R on a
working memory M from an initial state s0 is defined by a potentially infinite
sequence of transitions between configurations

〈I(R,M), s0〉
R1−−→ 〈E1, s1〉

R2−−→ 〈E2, s2〉
R3−−→ · · ·

in which each transition complies with the following transition rule, for k > 0:

{Rk} = S(Ask−1
∩ Ek−1) sk−1

Rk−−→ sk Ek = E(Ek−1, . . .)

〈Ek−1, sk−1〉
Rk−−→ 〈Ek, sk〉

. (1)

This transition rule encodes that the rule engine can perform a transition by
rule instance Rk from configuration 〈Ek−1, sk−1〉 to configuration 〈Ek, sk〉 if the
following conditions are met: the rule instance Rk is selected among the rule



instances that are both applicable and eligible in sk−1, and its application in
sk−1 produces the state sk.

This transition rule exhibits the selection strategy S and the eligibility strat-
egy E as two parameters of the rule engine semantics. The selection strategy S
is a function that takes a set of rule instances and returns either the empty set
or a singleton included in the set received. Sect. 3 reviews the most common
selection strategies.

Which rule instances are eligible at each step of the execution is determined
by the eligibility strategy E , based on the set of previously eligible rule instances
and on possibly other arguments, such as the rule instance being applied, the
initial or final states of the transition, etc. At the beginning of the execution, all
rule instances are eligible. Sect. 4 reviews the eligibility strategies at work in the
Rete and sequential execution semantics.

As an extreme case, consider the eligibility strategy Eid that always returns
the previous set of eligible rule instances, and the selection strategy Snd that non-
deterministically selects a rule instance. These strategies give the rule program
execution semantics considered by [9].

2.3 Comparison with Traditional Presentations

The control strategy in a production rule engine is analogous to the scheduler
in parallel programming or to the method call resolution in an object-oriented
language. In all these control mechanisms, a variation on any criterion can change
the course of program execution dramatically. However, in contrast with object-
oriented languages where the method call semantics is defined with the language,
rule languages do not include the definition of a control strategy. Instead, the
control strategy is brought in by the algorithm used to execute the rule program.

Since the seminal implementation by OPS5, production systems have tra-
ditionally executed rule programs with the Rete algorithm or a variant. More
or less formal descriptions of its control strategy can be found in the OPS5
User’s Manual [13], in the RIF-PRD recommendation [25], in papers describing
extensions to OPS5 [5,24], or in the documentations of BRMS [17].

The Rete control strategy applies to the set As of applicable rule instances in
the current state s. In the context of Rete, this set is called the conflict set [3,19].
It is traditionally presented as the following four steps. If, after the first step,
the conflict set is empty, then the program execution stops. If, as the result of
any step, the conflict set contains only one rule instance, then this rule instance
is selected for application.

(i) Refraction: Discard from the conflict set any rule instance that has already
been applied, and has since remained applicable.

(ii) Recency: Retain the rule instances that include objects that have been
inserted or modified last.

(iii) Specificity: Retain the rule instances that relate to the most specific rules.
(We define rule specificity in Sect. 3.)

(iv) Random: Arbitrarily retain only one rule instance.



Implementations of production systems other than OPS5 [7,11,16,21,22,26] have
adopted similar control strategies, with minor variations on the definition of
refraction, and a wider range of criteria to select the rule instance to apply
among those that successfully passed the refraction step.

From a broader perspective, one can identify two purposes in a control strat-
egy for the execution of rule programs. A first goal is to discard program execu-
tions that do not make sense, for example to avoid trivial loops. In the Rete algo-
rithm, this is the role of the refraction step. Our formalism exposed in Sect. 2.2
generalizes this filtering task with the eligibility strategy. A second goal is to
choose one rule instance among the ones that have passed the filtering step.
This is the role of the three last steps of Rete. We generalize this task with the
selection strategy. The distinction that our framework introduces between the
selection and eligibility strategies allows us to describe other execution schemes
than Rete, as shown in Sect. 4.

3 Selection Strategies

When several rule instances are both applicable and eligible in a given state,
the choice of which to apply in the transition to the next configuration is the
role of the selection strategy. In the traditional Rete control strategy, exposed
in Sect. 2.3, this is addressed by the last three steps.

In practice, selection strategies define an order on rule instances, and return
the (applicable and eligible) instance that is maximal according to this order.
The order is classically defined by the lexicographic combination of various orders
such as the following ones [3,19].

– Priority on rule instances. A rule r = (~o, g, a) is equipped with a numerical
expression πr in the rule variables. The order is based on the value of this
expression for each rule instance in the current state.

– Priority on rules. This order is a simplified version of the previous one, where
the expressions πr are numerical constants. The priority of all instances of a
rule r are then equal to the number πr, independently of the state.

– Strict ordering of the rules. A strict order is explicitly defined on the rules,
for example by setting the rule priorities to a permutation of {1, . . . , n}.

– Specificity of the rules. A rule r1 = (~o1, g1, a1) is said to be more specific than
another rule r2 = (~o2, g2, a2) when one has g1 ⇒ g2. This defines a partial
order on rules. Some rule engines approximate this order by using empirical
indications of the rule specificity, such as the number of elementary Boolean
expressions in the rule guard, or the arity of the rule.

– Recency. This order is based on a numerical constant associated with each
object in the working memory, called the object recency, with the idea that
objects have been inserted into the working memory in some order. The
recency of a rule instance is given by the maximal recency of the objects in
the rule instance.



4 Eligibility Strategies

4.1 The Refraction Eligibility Strategy

As stated in the RIF-PRD recommendation [25]: “The essential idea of refraction
is that a given instance of a rule must not be fired more than once as long as the
reasons that made it eligible for firing hold.” As a direct consequence, enforcing
refraction must take the execution history into account. To this end, [25] chooses
to define refraction by counting during how many execution steps each rule
instance has remained applicable, and since how many steps it has been applied.

In our framework, we base the definition of refraction on the set Ek of eligible
rule instances in a configuration 〈Ek, sk〉 of the rule engine. Using the formalism
introduced in Sect. 2.2, refraction can be defined as follows.

Refraction. If a rule instance R has been applied in a configuration
transition 〈Ei, si〉

R−→ 〈Ei+1, si+1〉, it is eligible for application in a sub-
sequent transition 〈Ek, sk〉

R−→ 〈Ek+1, sk+1〉 only if the execution contains
a configuration 〈Ej , sj〉 such that i+ 1 ≤ j ≤ k and R /∈ Asj .

Of course, for the transition 〈Ek, sk〉
R−→ 〈Ek+1, sk+1〉 to occur, the rule in-

stance R will have to be applicable in sk, which implies j < k. However, this
requirement does not relate to eligibility. The independence between applicabil-
ity and eligibility is visible in the example discussed in Sect. 5. For instance,
we shall see that in state σ1, the rule instance (S, Alice, Bob) is eligible but not
applicable; and that in σ3, it is applicable but not eligible.

The task of the eligibility strategy is to compute the set of eligible rule
instances that results from a transition between configurations of the rule engine.
As per the definition of refraction above, the refraction eligibility strategy Eref
makes a rule instance ineligible when it is applied, and makes it eligible again
as soon as its becomes inapplicable. That is, in a transition 〈E, s〉 R−→ 〈E′, s′〉:

Eref(E,R, s′) = E \ {R} ∪ {R′ ∈ I(R,M) | R′ is not applicable in s′} .

In this definition, the eligibility strategy first removes the rule instance R that
was just applied from the set of eligible rule instances, which corresponds to the
statement “a rule instance must not be fired more than once”. Then, the strategy
implements “as long as the reasons that made it eligible for firing hold” by adding
the rule instances that became inapplicable due the application of R.

Note that, although the definition of Eref refers to any rule instance inappli-
cable in s′, the rule instances added are precisely those that have been already
applied in this rule program execution and that have been made inapplicable by
the application of R. Indeed, the rule instances that have never been applied are
in E since the beginning of the rule program execution; and the rule instances
that were already inapplicable in s have been added to E in a previous transition.

Since, in the execution of the rule program, the selection is performed on
As ∩ E, the definition of the refraction eligibility strategy above ensures that
once applied, a rule instance will not be applied a second time before it becomes
first inapplicable and then applicable again, as stated by the Rete algorithm.



4.2 The Sequential Control Strategy

Definition of Sequential Execution Sequential execution schemes have ap-
peared in BRMS about a decade ago [10,17,23], as an answer to the evolution
of rule programs from the many patterns/many objects case for which Rete had
been invented, to a many rules/few objects case found in business applications.
In this section, we describe the sequential execution mode of IBM Websphere
Operational Decision Management [16]; the corresponding execution algorithms
in other BRMS [7,11,21,22,26] have similar behaviors.

The sequential execution mode considers all object tuples from the working
memory in sequence, and submits each tuple to all rules, in sequence again. If
the guard of a rule holds on an object tuple when they are considered together,
the rule action is executed. Otherwise, the next rule is considered. There is
no “second chance:” a rule instance that has already been considered and would
become applicable only later, due to the application of another rule instance, will
not be applied. The orders defined on object tuples and on rules are therefore
crucial. Any criterion described in Sect. 3 can be chosen, although simple rule
priorities are commonly used.

The semantics of the sequential execution mode can be considered poorer,
since it suppresses opportunities for inference and chaining between rules. How-
ever, it is considered an acceptable trade-off by BRMS users as it allows faster
execution. Furthermore, the greater control it provides through the explicit or-
dering of rules is found opportune with large rule programs.

The Sequential Control Strategy Unlike refraction, which is a pure eli-
gibility strategy and hence can be combined with any selection strategy, the
sequential control strategy defines both a selection and an eligibility strategy.
These two strategies Sseq and Eseq implement the behavior just exposed. Namely,
the eligibility strategy defines the set of rule instances under consideration, and
the selection strategy ensures that the rule instances are picked in the proper
order.

As described above, the sequential control strategy is based on a strict order-
ing of the rules in the rule program, and of the objects in the working memory.
These two orderings define a strict order <seq on rule instances lexicographically.
The sequential control strategy is then defined as follows:

(i) The selection strategy Sseq returns the minimal rule instance under con-
sideration:

Sseq(C) = {R ∈ C | R is minimal with respect to <seq} .

(ii) The eligibility strategy Eseq retains for further consideration only the rule
instances that follow (are greater than) the rule instance just applied; in
a transition 〈E, s〉 R−→ 〈E′, s′〉:

Eseq(E,R) = {R′ ∈ E | R <seq R
′} .



5 Illustration

Let us consider again the example rule-based application depicted in Sect. 1.2.
The rules of the program R = {P, S} are reminded below:

P(c, p) : c = p.buyer & p.value ≥ 100 ⇀ c.bonus := c.bonus + p.value× .1
S(s, c) : s = c.sponsor & s.bonus ≥ 200 ⇀ s.bonus := s.bonus− 50 ;

c.bonus := c.bonus + 30

As seen in Sect. 2, a rule program such as R is executed on a finite set
of objects, called the working memory. Assume that we plan to execute R on a
working memoryM = {Alice, Bob, Don, Car} containing four objects: three cus-
tomers and a purchase. An execution of R onM from an initial state s0 consists
of a sequence of transitions between configurations, starting from 〈I(R,M), s0〉.
Assume that the execution starts from a state s0 in which Alice is a sponsor of
Bob and Don, their respective bonuses are 230, 100, and 50 points, and Alice
purchases a car for $ 900. State s0 can be depicted as follows:

s0


Alice : bonus = 230
Bob : bonus = 100 sponsor = Alice

Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice .

5.1 Sequential Executions of the Rule Program

The sequential executions of R will be governed by two orders: the order on
object tuples, here customer pairs or customer-purchase pairs; and the order on
rules, here P and S. In our example, the rules apply to distinct types of objects;
as a result, their order has no impact. Let us assume that S comes before P. On
the other hand, the order on object tuples determines which of earning bonus
points on purchases, or of sponsoring friends, is favored.

Sponsorship over Purchases. Let us first assume that pairs of customers
come before customer-purchase pairs, and that object tuples are taken in the
following order:

(Alice, Alice) (Alice, Bob) . . . (Don, Don) (Alice, Car) (Bob, Car) (Don, Car) .

By definition, all rule instances are eligible in the initial configuration. The
sequential selection strategy will hence pick the first applicable rule instance
that can be formed for rules P and S, with each of the object tuples in the order
above.

Per the definitions of Sect. 2.1, the rule instance (P, Alice, Alice) is not appli-
cable in s0, because Alice /∈ Dom(buyers0). On the other hand, (S, Alice, Alice)
is not applicable in s0 either, because sponsors0(Alice) 6= Alice. Similarly,
(P, Alice, Bob) is not applicable in s0. However, (S, Alice, Bob) is applicable in
s0, and is thus selected by the sequential selection strategy.



Therefore, a transition by (S, Alice, Bob) from 〈I(R,M), s0〉 to 〈E1, s1〉 oc-
curs, where the state s1 results from the application of (S, Alice, Bob) in s0, that
is:

s1


Alice : bonus = 180
Bob : bonus = 130 sponsor = Alice

Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice

and the set E1 contains the rule instances that are greater than (S, Alice, Bob),
that is:

E1 = {(P, Alice, Don), (S, Alice, Don), (P, Bob, Alice), . . . , (S, Don, Car)} .

Because Alice has less than 200 bonus points in state s1, the first applicable
rule instance in s1 among those in E1 is (P, Alice, Car). A transition by this
rule instance therefore occurs to 〈E2, s2〉, where the state s2 results from the
application of (P, Alice, Car) in s1, that is:

s2


Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice

Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice

and the set E2 contains the rule instances that are greater than (P, Alice, Car),
that is:

E2 = {(S, Alice, Car), (P, Bob, Car), (S, Bob, Car), (P, Don, Car), (S, Don, Car)} .

None of these rules is applicable in s2, that is, As2 ∩ E2 = ∅. Therefore, the
transition rule (1) cannot be applied and the execution of R ends.

One can note that (S, Alice, Don) was not applicable when it was considered
in s1, but is now applicable in s2. However, the sequential nature of the execution,
enforced by the sequential eligibility strategy, causes it to not be included in E2,
and hence not to be considered for execution in s2.

Purchases over Sponsorship. Let us now assume that customer-purchase
pairs come before customer pairs, and that object tuples are thus taken in the
following order:

(Alice, Car) (Bob, Car) (Don, Car) (Alice, Alice) (Alice, Bob) . . . (Don, Don) .

With this order on object tuples, the execution of R onM from s0 is

s0
(P,Alice,Car)−−−−−−−−→ s′1

(S,Alice,Bob)−−−−−−−−→ s′2
(S,Alice,Don)−−−−−−−−→ s′3

with in particular

s′2


Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice

Car : buyer = Alice value = 900
Don : bonus = 50 sponsor = Alice .



In this execution, the rule instance (S, Alice, Don) is considered in s′2, where
it is applicable. This contrasts with the previous execution, in which the rule
instance is considered in state s1, where it is not applicable.

5.2 Refraction-Based Executions of the Rule Program

Let us consider the same rule program R on a subset M′ = {Alice, Bob, Car}
of the working memoryM. Let us consider an execution of R onM′ from the
initial state σ0, equal to the restriction of s0 toM′, that is:

σ0

Alice : bonus = 230
Bob : bonus = 100 sponsor = Alice

Car : buyer = Alice value = 900 .

Let us note that Alice is a sponsor of Bob and the buyer of the car in state
σ0, and that the actions of none of the rules in R can change this. This implies
that, per the definitions of Sect. 2.1, the only rule instances that can be appli-
cable in any state of an execution of R on M′ from σ0 are (P, Alice, Car) and
(S, Alice, Bob). In addition, the rule instance (P, Alice, Car) is applicable in σ0,
and since the actions of none of the rules in R can change this, it shall remain
applicable in any state of an execution of R onM′ from σ0. As a consequence,
these executions would never terminate, unless at some point the control strat-
egy did refrain from choosing (P, Alice, Car), even if it were the sole applicable
rule instance. This is the role of the eligibility strategy, as illustrated below.

By definition, all rule instances are eligible in the initial configuration. The
selection strategy will hence apply to the rule instances that are applicable in
the initial state σ0, namely:

Aσ0 = {(P, Alice, Car), (S, Alice, Bob)} .

Assume that the selection strategy chooses to apply (S, Alice, Bob) in σ0. This
causes a transition by this rule instance from 〈I(R,M), σ0〉 to 〈E1, σ1〉, where
the state σ1 results from the application of (S, Alice, Bob) in σ0, that is:

σ1

Alice : bonus = 180
Bob : bonus = 130 sponsor = Alice

Car : buyer = Alice value = 900

and the set E1 is computed by first removing (S, Alice, Bob) from E0 = I(R,M),
and then adding all the rule instances that are not applicable in σ1. Since Alice
has less than 200 bonus points in σ1, the rule instance (S, Alice, Bob) is not
applicable in σ1, and E1 = I(R,M).

In configuration 〈E1, σ1〉, we have Aσ1
∩E1 = {(P, Alice, Car)}. Therefore, a

transition to 〈E2, σ2〉 occurs by the application of (P, Alice, Car), which results
in

σ2

Alice : bonus = 270
Bob : bonus = 130 sponsor = Alice

Car : buyer = Alice value = 900 .



The set E2 is computed by removing (P, Alice, Car) from E1, and then adding all
the rule instances that are not applicable in σ2. Since (P, Alice, Car) is applicable
in σ2, it is not added back in E2, and we have

E2 = I(R,M) \ {(P, Alice, Car)}
Aσ2 = {(P, Alice, Car), (S, Alice, Bob)}

Aσ2 ∩ E2 = {(S, Alice, Bob)} .

Note that (S, Alice, Bob) was not applicable in σ1 but, in the transition to σ2,
Alice’s bonus has been increased to over 200 points, hence making (S, Alice, Bob)
applicable. As this rule instance has been inapplicable since its latest application,
it must not be discarded by refraction: indeed, we have (S, Alice, Bob) ∈ E2. The
fact that (S, Alice, Bob) is given the opportunity of being applied in σ2 contrasts
with the sequential execution, where this opportunity was denied in state s2.

The execution of R continues with a second application of (S, Alice, Bob),
and results in 〈E3, σ3〉 with

E3 = E2 \ {(S, Alice, Bob)} ∪ {R ∈ I(R,M) | R is not applicable in σ3} .

In this configuration, (P, Alice, Car) is not included in E3 since it is applicable
in σ3. On the other hand, (S, Alice, Bob) cannot be in Aσ3

∩ E3 since either it
is not applicable in σ3, or it is and is thus not eligible.

As there is no rule instance that is both applicable and eligible in 〈E3, σ3〉,
the transition rule (1) cannot be applied and the execution of R ends.

5.3 Discussion

As can be seen on the example discussed in this section, the set of eligible rule
instances in each configuration is easier to compute in a sequential execution
than in a refraction-based one. This explains why adopting a sequential execution
semantics enables rule engines to execute rule programs faster.

On the other hand, this example also demonstrated that the refraction-based
semantics gives more opportunity to rule instances to execute, whereas the se-
quential mode imposes a stricter control. This can be seen as an advantage of
Rete-like execution, as this semantics seems more natural. However, some BRMS
users regard this richer semantics as less predictable, and appreciate the greater
control provided by the explicit ordering of rules of the sequential execution
mode, especially with large rule programs as can for example result from the
automatic translation of database tables into rules.

6 Conclusion

Business Rule Management Systems (BRMS) provide business applications with
the ability to externalize part of their logic as rule programs. For a long time,
these rule programs have been executed with the semantics linked to the Rete



algorithm. More recently however, an alternative to Rete has emerged, known
as sequential, with a specific semantics.

In this paper, we give a formal description of the execution of rule programs
by BRMS. In this description, we isolate the handling of rule eligibility in the
control strategies of rule engines. We complete our formal description with the
expression of selection and eligibility strategies for the Rete algorithm and for
the sequential execution mode.

Finally, we illustrate our formalism with both a sequential and a refraction-
based execution of an example rule-based application.
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