
Interpolation Modulo Theories

Dissertation
zur Erlangung des Doktorgrads

der technischen Fakultät

der Albert-Ludwigs-Universität Freiburg im Breisgau

vorgelegt von

Jürgen Christ

Tag der Disputation:
26.10.2015

Dekan:
Prof. Georg Lausen, Albert-Ludwigs-Universität Freiburg

Referenten:
1. Gutachter: Prof. Andreas Podelski, Albert-Ludwigs-Universität Freiburg
2. Gutachter: Prof. David Monniaux, CNRS / VERIMAG
Beisitz: Prof. Peter Thiemann, Albert-Ludwigs-Universität Freiburg
Vorsitz: Prof. Rolf Backofen, Albert-Ludwigs-Universität Freiburg

Abstract
We present new concepts and techniques to generate interpolants from the proofs produced
by SMT solvers. The overall result is to expand the scope of interpolation to the wealth
of theories that are supported by SMT solvers. SMT solvers can prove satisfiability for an
ever growing number of theories (and for their combinations; theories are often combined
to account for rich data as commonly used in complex systems). However, according to the
present state of the art, SMT solvers can compute interpolants only for a few selected theories
(and it is unknown how two existing methods can be combined to compute interpolants in the
combination of the theories). The notion of interpolant goes back to Craig’s interpolation
theorem for first-order logic. An increasing range of software analysis tools use techniques
based on interpolants.

We present a new algorithm to compute Craig interpolants from the proof produced by
an SMT solver, for a wide range of theories and for their combination. The algorithm uses
the proof produced by the SMT solver but it does not interfere with the intermediate steps of
producing the proof and it does not manipulate the proof. As a consequence, the algorithm is
generic in the theory and it can be put on top of an existing SMT solver without impeding its
generality and without impeding its efficiency.

We also present an extension of the algorithm to tree interpolants. Tree interpolants are
used whenever the behaviour of a software is not represented as a linear sequence (for ex-
ample, to account for the return of a function call in the execution of a program). To our know-
ledge, this is the first algorithm that computes (provably correct) tree interpolants from SMT
proofs. Motivated by the fact that interpolation algorithms without an existing correctness
proof are notoriously wrong, we present a proof for the correctness of the tree interpolation
algorithm.

We show how one can instantiate the algorithm for the quantifier-free fragment of the
theory of uninterpreted functions and the theory of linear arithmetic over the integers or the
reals, and we have implemented the resulting algorithm. The implementation is part of the
interpolating SMT solver SMTInterpol. It is freely available under LGPL. Feedback from
users is encouraging.

i

Zusammenfassung
Wir präsentieren neue Konzepte und Techniken, um Interpolanten aus Beweisen zu generie-
ren, die von SMT Solvern generiert wurden. Das Resultat dieser Arbeit erweitert die Anwend-
barkeit von Interpolation auf die Fülle an Theorien, die von SMT Solvern unterstützt werden.
SMT Solver können Erfüllbarkeit für eine immer größer werdende Anzahl an Theorien und
deren Kombinationen beweisen (Theorien werden oft kombiniert, um die reichhaltigen Da-
tenstrukturen komplexer Programme zu unterstützen). Allerdings können SMT Solver derzeit
nur für eine relativ kleine Auswahl an Theorien auch Interpolanten generieren (ohne dass be-
kannt wäre, wie zwei bestehende Methoden kombiniert werden können, um Interpolanten in
der Kombination der Theorien zu generieren). Der Begriff Interpolant stammt von Craig’s
Interpolationstheorem für Logik der ersten Stufe. Eine wachsende Anzahl an Programmen
zur Analyse von Software verwendet Techniken, die auf Interpolanten aufbauen.

Wir präsentieren einen neuen Algorithmus, um Craig Interpolanten aus von einem SMT
Solver produzierten Beweisen zu berechnen. Der Algorithmus kann für eine große Klasse von
Theorien und deren Kombination verwendet werden. Er verwendet die Beweise, die ein SMT
Solver produziert, ohne in die Zwischenschritte der Beweisproduktion einzugreifen, oder den
Beweis zu verändern. Daher ist der Algorithmus generisch in der verwendeten Theorie und
kann mit einem SMT Solver kombiniert werden, ohne dessen Effizienz oder Allgemeingültig-
keit zu beeinträchtigen.

Des weiteren präsentieren wir eine Erweiterung des Algorithmus, die Bauminterpolanten
berechnen kann. Bauminterpolanten werden immer dann verwendet, wenn das Verhalten von
Software nicht als lineare Sequenz beschrieben werden kann (z. B. um den Rücksprung eines
Funktionsaufrufes zu modellieren). Unseres Wissens nach ist dies der erste Algorithmus,
der (bewiesenermaßen korrekte) Bauminterpolanten aus SMT Beweisen generiert. Motiviert
durch die Tatsache, dass Interpolationsalgorithmen, die nicht als korrekt bewiesen wurden,
dann auch oft fehlerhafte Interpolanten produzieren, geben wir einen Korrektheitsbeweis für
den Algorithmus zur Bauminterpolation.

Wir zeigen, wie der Algorithmus für das quantorenfreie Fragment der Theorie der unin-
terpretierten Funktionen und der Theorie der linearen Arithmetik über den ganzen und den
rationalen Zahlen instantiiert werden kann. Der resultierende Algorithmus ist Teil des inter-
polierenden SMT Solvers SMTInterpol. Dieser ist frei verfügbar unter LGPL. Das Feedback
von Benutzern ist ermutigend.

iii

Acknowledgements
Foremost I thank Andreas Podelski for accepting me as a PhD student. He gave me the oppor-
tunity and space to develop my own research ideas. Furthermore, he supported me throughout
my PhD time and arranged an internship at SRI International. Moreover I thank David Mon-
niaux for serving as second reviewer of this thesis.

Next I want to thank Jochen Hoenicke for his invaluable contributions to my research
and this thesis. His ingenuity paved the way to this thesis. I enjoyed developing the results
together with him as well as many conversations over lunch.

I am grateful for the working environment provided by my colleagues. In addition to An-
dreas and Jochen I want to thank Rebecca Albrecht, Stephan Arlt, Jelena Barth, Sergiy Bogo-
molov, Berit Brauer, Daniel Dietsch, Evren Ermis, Sergio Feo-Arenis, Marius Greitschus,
Matthias Heizmann, Christian Herrera, Marlis Jost, Vincent Langenfeld, Alexander Malkis,
Stefan Maus, Martin Mehlmann, Corina Mitrohin, Marco Muñiz, Alexander Nutz, Amalinda
Post, Martin Preen, Martin Schäf, Christian Schilling, Nassim Seghir, Martin Wehrle, Bernd
Westphal, and Thomas Wies.

I thank SRI International, foremost Natarajan Shankar, Bruno Dutertre, and Sam Owre for
a very pleasant internship in 2011. I enjoyed working with the people at SRI and getting to
experience a different working environment.

I especially thank the German Research Foundation (DFG) for providing financial support
for the research centre “Automated Verification and Analysis of Complex Systems” (AVACS).

Last but not least I want to thank my family for their continuous support. I dedicate this
thesis to my mother.

v

Contents
1 Introduction . 1

2 Preliminaries . 13

3 Binary Interpolants from Proofs . 17
3.1 Binary Interpolation . 17
3.2 Proof Tree Based Interpolation . 18

3.2.1 A Generic Interpolation Algorithm . 18
3.2.2 Projection of Mixed Literals . 20

3.3 Uninterpreted Functions . 22
3.3.1 Leaf Interpolation . 22
3.3.2 Pivoting of Mixed Equalities . 23

3.4 Linear Real and Integer Arithmetic . 24
3.4.1 Leaf Interpolation . 26
3.4.2 Pivoting of Mixed Literals . 29

3.5 An Example for the Combined Theory . 33

4 Tree Interpolants from Proofs . 37
4.1 Tree Interpolation . 37

4.1.1 Generality of Tree Interpolation . 39
4.1.2 Locality of Symbols and Literals in a Tree . 40
4.1.3 Projection Function for Tree Interpolation . 41
4.1.4 Simultaneous Binary Interpolation . 43

4.2 Theory Specific Interpolation . 47
4.2.1 Theory of Uninterpreted Functions . 48
4.2.2 Theory of Linear Arithmetic . 56

4.3 Combining Theories . 66
4.3.1 Nelson–Oppen-based Theory Combination . 66
4.3.2 Interpolating the Combination of Uninterpreted Functions and

Linear Arithmetic . 67
4.4 An Example for the Combined Theory . 70

4.4.1 Derivation of a Tree Interpolant . 70
4.4.2 Correctness of the Generated Interpolant . 74

5 SMTInterpol . 77
5.1 Architecture . 77
5.2 Interpolation . 79
5.3 New Literals . 80
5.4 Proof of Concept . 83

6 Future Work . 85
6.1 Theory Specific Interpolation . 85
6.2 Quantifiers . 85
6.3 Strength Variation . 86

vii

viii Contents

7 Conclusion . 89

References . 91

Chapter 1
Introduction

Many recent advances in the field of computer science are backed by the advances in auto-
mated theorem provers like Satisfiability (SAT) solvers [8] and Satisfiability modulo Theories
(SMT) solvers [5]. These tools take as input a formula in some logic and check for satisfiab-
ility of this formula with respect to this logic. The input formula represents an encoding of
another problem. In model checking [69, 72, 53, 54, 36, 40], for example, a formula repres-
ents a path from an initial state to an error state in an abstraction of the model. If this formula
is satisfiable, the path can be concretised. Otherwise it is only contained in the abstraction
and not in the concrete system. A refinement loop is used to remove that so-called spurious
path from the abstraction of the model. One way to refine a model is to use interpolation
to compute a tighter abstraction of the model that excludes the spurious path, but might still
contain other spurious paths. Similarly, state space abstraction [56, 72, 17] uses interpolation
to over-approximate the set of “good states” while excluding all “bad states”.

One way to automate interpolation is to use Craig interpolants [29]. Given an inconsistent
conjunction A∧B, a Craig interpolant is a formula I that over-approximates A (i. e., A→ I is
valid), is inconsistent with B (i. e., I∧B is unsatisfiable), and only uses vocabulary common to
A and B (i. e., I contains only variables shared between A and B). Craig showed in his seminal
work on interpolation how to construct an interpolant. His approach introduces quantifiers to
eliminate all symbols that are not shared between A and B. Unfortunately, adding quantifiers
to a formula makes satisfiability checking of this formula much harder or even undecidable.
To alleviate this downside, we are interested in quantifier-free interpolants.

For some logics, we could use quantifier elimination [67]. But, in general, quantifier elim-
ination is expensive. Methods to avoid it exist. They were pioneered for equational theories
by Huang [58], for propositional logic by Pudlák [80], and for some theories in the context
of Satisfiability modulo Theories (SMT) by McMillan [71]. All three approaches use proofs
to derive an interpolant. Essentially, the techniques separate the proof in order to generate an
interpolant. They use syntactic rules to compute the interpolant based on the inference step
done in the proof. The result is a quantifier-free interpolant for quantifier-free input.

For propositional logic, a SAT solver typically produces resolution-based proofs that show
the unsatisfiability of the input formula. Extracting Craig interpolants from such proofs is
a well understood and easy task that can be accomplished, e. g., using the algorithms of
Pudlák [80] or McMillan [71]. An essential property of the proofs generated by SAT solvers

1

2 1 Introduction

is that every proof step only involves literals that occur in the input. This property allows us
to cut the proof into two parts at inference boundaries.

This property does not hold for proofs produced by SMT solvers [5] for formulae in a
combination of first order theories. Such solvers produce new literals for different reasons.
First, to combine two or more theory solvers, SMT solvers exchange (dis-)equalities between
the symbols common to these two theories in a Nelson-Oppen-style theory combination [75].
Second, various techniques dynamically generate new literals to simplify proof generation.
Third, new literals are introduced in the context of a branch-and-bound or branch-and-cut
search for non-convex theories. The theory of linear integer arithmetic for example is typic-
ally solved by searching a model for the relaxation of the formula to linear rational arithmetic
and then using branch-and-cut with Gomory cuts or extended branches [35] to remove the
current non-integer solution from the solution space of the relaxation. The literals produced
by either of these techniques only contain symbols that are already present in the input. How-
ever, a literal produced by one of these techniques may be mixed1 in the sense that it may
contain symbols occurring only in A and symbols occurring only in B. These literals pose
the major difficulty when extracting interpolants from proofs produced by SMT solvers. We
cannot directly apply the techniques developed in the context of SAT solvers since these
techniques cannot deal with mixed literals.

Two different approaches were proposed to solve this problem. First, the solver can be
restricted to generate proofs of a special shape [24]. This approach only solves the problem
of mixed literals generated by theory combination. It does not provide a solution for non-
convex theories like linear integer arithmetic. Second, the proof tree can be manipulated in a
post-processing step to move mixed literals towards the leaves of the proof tree [15]. Once a
sub-proof only uses mixed literals, a new lemma can be extracted that replaces all inferences
on mixed literals. This technique requires an algorithm to compute interpolants for these new
lemmas. Since the lemmas might combine multiple theories, the approach needs an algorithm
to compute interpolant in the conjunctive fragment of a combination of theories. Thus, proof
tree manipulation does not solve the problem. Instead, it reduces it to another problem that is
almost as hard as the original problem. We start a new research direction for interpolation.

In this thesis, we present a generic algorithm for interpolation in SMT that is able to com-
pute interpolants even if mixed literals are present in the proof. The novelty of the algorithm
lies in its verbatim use of a proof generated by an SMT solver. It does not interfere with proof
production and it does not manipulate the proof. The algorithm reuses existing techniques
known from SAT for the propositional steps in the proof tree as long as no mixed literal is
involved. We devise specialised rules for inference steps on mixed literals. We call the res-
ulting algorithm proof tree preserving interpolation. Furthermore, we show how to use this
algorithm to compute interpolants in the combination of the theory of uninterpreted functions
with the theory of linear arithmetic over reals or integers.

A side-effect of the verbatim use of a proof is that our algorithm can be combined with
different proof tree manipulation techniques [28, 44, 81, 9] to compute different interpolants.
This allows us to easily vary the logical strength of the interpolants by manipulation of the
proof. Correctness of the interpolants generated by our algorithm is proven independent of a
specific shape of the proof. Thus, correctness of the interpolants computed from a manipu-
lated proof is proven as long as the manipulation of the proof is correct, i. e., the proof remains
a proof of unsatisfiability.

1 Mixed literals sometimes are called uncolourable.

1 Introduction 3

Recent advances in model checking led to the definition of more elaborate forms of in-
terpolation. We consider the case of tree interpolants which is a generalisation of sequence
interpolants [69]. Input to tree interpolation is a tree where each vertex is labelled with a for-
mula. If the conjunction of these labels is unsatisfiable, a tree interpolant can be computed.
This tree interpolant is another labelling of the tree that assigns to each vertex a formula that
follows from the interpolants labelling the children and the input formula labelling the current
vertex. Furthermore, a symbol condition similar to binary interpolation is used. In principle,
tree interpolation can be reduced to multiple binary interpolation problem. This reduction,
however, requires solving of different binary interpolation problems in order to guarantee
correctness of the generated tree interpolant. To achieve better performance in general, we
opt for a method to compute a tree interpolant from one proof, i. e., we show unsatisfiability
of the conjunction of the labels of the input tree and use the generated proof to compute a tree
interpolant.

Tree interpolants arise from model-checking recursive and concurrent programs in a nat-
ural way. An execution of the program with procedures can be represented as a nested trace,
where the statement after a procedure call has two predecessors, the return statement of the
called procedure and the procedure call itself. To reason about correctness in a modular way
requires combining the function summary with the intermediate assertion before the proced-
ure call. This leads naturally to a tree-like structure [54, 56]. Tree interpolants are also useful
to approximate function summaries for incremental update checking [83]. Similarly, modu-
lar reasoning about concurrent programs needs interference free proofs or assume-guarantee
reasoning. The proof of an intermediate assertion can depend on the previous assertion of
the same thread and the guarantees provided by the other threads. Thus, an unfolding of the
parallel program has again a tree-like shape. Other uses of interpolants in model-checking are
data-flow graph based method [43] which compute tree interpolants for an unfolded data-flow
tree.

These tools use efficient SMT solvers to reason about verification conditions and generate
interpolants. SMT solvers generate interpolants from proofs. Although tree interpolants are
widely used, only a few SMT solver are able to produce them without the need for repeated
applications of binary interpolation to different interpolation problems. The techniques used
by these tools to ensure correctness of inductive sequences and trees of interpolants are not
well documented.

We extend our generic algorithm in order to extract tree interpolants from a proof produced
by an SMT solver. The extension is conservative in the sense that the rules used to extract
binary interpolants are preserved. We call the resulting algorithm proof tree preserving tree
interpolation. Proving correctness of algorithms that compute tree interpolants is a tedious
and error-prone task. Most existing algorithms are not proven correct. We show correctness
of our algorithm and of an instantiation to the combination of the theory of uninterpreted
functions with the theory of linear arithmetic over reals or integers. To our knowledge, this is
the first algorithm that is proven correct for this combination of theories.

Contribution

This thesis makes the following contributions.

4 1 Introduction

• We developed a generic algorithm to compute interpolants from proofs generated by SMT
solvers. This is the first algorithm to compute interpolants without restricting the inference
steps done by the solver or manipulating the proof tree in order to prevent mixed literals.
The algorithm is parameterised by two functions. We demonstrate the algorithm for the
combination of the theory of uninterpreted functions with the theory of linear arithmetic
over reals or integers. We call this algorithm proof tree preserving interpolation.

• We extend this algorithm to tree interpolation. The extension allows us to extract a tree
interpolant from a proof generated by a state of the art SMT solver without the need for
repeated binary interpolation, proof tree manipulation, or any restrictions on the infer-
ences done by the solver. We show how to adjust the conditions on the two functions
that parameterise proof tree preserving interpolation to ensure correctness of the gener-
ated tree interpolant. We demonstrate the algorithm for the combination of the theory of
uninterpreted functions with the theory of linear arithmetic over reals or integers.

• We demonstrate the usefulness of the aforementioned algorithms in the interpolating SMT
solver SMTInterpol. The solver is freely available under LGPL and used by numerous
model checkers (CPAchecker, Goanna, Ultimate Automizer, Ultimate Kojak, to name just
a few) and various tools that do not require interpolants.

Proof Tree Preserving Interpolation

To tackle the problem of mixed literals we presented proof tree preserving interpolation at
TACAS 2013 [22] and published an extended version as AVACS technical report [23]. The
algorithm is, to our knowledge, the only complete interpolation technique based on proofs
generated by SMT solvers for quantifier-free interpolation in the combination of the theories
of uninterpreted functions and linear integer arithmetic, i. e., it is the only algorithm that
can compute a quantifier-free interpolant for quantifier-free input if an interpolant exists. We
present proof tree preserving interpolation in Chapter 3.

Proof Tree Preserving Tree Interpolation

We extended proof tree preserving interpolation to extract tree interpolants from one proof
tree. We presented this extension at the SMT workshop 2013 [20]. A journal version is still
under review [18]. To our knowledge, this is the first algorithm to compute tree interpolants
from proofs generated by a state of the art SMT solver. We prove correctness of the algorithm,
i. e., we show that the compute tree interpolant is correct for the given tree interpolation prob-
lem. Furthermore, the algorithm inherits completeness from proof tree preserving interpola-
tion. We present proof tree preserving tree interpolation in Chapter 4.

SMTInterpol

We implemented both algorithms in our state of the art SMT solver SMTInterpol which was
presented at SPIN 2012 [21] and regularly participated in the annual SMT competitions [3,
26] and evaluations [27]. During the FLOC Olympic Games 2014, it was awarded a Gödel

1 Introduction 5

medal for second place in the competition. Furthermore, SMTInterpol participates in the
application track of the SMT competition since it started in 2012. This track [14] simulates
the usage of an SMT solver as a core component inside another tool like, e. g., a model
checker.

SMTInterpol is primarily designed to compute interpolants. Various tools use SMTInt-
erpol for this purpose. Among them are CPAchecker [6], Goanna [16], Ultimate Autom-
izer [52], and Ultimate Kojak [41, 40]. Additionally, interpolants generated by SMTInterpol
are used to localise errors in programs via error invariants [42, 17]. Nevertheless, SMTInter-
pol is also used in various other scenarios [55, 65, 57, 87] that do not require interpolation.
These scenarios also show the usefulness of SMTInterpol as an SMT solver even though it is
not as highly optimised as competing SMT solvers.

We present SMTInterpol in Chapter 5. SMTInterpol can solve SMT problems in the
quantifier-free fragment of the theories of uninterpreted functions and linear arithmetic over
Integers and Reals and the combination thereof (in SMTLIB [4] notation: QF UF, QF LIA,
QF LRA, QF UFLIA, and QF UFLRA). SMTInterpol is able to compute interpolants in all
these fragments, too.

Related Work
The work presented in this thesis combines interpolation methods for multiple theories. We
split the related work according to the different parts covered by this thesis.

Interpolation

Craig [29] shows in his seminal work on interpolation that for every inconsistent pair of first
order formulae an interpolant can be derived. In the proof of the corresponding theorem he
shows how to construct interpolants without proofs by introducing quantifiers in the inter-
polant. In his first definition, he defines an interpolant as a formula I that splits the valid
implication A→ B such that the implications A→ I and I→ B are valid and I contains only
the symbols common to A and B. He calls the version of binary interpolants used throughout
this thesis reverse interpolant. A reverse interpolant splits an unsatisfiability proof of A∧B
into two parts: a valid implication A→ I and an unsatisfiable conjunction I∧B. The symbol
condition remains the same. Note that, if I is an interpolant for A and B, the it is a reverse
interpolant for A and ¬B.

For Boolean circuits, Pudlák [80] shows how to construct quantifier-free interpolants from
resolution proofs of unsatisfiability. We computes for every clause used in the derivation of
the empty clause, i. e., the proof of unsatisfiability, a partial interpolant. The partial inter-
polants of the leaves depend on the origin of the clause, i. e., if the clause is part of A, part of
B, or of both. Similarly, for resolution steps, he gives rules based on the origin of the pivot
literal. In this thesis, we build up on this work and extend it to the SMT case where input
clauses might stem from theories and newly created literals might act as pivots of resolution
steps.

Almost missed in the literature on interpolation2 is the work by Huang [58]. He presen-
ted an algorithm to construct interpolants in equational theories. When restricted to Boolean
circuits, the algorithm resembles the algorithm presented by Pudlák.

Interpolation in Satisfiability Modulo a Combination of Theories

A different proof-based interpolation system is given by McMillan [70] in his seminal pa-
per on interpolation for SMT. The presented method combines the theory of equality and
uninterpreted functions with the theory of linear rational arithmetic. As in the algorithm de-
veloped by Pudlák, interpolants are computed from partial interpolants by annotating every
proof step. McMillan gives different syntactic rules for the input clauses. In this thesis, we
will combine the systems from Pudlák and McMillan in a way similar to labelled interpol-
ation systems [37]. In our combined system, the systems from Pudlák and McMillan only
differ in the instantiation of a projection function used to describe the origin of a literal.

The partial interpolants in McMillan’s algorithm have a specific form that carries inform-
ation needed to combine the theories. The proof system is incomplete for linear integer arith-
metic as it cannot deal with arbitrary cuts and mixed literals introduced by these cuts. In this

2 I thank Armin Biere for pointing me to this paper.

7

8 1 Introduction

thesis, we resolve this deficiency by extending his general method to arbitrary mixed literals
including those generated by cuts [35].

Yorsh and Musuvathi [88] show how to combine interpolants generated by an SMT solver
based on Nelson-Oppen combination [75]. They define the concept of equality-interpolating
theories. Such theories provide a shared term t for a mixed literal a = b that is derivable
from an interpolation problem. A troublesome mixed interface equality a = b is rewritten
into the conjunction a = t ∧ t = b. They show that both, the theory of uninterpreted functions
and the theory of linear rational arithmetic are equality-interpolating. The method presented
in this thesis does not explicitly split the proof. Additionally, our method can handle the
theory of linear integer arithmetic without any restriction on the solver. The method of Yorsh
and Musuvathi, however, cannot deal with cuts used by most modern SMT solvers to decide
linear integer arithmetic since they introduce mixed literals that cannot be split into one binary
conjunction.

Goel et al. [47] present a generalisation of equality-interpolating theories. They define
the class of almost-colourable proofs and an algorithm to generate interpolants from such
proofs. A proof is almost-colourable if it can be transformed into a colourable proof where
every literal that occurs as pivot of a resolution step stems from A or B or both. They describe
a restricted DPLL system to generate almost-colourable proofs. This system does not restrict
the search if convex theories are used. Their procedure is incomplete for non-convex theories
like linear arithmetic over integers since it prohibits the generation of mixed branches and
cuts. The interpolation system described in this thesis does not restrict the DPLL solver or
the theory solvers. Especially, we allow mixed branches and cuts in the proof tree.

Bruttomesso et al. [12] extend the notion of equality-interpolating theories to non-convex
theories like the theory of linear integer arithmetic. They split an equality into a disjunction
of equalities. The method presented in this thesis can be seen as an efficient implementation
of equality-interpolating theories for linear integer arithmetic without actually manipulating
the proof tree. Instead, we use new rules to compute partial interpolants if the pivot literal is
mixed. These rules simulate splitting the proof tree using the results from Bruttomesso et al.

Cimatti et al. [24] present a method to compute interpolants for linear rational arithmetic
and difference logic. The method presented in this thesis builds upon their interpolation tech-
nique for linear rational arithmetic. For theories combined via delayed theory combination,
they show how to compute interpolants by transforming a proof into a so-called ie-local proof.
In these proofs, mixed equalities are close to the leaves of the proof tree and splitting them
is cheap since the proof trees that have to be duplicated are small. A variant of this restricted
search strategy is used by MathSAT [49] and CSIsat [7]. The method presented in this thesis
does not split and duplicate parts of the proof tree. Furthermore, the techniques presented in
this thesis do not require of ie-local proofs.

Recently, techniques to transform proofs gained a lot of attention. Bruttomesso et al. [15]
present a framework to lift resolution steps on mixed literals into the leaves of the resolution
tree. Once a subproof only resolves on mixed literals, they replace this subproof with the
conclusion removing the mixed inferences. The newly generated lemmas, however, are mixed
between different theories and require special interpolation procedures. Even though these
procedures only have to deal with conjunctions of literals in the combined theories it is not
obvious how to compute interpolants in this setting. Similar to our algorithm, they do not
restrict or interact with the SMT solver but take the proof as produced by the solver. In
contrast to our approach, they manipulate the proof in a way that is worst-case exponential

1 Introduction 9

and rely on an interpolant generator for the conjunctive fragment of the combined theories.
The interpolation system proposed in this thesis could be used as black-box by their system
to compute partial interpolants for leaves containing multiple theories.

McMillan [74] presents a technique to compute interpolants from Z3 proofs. He exploits
the proof tree manipulation technique from Bruttomesso et al. [15]. Whenever a sub-proof
contains mixed literals, he extracts lemmas from the proof tree and delegates them to a second
(possibly slower) interpolating solver. Again, the techniques presented in this thesis could be
used as black-box to compute interpolants for these lemmas.

Brillout et al. [10] present an interpolating sequent calculus that can compute interpolants
for the combination of uninterpreted functions and linear integer arithmetic. The interpolants
computed using their method might contain quantifiers that can be reformulated to integer
divisibility. They restrict the derivations allowed in the sequent calculus to ensure that the
introduced quantifiers represent integer divisibility.

Rybalchenko and Sofronie–Stokkermans [82] present a method to compute interpolants
in the combination of the theory of uninterpreted functions and the theory of linear rational
arithmetic. The peculiarity of their approach is that they do not produce interpolants from
proofs, but use off-the-shelf linear programming solvers to compute interpolants. They use a
hierarchical approach [84] to deal with uninterpreted functions. In this approach, the problem
of computing an interpolant in the combination of the theories is reduced to the problem
of computing an interpolant in the theory of linear rational arithmetic. To prevent mixed
literals in the computation of an interpolant, they compute a set of separating terms up-front.
The methods presented in this thesis compute the separation on the fly. They use constraint
solving techniques to solve an axiomatisation of the existence of an interpolant according
to Motzkin’s transposition theorem. In essence, their method is similar to the interpolation
method used in this thesis. They compute coefficients to combine linear inequalities with a
constraint solver after transforming the input problem.

Interpolation for Uninterpreted Functions

In his seminal work in interpolation in SMT [70], McMillan shows how to compute inter-
polants in the theory of uninterpreted functions. He presents a set of rules similar to those
presented in Section 4.2.1 of this thesis. We extend the rules to tree interpolation and to
mixed literals in the input in order to compute interpolants in a combination of theories.

Fuchs et al. [45] give an interpolation method for the theory of uninterpreted functions.
Their method is based on the congruence closure algorithm [76, 77] to represent a set of
equalities. Given a disequality a 6= b that is in conflict with the equalities represented by the
current congruence closure graph, they first colour the edges of this graph according to the
origin of the equality. Then, they summarise paths to compute an interpolant. Compared to
our method, Fuchs et al. do not support mixed equalities. Thus, their method is not applicable
to the setting of theory combination without additional methods to remove mixed literals.

10 1 Introduction

Interpolation for Linear Arithmetic over Reals

In his seminal work on interpolation in SMT [70], McMillan shows how to compute inter-
polants for the theory of linear arithmetic over the reals. The interpolation method sums up
the contribution of the A part of a given interpolation problem to the proof of unsatisfiability.
In this thesis, we extend the method pioneered by McMillan to mixed literals.

Cimatti et al. [24] show how to compute interpolants for the theory of linear arithmetic
over the reals from unsatisfiability proofs generated by a state of the art SMT solver for
LA(Q). They project the literals contributing to the proof of unsatisfiability onto the A part
of the given interpolation problem. In this thesis, we extend their method to include mixed
literals in the proof of unsatisfiability.

Albarghouthi and McMillan present a method to derive “beautiful interpolants” [2]. They
gradually refine a candidate interpolant I by excluding valuations that violate A |= I or
B∧ I |= ⊥. Such a valuation is then added to a set of violations for the corresponding for-
mula. Then, Farkas’ lemma is used to compute one half-space that separates the two sets of
valuations. If no separating half-space can be found, their method tries to find multiple half-
spaces to separate the two sets. The method produces interpolants in disjunctive normal form
(DNF) (or, alternatively, in conjunctive normal form (CNF)). The interpolants computed by
the techniques presented in this thesis produce interpolants in negation normal form (NNF)
which can be seen as a preliminary step in the conversion of a formula into CNF or DNF.

Interpolation for Linear Arithmetic over Integers

For the theory of linear integer arithmetic LA(Z) a lot of different techniques were proposed.
Lynch et al. [68] present a method that produces interpolants as long as no mixed Gomory
cuts are introduced. In the presence of such cuts, their interpolants might contain symbols
that violate the symbol condition of Craig interpolants.

For linear Diophantine equations and linear modular equations, Jain et al. [59] present a
method to compute linear modular equations as interpolants. Given an interpolation problem
consisting only of equalities ∑ci jx j = ci or a set of modulo equalities (∑ci jx j)≡ ci mod m,
they compute an interpolant as a modulo equality. Their method however is limited to equa-
tions and, thus, not suitable for the whole theory LA(Z).

Kroening et al. [64] describe a method to compute interpolants in LA(Z). They consider
four cases to compute an interpolant. First, if the formula is unsatisfiable due to equalities
over integers (i. e., linear diophantine equations), they use a Smith Normal Form decompos-
ition to compute a proof and project the proof onto the contributions from A. The resulting
interpolant is a divisibility predicate. Second, if the inequalities in the interpolation problem
are unsatisfiable over the rationals, they generate an interpolant like in LA(Q) and lift it to
integer coefficients by multiplying the resulting inequality with the least common multiple of
all denominators. Third, they check for conflicting predicates. If conflicting predicates exist,
either> or⊥ is a valid interpolant depend on the origin of the unsatisfiable predicate. Last, if
neither of the first three methods proved unsatisfiability and generated an interpolant (and no
satisfying assignment to the original problem has been found), they strengthen the problem
by splitting an inequality into three parts. If all three parts are unsatisfiable, they create an
interpolant as a combination of the results of recursive calls to the interpolation procedure.

1 Introduction 11

Compared to the method presented in this thesis, we do not use a dedicated module to solve
linear diophantine equations but use the cuts form proofs algorithm. This algorithm uses a
Hermite Normal Form to solve a system of linear diophantine equations which is similar
to the Smith Normal Form decomposition to solve the system. The techniques described in
this thesis are based on cuts and branches generated by the cuts from proofs algorithm. The
branches introduced by this algorithm only introduce two disjuncts instead of three as done
by Kroening et al.

Griggio [50] shows how to compute interpolants for LA(Z) based on the LA(Z)-solver
from MathSAT [49]. This solver uses branch-and-bound and the cuts from proofs [35] tech-
nique. Similar to the technique presented by Kroening et al. [64] the algorithm prevents gen-
erating mixed cuts and, hence, restricts the inferences done by the solver.

Tree Interpolation

Only a few publications describe how to compute tree interpolants. Gupta et al. [51] describe
how to solve a set of recursion-free Horn clauses over the theories of uninterpreted functions
and linear real arithmetic. This corresponds directly to the tree interpolation problem for a
conjunctive formula that does not contain negated equalities. They have stricter syntactic
restrictions for the partial solutions and a rule for combining partial interpolants , which is
similar to our combination rule for partial interpolants. Our algorithm computes the same
solutions when working on this fragment. However, we allow more input problems and our
method is complete even for linear integer arithmetic.

The interpolating version of Z3 (iZ3) [1] can extract tree interpolants although there is
no publication describing how it computes tree interpolants. iZ3 poses additional restrictions
on the occurrence of symbols in the input and treats every non-constant function symbol as
global symbol. In contrast to the method presented in this thesis, iZ3 manipulates the proof
trees generated by Z3 [33] based on the technique of Bruttomesso et al. [15]. We are not
aware of a publication showing correctness of the generated tree interpolants.

Chapter 2
Preliminaries

Logic, Theories, and SMT.

We assume standard first-order logic. We operate within the quantifier-free fragments of the
theory of equality with uninterpreted functions EUF and the theories of linear arithmetic over
rational numbers LA(Q) and integers LA(Z). The quantifier-free fragment of LA(Z) is not
closed under interpolation. Therefore, we augment the signature with division by constant
functions

⌊ ·
k

⌋
(rounding to −∞) for all integers k ≥ 1.

We use the standard notations |=T ,⊥,> to denote entailment in the theory T , contradic-
tion, and tautology. In the following, we drop the subscript T as it always corresponds to the
combined theory of EUF, LA(Q), and LA(Z).

The literals in LA(Z) are of the form s ≤ c, where c is an integer constant and s a linear
combination of variables. For LA(Q) we use constants c ∈ Qε , Qε := Q∪ {q− ε|q ∈ Q}
where the meaning of s≤ q− ε is s < q. For better readability we use, e. g., s≤ t resp. s > t
to denote s− t ≤ 0 resp. t− s≤−ε . In the integer case we use s > t to denote t− s≤−1. In
general, we denote constant symbols by a,b, terms by s, t, numerical constants by c, function
symbols by f ,g, Boolean variables by p, set-valued variables by X , and other variables by x.
We abbreviate a set of variables by x.

A literal is an atom or its negation. A formula is an arbitrary Boolean combination of
literals. We denote formulas by A,B,F,G, I. A clause is a disjunction of literals. A formula
is in conjunctive normal form (CNF) if it is a conjunction of clauses. We assume in the
remainder of this thesis that every input formula is in CNF. A formula is in negation normal
form (NNF) if all negation symbols appear in front of atoms. The propositional skeleton of a
formula is obtained by replacing theory literals by (fresh) propositional literals according to
a bijective mapping between theory literals and propositional literals.

Symbol Sets.

For a formula F , we use symb(F) to denote the set of non-theory symbols occurring in F .
Formally the set symb(F) is defined by structural induction over F :

13

14 2 Preliminaries

symb(a) = {a} symb(c) = /0 symb(x) = {x} symb(X) = {X}

symb(
n

∑
i=1

citi) =
n⋃

i=1

symb(ti) symb(f (t1, . . . , tn)) = { f}∪
n⋃

i=1

symb(ti)

symb(s on t) = symb(s)∪ symb(t) where on ∈ {<,≤,=,≥,>} symb
(⌊ t

c

⌋)
= symb(t)

symb(¬`) = symb(`) symb(`1 on `2) = symb(`1)∪ symb(`2) where on ∈ {∧,∨,→,⊕}

Similarly, we define the set symb(C) :=
⋃

`∈C symb(`) of all symbols of a clause C as the set
of the symbols occurring in its literals.

Substitution in Formulae and Monotonicity.

By F [G1] . . . [Gn] we denote a formula in negation normal form with sub-formulae G1, . . . ,Gn
that occur positively in the formula. Substituting these sub-formulae by formula G′1, . . . ,G

′
n

is denoted by F [G′1] . . . [G
′
n]. By F(t) we denote a formula with a sub-term t that can appear

anywhere in F . The substitution of t with a term t ′ is denoted by F(t ′).
The following lemma is important for the correctness proofs in the remainder of this thesis.

It also represents a concept that is important for the understanding of the proposed procedure.

Lemma 2.1 (Monotonicity). Given a formula F [G1] . . . [Gn] in negation normal form with
sub-formulae G1, . . . ,Gn occurring only positively in the formula and formulae G′1, . . . ,G

′
n, it

holds that  ∧
i∈{1,...,n}

(Gi→ G′i)

→ (F [G1] . . . [Gn]→ F [G′1] . . . [G
′
n])

Proof. We prove the claim by induction over the number of ∧ and ∨ connectives in F [·] . . . [·].
If F [G1] . . . [Gn] is a literal different from G1, . . . ,Gn the implication holds trivially. Also
for the other base case F [G1] . . . [Gn] ≡ Gi for some i ∈ {1, . . . ,n} the property holds.
For the induction step observe that if F1[G1] . . . [Gn]→ F1[G′1] . . . [G

′
n] and F2[G1] . . . [Gn]→

F2[G′1] . . . [G
′
n], then

F1[G1] . . . [Gn]∧F2[G1] . . . [Gn]→ F1[G′1] . . . [G
′
n]∧F2[G′1] . . . [G

′
n] and

F1[G1] . . . [Gn]∨F2[G1] . . . [Gn]→ F1[G′1] . . . [G
′
n]∨F2[G′1] . . . [G

′
n]. ut

This lemma can be generalised to combine multiple formulas. We use this combination
technique later to prove correctness of our approach.

Lemma 2.2 (Deep Substitution). Given formulae F1[G11] . . . [G1n] and F2[G21] . . . [G2m] with
sub-formulae G1i for 1≤ i≤ n and G2 j for 1≤ j ≤ m occurring positively in F1 and F2.

If
∧

i∈{1,...,n}
∧

j∈{1,...,m}G1i∧G2 j→ G3i j holds, then

F1[G11] . . . [G1n]∧F2[G21] . . . [G2m]→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]].

2 Preliminaries 15

Proof. ∧
i∈{1,...,n}

∧
j∈{1,...,m}

((G1i∧G2 j)→ G3i j)

⇔
∧

i∈{1,...,n}

∧
j∈{1,...,m}

(G1i→ (G2 j→ G3i j))

⇔
∧

i∈{1,...,n}
(G1i→

∧
j∈{1,...,m}

(G2 j→ G3i j))

{monotonicity}⇒
∧

i∈{1,...,n}
(G1i→ (F2[G21] . . . [G2m]→ F2[G3i1] . . . [G3im]))

⇔
∧

i∈{1,...,n}
(F2[G21] . . . [G2m]→ (G1i→ F2[G3i1] . . . [G3im]))

⇔ (F2[G21] . . . [G2m]→
∧

i∈{1,...,n}
(G1i→ F2[G3i1] . . . [G3im]))

{monotonicity}⇒ (F2[G21] . . . [G2m]→ (F1[G11] . . . [G1n]→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]]))

⇔ (F1[G11] . . . [G1n]∧F2[G21] . . . [G2m])→
F1[F2[G311] . . . [G31m]] . . . [F2[G3n1] . . . [G3nm]]))

ut

Proofs.

We assume a DPLL(T)-based approach [46] to SMT where a SAT solver enumerates truth
assignments to the propositional skeleton of the input formula. Theory specific solvers (also
called T -solvers) check consistency of a conjunction of T -literals. If an inconsistency is
detected, a T -lemma is produced. A T -lemma is a clause that is not satisfied by the current
model. It is used to block the current assignment to the propositional skeleton similarly to
propositional conflicts in the context of DPLL. If for a model of the skeleton no theory detects
a conflict, the formula is satisfiable. If all models of the skeleton are in conflict with at least
one theory, the formula is unsatisfiable.

When multiple theories are combined using a variant of the Nelson–Oppen combination
procedure [75], additional clauses are generated to ensure consistent interpretation of the
equality symbol shared between all theories. Then combining uninterpreted functions and
linear arithmetic, for example, clauses are added to translate inequalities into equalities. These
clauses include the trichotomy clause t1 = t2 ∨ t1 < t2 ∨ t2 < t1. We call such clauses theory
combination clauses.

Additionally, theories can delay case splits to the SAT solver by adding a case split lemma.
The trichotomy lemma stated before can be seen as a case split lemma introduced by the
linear arithmetic solver to split a disequality in one of the possible inequalities that satisfy the
disequality. Another source for case split lemmas are lemmas from non-convex theories like
the theory of linear integer arithmetic. Solvers for linear integer arithmetic typically solve
the input problem by first solving a relaxation. In this relaxation, all variables are interpreted
over the Reals. If no solution to the relaxation is found, the original problem is unsatisfiable.

16 2 Preliminaries

Otherwise, if the solution found for the constraints happens to be integral, the solver found a
solution to the input problem. If the solution is not integral, a branch or a cut is added to the
system to remove the spurious solution from the relaxation. Assume x is the component of the
solution that is assigned the non-integral value v. Then, a branch of the form x≤ bvc∨dve ≤ x
can be added to remove the current non-integral assignment.

Given two clauses C1∨ ` and C2∨¬`, the resolution rule concludes the clause C1∨C2. If
C1 and C2 share literals, the resulting clause might be simplified by merging identical literals.
Thus, in general, the resolution rule can be written as

RES
C1∨D∨ ` C2∨D∨¬`

C1∨C2∨D

where C1 and C2 are disjoint. We call the literals in D merge literals and say the literals in D
are merged in this resolution step. Note that merges on literals can be prevented by duplicating
parts of the proof tree. In the remainder of this thesis, we assume no such manipulation of a
proof tree is performed and deal with merge literals directly in our interpolation procedure.
To simplify presentation, however, we omit D from the rule since mostly it is not needed.

A proof is a derivation of the empty clause from input clauses, theory lemmas, theory
combination clauses, and case split clauses using only the resolution rule. Each theory lemma
contains a sub-proof of its own. This proof is specific to the theory that detected the corres-
ponding theory conflict. We present proof systems for EUF and linear arithmetic later.

Chapter 3
Binary Interpolants from Proofs

This chapter presents proof tree preserving interpolation. This technique takes as input a
proof tree generated by a state of the art SMT solver and a partitioning A and B of the input
formula. It then generates a Craig interpolant without manipulating the proof. We first review
existing algorithms for proof tree based interpolation known from propositional logic. Then,
we extend these techniques to SMT. This extension adds interpolation rules for mixed literals
that are common in proofs generated by SMT solvers. We instantiate proof tree preserving in-
terpolation with the theory of uninterpreted functions, and the theory of linear arithmetic both
of reals and integers. We conclude this chapter with the combination of the aforementioned
theories.

3.1 Binary Interpolation

A binary interpolation problem is given by two formulae A and B. If A∧B |= ⊥, a binary
interpolant exists. It is a formula I such that

• A |= I,
• B∧ I |=⊥, and
• symb(I)⊆ symb(A)∩ symb(B).

This definition is typically used in the context of SMT where interpolants are extracted from
proofs of unsatisfiability. Craig [29] refers to interpolants satisfying this definition as reverse
interpolants. In the original definition by Craig, an interpolant for A→ B is a formula I such
that A→ I→ B and I satisfies the symbol condition mentioned above (i. e., the last condition
of the list). For the remainder of this thesis, we consider binary interpolant as synonym for
reverse interpolant. Furthermore, by binary interpolation we refer to the extraction of a reverse
interpolant from a proof of unsatisfiability.

We call a symbol s ∈ symb(A)∪ symb(B) shared if s ∈ symb(A)∩ symb(B), A-local if
s ∈ symb(A) \ symb(B), and B-local if s ∈ symb(B) \ symb(A). Similarly, we call a term A-
local (B-local) if it contains at least one A-local (B-local) and no B-local (A-local) symbols.
We call a term (AB-)shared if it contains only shared symbols and (AB-)mixed if it contains
A-local as well as B-local symbols. The same terminology applies to formulae.

17

18 3 Binary Interpolants from Proofs

3.2 Proof Tree Based Interpolation

Binary interpolants can be computed from proofs of unsatisfiability as Pudlák [80] and Mc-
Millan [71] have already shown. In this section we will introduce their algorithms. Then,
we will discuss the changes necessary to handle mixed literals introduced, e. g., by theory
combination.

3.2.1 A Generic Interpolation Algorithm

Pudlák’s and McMillan’s algorithms assume that the pivot literals are not mixed. We will
remove this restriction later. We define a common framework that is more general and can
be instantiated to obtain Pudlák’s or McMillan’s algorithm to compute interpolants. For this,
we use two projection functions on literals · � A and · � B as defined below. They have the
properties (i) symb(` � A)⊆ symb(A), (ii) symb(` � B)⊆ symb(B), and (iii) ` ⇐⇒ (` � A∧` �
B). Other projection functions are possible and this allows for varying the strength of the
resulting interpolant as shown in [37]. We extend the projection function to conjunctions of
literals component-wise.

Pudlák McMillan
` � A ` � B ` � A ` � B

` is A-local ` > ` >
` is B-local > ` > `

` is shared ` ` > `

Given an interpolation problem A and B, a partial interpolant of a clause C is an inter-
polant of the formulae A∧ (¬C � A) and B∧ (¬C � B)1. Partial interpolants can be computed
inductively over the structure of the proof tree. A partial interpolant of a theory lemma C can
be computed by a theory-specific interpolation routine as an interpolant of ¬C � A and ¬C � B.
Note that the conjunction is equivalent to ¬C and therefore unsatisfiable. For an input clause
C from the formula A (resp. B), a partial interpolant is ¬(¬C\A) (resp. ¬C\B) where ¬C\A
is the conjunction of all literals of ¬C that are not in ¬C � A and analogously for ¬C\B. For a
resolution step, a partial interpolant can be computed using (rule-res), which is given below.
For this rule, it is easy to show that I3 is a partial interpolant of C1∨C2 given that I1 and I2 are
partial interpolants of C1 ∨ ` and C2 ∨¬`, respectively. Note that the “otherwise” case never
triggers in McMillan’s algorithm.

C1∨ ` : I1 C2∨¬` : I2

C1∨C2 : I3
where I3 =


I1∨ I2 if ` � B =>
I1∧ I2 if ` � A =>
(I1∨ `)∧
(I2∨¬`)

otherwise
(rule-res)

1 Note that ¬C is a conjunction of literals. Thus, ¬C � A is well defined.

3.2 Proof Tree Based Interpolation 19

As the partial interpolant of the root of the proof tree (which is labelled with the clause
⊥) is an interpolant of the input formulae A and B, this algorithm can be used to compute
interpolants.

Theorem 3.1. The above-given partial interpolants are correct, i. e., if I1 is a partial inter-
polant of C1∨` and I2 is a partial interpolant of C2∨¬` then I3 is a partial interpolant of the
clause C1∨C2.

Proof. The third property, i. e., symb(I3) ⊆ symb(A)∩ symb(B), clearly holds if we assume
it holds for I1 and I2. Note that in the “otherwise” case, ` is shared. We prove the other two
partial interpolant properties separately.

Inductivity.

We have to show
A∧¬C1 � A∧¬C2 � A |= I3.

For this we use the inductivity of I1 and I2:

A∧¬C1 � A∧¬` � A |= I1 (ind1)
A∧¬C2 � A∧ ` � A |= I2 (ind2)

Assume A, ¬C1 � A, and ¬C2 � A. Then, (ind1) simplifies to ¬` � A→ I1 and (ind2) sim-
plifies to ` � A→ I2. We show that I3 holds under these assumptions.

Case ` � B =>.

Then by the definition of the projection function, ` � A = ` and ¬` � A = ¬` hold. If ` holds,
(ind2) gives us I2, otherwise (ind1) gives us I1, thus I3 = I1∨ I2 holds in both cases.

Case ` � A =>.

Then (ind1) gives us I1 because ¬` � A = > (the negation of ` is still not in A), and (ind2)
gives us I2. So I3 = I1∧ I2 holds.

Case “otherwise”.

By the definition of the projection function ` � A = ` � B = ` and ¬` � A = ¬` � B = ¬`. If `
holds, the left conjunct (I1 ∨ `) of I3 holds and the right conjunct (I2 ∨¬`) of I3 is fulfilled
because (ind2) gives us I2. If ¬` holds, (ind1) gives us I1 and both conjuncts of I3 hold.

Contradiction.

We have to show:

B∧¬C1 � B∧¬C2 � B∧ I3 |=⊥

20 3 Binary Interpolants from Proofs

We use the contradiction properties of I1 and I2:

B∧¬C1 � B∧¬` � B∧ I1 |=⊥ (cont1)
B∧¬C2 � B∧ ` � B∧ I2 |=⊥ (cont2)

If we assume B, ¬C1 � B, and ¬C2 � B, (cont1) simplifies to ¬` � B∧ I1→⊥ and (cont2)
simplifies to ` � B∧ I2→⊥. We show I3→⊥.

Case ` � B =>.

Then (cont1) and ¬` � B => give us I1→⊥, and (cont2) and ` � B => give us I2→⊥. Thus
I3 ≡ I1∨ I2 is contradictory.

Case ` � A =>.

Then ` � B = ` and ¬` � B =¬`. Then, if ` holds, (cont2) gives us I2→⊥. If ¬` holds, (cont1)
gives us I1→⊥ analogously. In both cases, I3 ≡ I1∧ I2 is contradictory.

Case “otherwise”.

By the definition of the projection function ` � A = ` � B = ` and ¬` � A = ¬` � B = ¬` hold.
Assuming I3 ≡ (I1 ∨ `)∧ (I2 ∨¬`) holds, we prove a contradiction. If ` holds, the second
conjunct of I3 implies I2. Then, (cont2) gives us a contradiction. If ¬` holds, the first conjunct
of I3 implies I1 and (cont1) gives us a contradiction. ut

3.2.2 Projection of Mixed Literals

The proofs generated by state-of-the-art SMT solvers may contain mixed literals. We tackle
them by extending the projection functions to these literals. The problem here is that there is
no projection function that satisfies the conditions stated in the previous section. Therefore,
we relax the conditions by allowing fresh auxiliary variables to occur in the projections.

We consider two different kinds of mixed literals: First, (dis-)equalities of the form a = b
or a 6= b for an A-local variable a and a B-local variable b are introduced, e. g., by theory
combination [75] or Ackermannization [11]. Second, inequalities of the form a+ b ≤ c are
introduced, e. g., by extended branches [35] or bound propagation. Here, a is a linear com-
bination of A-local variables, b is a linear combination of B-local and shared variables, and
c is a constant. Adding the shared variables to the B-part is an arbitrary choice. One gets
interpolants of different strengths by assigning some shared variables to the A-part. It is only
important to keep the projection of each literal consistent throughout the proof.

We split mixed literals using auxiliary variables, which we denote by x or p in the follow-
ing. As subscript to the variable, we use the literal whose projection introduced this variable.
The variable p has the type Boolean, while x has the same type as the variables in the literal.
One or two fresh variables are introduced for each mixed literal. We count these variables as
shared between A and B. The purpose of the auxiliary variable x is to capture the shared value

3.2 Proof Tree Based Interpolation 21

that needs to be propagated between A and B. When splitting a literal ` into A- and B-part,
we require that `⇔∃x, p.(` � A)∧ (` � B). We need the additional Boolean variable p to split
the literal a 6= b into two (nearly) symmetric parts. This is achieved by the definitions below.

(a = b) � A := (a = xa=b) (a = b) � B := (xa=b = b)

(a 6= b) � A := (pa6=b⊕a = xa6=b) (a 6= b) � B := (¬pa 6=b⊕ xa6=b = b)

(a+b≤ c) � A := (a+ xa+b≤c ≤ 0) (a+b≤ c) � B := (−xa+b≤c +b≤ c)

Since the mixed variables are considered to be shared, we allow them to occur in the partial
interpolant of a clause C. However, a variable may only occur if C contains the corresponding
literal. This is achieved by a special interpolation rule for resolution steps where the pivot lit-
eral is mixed. The rules for the different mixed literals are the core of our proposed algorithm
and will be introduced in the following sections.

Lemma 3.1 (Partial Interpolation). Given a mixed literal ` with auxiliary variable(s) x and
clauses C1∨` and C2∨¬` with corresponding partial interpolants I1 and I2. Let C3 =C1∨C2
be the result of a resolution step on C1∨ ` and C2∨¬` with pivot `. If a partial interpolant I3
satisfies the symbol condition, and

(∀x. (¬` � A→ I1)∧ (` � A→ I2))→ I3 (ind)
I3→ (∃x. (¬` � B∧ I1)∨ (` � B∧ I2)) (cont)

then I3 is a partial interpolant of C3.

Proof. We need to show inductivity and contradiction for the partial interpolants.

Inductivity.

For this we use inductivity of I1 and I2:

A∧¬C1 � A∧¬` � A |= I1

A∧¬C2 � A∧ ` � A |= I2

Since x does not appear in C1 � A, C2 � A nor A, we can conclude

A∧¬C1 � A |= ∀x.¬` � A→ I1

A∧¬C2 � A |= ∀x. ` � A→ I2

Combining these and pulling the quantifier over the conjunction gives

A∧¬C1 � A∧¬C2 � A |= ∀x. (¬` � A→ I1)∧ (` � A→ I2)

Using (ind), this shows that inductivity for I3 holds:

A∧¬C1 � A∧¬C2 � A |= I3.

22 3 Binary Interpolants from Proofs

Contradiction.

First, we show the contradiction property for I3:

B∧¬C1 � B∧¬C2 � B∧ I3 |=⊥.

Assume the formulae on the left-hand side hold. From (cond) we can conclude that there is
some x such that

(¬` � B∧ I1)∨ (` � B∧ I2)

If the first disjunct is true we can derive the contradiction using the contradiction property of
I1:

B∧¬C1 � B∧¬` � B∧ I1 |=⊥

Otherwise, the second disjunct holds and we can use the contradiction property of I2

B∧¬C2 � B∧ ` � B∧ I2 |=⊥

This shows the contradiction property for I3. ut
It is important to state here that the given purification of a literal into two new literals is not

a modification of the proof tree or any of its nodes. The proof tree would no longer be well-
formed if we replaced a mixed literal by the disjunction or conjunction of the purified parts.
The purification is only used to define partial interpolants of clauses. In fact, it is only used
in the correctness proof of our method and is not even done explicitly in the implementation.

3.3 Uninterpreted Functions

In this section we will present the part of our algorithm that is specific to the theory EUF.
The only mixed atom that is considered by this theory is a = b where a is A-local and b is
B-local.

3.3.1 Leaf Interpolation

The EUF solver is based on the congruence closure algorithm [34]. The theory lemmas are
generated from conflicts involving a single disequality that is in contradiction to a path of
equalities. Thus, the clause generated from such a conflict consists of a single equality literal
and several disequality literals.

When computing partial interpolants of such theory lemmas, we internally split the mixed
literals according to Section 3.2.2. Then we use an algorithm similar to [45] to compute an
interpolant. This algorithm basically summarises the A-equalities that are adjacent on the path
of equalities.

If the theory lemma contains a mixed equality a = b (without negation), it corresponds
to the single disequality in the conflict. This disequality is split into pa6=b⊕ a = xa6=b and

3.3 Uninterpreted Functions 23

¬pa 6=b⊕ xa6=b = b and the resulting interpolant depends on the value of pa6=b. If pa6=b = ⊥,
the disequality is part of the B-part and xa6=b is the end of an equality path summing up the
equalities from A. Thus, the computed interpolant contains a literal of the form xa6=b = s. If
pa 6=b = >, then the A-part of the literal is a 6= xa6=b, and the resulting interpolant contains
the literal xa6=b 6= s instead. Thus, the resulting interpolant can be put into the form I[pa 6=b⊕
xa 6=b = s]. Note that the formula pa6=b⊕ xa6=b = s occurs positively in the interpolant and is
the only part of the interpolant containing xa6=b and pa6=b. We define

EQ(xa6=b,s) := (pa6=b⊕ xa6=b = s)

and require that the partial interpolant of a clause containing the literal a = b always has the
form I[EQ(xa6=b,s)] where xa6=b and pa6=b do not occur anywhere else.

For theory lemmas containing the literal a 6= b, the corresponding auxiliary variable xa=b
may appear anywhere in the partial interpolant, even under a function symbol. A simple
example is the theory conflict s 6= f (a)∧a = (xa=b =)b∧ f (b) = s, which has the partial in-
terpolant s 6= f (xa=b). In general the partial interpolant of such a clause has the form I(xa=b).

When two partial interpolants for clauses containing a = b are combined using (rule-
res), i. e., the pivot literal is a non-mixed literal but the mixed literal a = b occurs in C1
and C2, the resulting partial interpolant may contain EQ(xa6=b,s1) and EQ(xa 6=b,s2) for dif-
ferent shared terms s1,s2. In general, we allow the partial interpolants to have the form
I[EQ(x,s1)] . . . [EQ(x,sn)].

3.3.2 Pivoting of Mixed Equalities

We require that every clause C containing a = b with auxiliary variables xa6=b, pa6=b is always
labelled with a formula of the form I[EQ(xa6=b,s1)] . . . [EQ(xa6=b,sn)]. As discussed above,
the partial interpolants computed for conflicts in the congruence closure algorithm are of the
form I[EQ(xa6=b,s1)] . . . [EQ(xa6=b,sn)]. This property is also preserved by (rule-res), and by
Theorem 3.1 this rule also preserves the property of being a partial interpolant. On the other
hand, a clause containing the literal a 6= b is labelled with a formula of the form I(xa=b), i. e.,
the auxiliary variable xa=b can occur at arbitrary positions. Again, the form I(xa=b) and the
property of being a partial interpolant is also preserved by (rule-res).

We use the following rule to interpolate the resolution step on the mixed literal a = b.

C1∨a = b : I1[EQ(xa6=b,s1)] . . . [EQ(xa 6=b,sn)] C2∨a 6= b : I2(xa=b)

C1∨C2 : I1[I2(s1)] . . . [I2(sn)]
(rule-eq)

The rule replaces every literal EQ(xa 6=b,si) in I1 with the formula I2(si), in which every xa=b
is substituted by si. Therefore, the auxiliary variables introduced for the mixed literal a = b
and its negation are removed.

Theorem 3.2 (Soundness of (rule-eq)). Let a = b and a 6= b be mixed literals with auxiliary
variables xa6=b, pa6=b and xa=b. If I1[EQ(xa6=b,s1)] . . . [EQ(xa6=b,sn)] is a partial interpolant
of C1 ∨ a = b and I2(xa=b) a partial interpolant of C2 ∨ a 6= b then I1[I2(s1)] . . . [I2(sn)] is a
partial interpolant of the clause C1∨C2.

24 3 Binary Interpolants from Proofs

Proof. The symbol condition for I1[I2(s1)] . . . [I2(sn)] clearly holds if we assume that it holds
for I1[EQ(xa 6=b,s1)] . . . [EQ(xa6=b,sn)] and I2(xa=b). Hence, after we show (ind) and (cont),
we can apply Lemma 3.1.

Inductivity.

We assume

∀x, p. ((p⊕a = x)→ I1[p⊕ x = s1] . . . [p⊕ x = sn])

∧ (a = x→ I2(x))

and show I1[I2(s1)] . . . [I2(sn)]. Instantiating x := si for all i ∈ {1, . . . ,n} and taking the second
conjunct gives

∧
i∈{1,...,n}(a = si → I2(si)). Instantiating p := ⊥ and x := a and taking the

first conjunct gives I1[a = s1] . . . [a = sn]. With monotonicity we get I1[I2(s1)] . . . [I2(sn)] as
desired.

Contradiction.

We have to show

I1[I2(s1)] . . . [I2(sn)]→
∃x, p. (((¬p⊕ x = b)∧ I1[p⊕ x = s1] . . . [p⊕ x = sn])

∨ (x = b∧ I2(x)))

We show the implication for p :=> and x := b. It simplifies to

I1[I2(s1)] . . . [I2(sn)]→ I1[b 6= s1] . . . [b 6= sn]∨ I2(b)

If I2(b) holds the implication is true. If I2(b) does not hold, we have∧
i∈{1,...,n}

(I2(si)→ b 6= si)

With monotonicity we get I1[I2(s1)] . . . [I2(sn)]→ I1[b 6= s1] . . . [b 6= sn]. ut

3.4 Linear Real and Integer Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [39]. A theory
conflict is a conjunction of literals ` j of the form ∑i ai jxi ≤ b j. The proof of unsatisfiability is
given by Farkas coefficients k j ≥ 0 for each inequality ` j. These coefficients have the proper-
ties ∑ j k jai j = 0 and ∑ j k jb j < 0. In the following we use the notation of adding inequalities
(provided the coefficients are positive). Thus, we write ∑ j k j` j for ∑i(∑ j k jai j)xi ≤ ∑ j k jb j.

3.4 Linear Real and Integer Arithmetic 25

With the property of the Farkas coefficients we get a contradiction (0 < 0) and this shows that
the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this case, there are
no Farkas coefficients that can prove the unsatisfiability. So for the integer case, our solver
may introduce extended branches [35], which are just branches of the DPLL engine on newly
introduced literals. In the proof tree this results in resolution steps with these literals as pivots.

Example 3.1. The formula t ≤ 2a ≤ r ≤ 2b + 1 ≤ t has no integer solution but a rational
solution. Introducing the branch a≤ b∨b < a leads to the theory conflicts t ≤ 2a≤ 2b≤ t−1
and r ≤ 2b+1≤ 2a−1≤ r−1 (note that ¬(a≤ b)≡ b < a is equivalent to b+1≤ a). The
corresponding proof tree is given below. The Farkas coefficients in the theory lemmas are
given in parenthesis. Note that the proof tree shows the clauses, i. e., the negated conflicts. A
node with more than two parents denotes that multiple applications of the resolution rule are
taken one after another.

¬(r ≤ 2b+1) (·1)
¬(b+1≤ a) (·2)
¬(2a≤ r) (·1)

¬(t ≤ 2a) (·1)
¬(a≤ b) (·2)

¬(2b+1≤ t) (·1)

r ≤ 2b+1

2a≤ r

t ≤ 2a

2b+1≤ t

a≤ b ¬(a≤ b)

⊥

Now consider the problem of deriving an interpolant between A≡ t ≤ 2a≤ r and B≡ r≤
2b+1≤ t. We can obtain an interpolant by annotating the above resolution tree with partial
interpolants. To compute a partial interpolant for the theory lemma ¬(r≤ 2b+1)∨¬(b+1≤
a)∨¬(2a ≤ r), we project the negated clause according to the definition in Section 3.2.2,
which gives

r ≤ 2b+1∧ x¬(a≤b) ≤ a∧−x¬(a≤b)+b+1≤ 0∧2a≤ r.

Then, we sum up the A-part of the conflict (the second and fourth literal) multiplied by their
corresponding Farkas coefficients. This yields the interpolant 2x¬(a≤b) ≤ r. Similarly, the
negation of the theory lemma ¬(t ≤ 2a)∨¬(a≤ b)∨¬(2b+1≤ t) is purified to

t ≤ 2a∧ xa≤b +a≤ 0∧−xa≤b ≤ b∧2b+1≤ t,

which yields the partial interpolant 2xa≤b + t ≤ 0. Note, that we have to introduce different
variables for each literal. Intuitively, the variable x¬(a≤b) stands for a and xa≤b for −a. Using
Pudlák’s algorithm we can derive the same interpolants for the clause a≤ b resp. ¬(a≤ b).

For the final resolution step, the two partial interpolants 2x¬(a≤b) ≤ r and 2xa≤b + t ≤ 0
are combined into the final interpolant of the problem. Summing up these inequalities with
x¬(a≤b) = −xa≤b we get t ≤ r. While this follows from A, it is not inconsistent with B. We
need an additional argument that, given r = t, r has to be an even integer. This also follows
from the partial interpolants when setting x¬(a≤b) =−xa≤b: t ≤−2xa≤b = 2x¬(a≤b) ≤ r. The
final interpolant computed by our algorithm is t ≤ 2

⌊ r
2

⌋
.

In general, we can derive additional constraints on the variables if the constraint resulting
from summing up the two partial interpolants holds very tightly. We know implicitly that
x¬(a≤b) = −xa≤b is an integer value between t/2 and r/2. If t equals r or almost equals
r there are only a few possible values which we can explicitly express using the division
function as in the example above. We assume that the (partial) interpolant F always has a
certain property. There is some term s and some constant k, such that for s > 0 the interpolant

26 3 Binary Interpolants from Proofs

is always false and for s <−k the interpolant is always true (in our case s = t− r and k = 0).
For a partial interpolant that still contains auxiliary variables x, we additionally require that
s contains them with a positive coefficient and that F is monotone on x, i. e., x ≥ x′ implies
F(x)→ F(x′). y

To mechanise the reasoning used in the example above, our resolution rule for mixed
inequality literals requires that the interpolant patterns that label the clauses have a certain
shape. An auxiliary variable of a mixed inequality literal may only occur in the interpolant
pattern if the negated literal appears in the clause. Let x denote the set of auxiliary variables
that occur in the pattern. We require that these variables only occur inside a special sub-
formula of the form LA(s(x),k,F(x)). The first parameter s is a linear term over the variables
in x and arbitrary other terms not involving x. The coefficients of the variables x in s must all
be positive. The second parameter k ∈Qε is a constant value. In the real case we only allow
the values 0 and−ε . In the integer case we allow k ∈Z,k≥−1. To simplify the presentation,
we sometimes write−ε for−1 in the integer case. The third parameter F(x) is a formula that
contains the variables from x at arbitrary positions. We require that F is monotone, i. e., x≥ x′
implies F(x)→ F(x′). Moreover, F(x) = ⊥ for s(x) > 0 and F(x) = > for s(x) < −k. We
refer to these two conditions as range condition. The sub-formula LA(s(x),k,F(x)) stands
for F(x) and it is only used to remember the values of s and k.

The intuition behind the formula LA(s(x),k,F(x)) is that s(x)≤ 0 summarises the inequal-
ity chain that follows from the A-part of the formula. On this chain there may be some con-
straints on intermediate values. In the example above the A-part contains the chain t ≤ 2a≤ r,
which is summarised to s≤ 0 (with s = t− r). Furthermore the A-part implies that there is an
even integer value between t and r. If s < −k (with k = 0 in this case), t and r are distinct,
and there always is an even integer between them. However, if −k ≤ s≤ 0, the truth value of
the interpolant depends on whether t is even.

In the remainder of the section, we will give the interpolants for the leaves produced by
the linear arithmetic solver and for the resolvent of the resolution step where the pivot is a
mixed linear inequality.

3.4.1 Leaf Interpolation

As mentioned above, our solver produces for a clause C≡¬`1∨·· ·∨¬`m some Farkas coef-
ficients k1, . . . ,km ≥ 0 such that ∑ j k j` j yields a contradiction 0 < 0. A partial interpolant
for a theory lemma can be computed by summing up the A-part of the conflict: I is defined
as ∑ j k j(` j � A) (if ` j � A = > we regard it as 0 ≤ 0, i. e., it is not added to the sum). It is
a valid interpolant as it clearly follows from ¬C � A ⇐⇒ `1 � A∧ ·· · ∧ `m � A. Moreover,
we have that I +∑ j k j(` j � B) yields 0 < 0, since for every literal, even for mixed literals,
` j � A+ ` j � B = ` j holds2. This shows that I∧¬C � B is unsatisfiable.

The linear constraint ∑ j k j(` j � A) can be expressed as s(x)≤ 0. Thus, we can equivalently
write this interpolant in our pattern as LA(s(x),−ε,s(x) ≤ 0). Since the Farkas coefficients

2 Strictly speaking this does not hold for shared literals, where ` � A = ` � B = `. In that case use k j = 0 in
I +∑ j k j(` j � B) to see that I is indeed a partial interpolant.

3.4 Linear Real and Integer Arithmetic 27

are all positive and the auxiliary variables introduced to define ` � A for mixed literals contain
x positively, the resulting term s(x) will also always contain x with a positive coefficient.

Theory combination lemmas.

As mentioned in the preliminaries, we use theory combination clauses to propagate equalit-
ies from and to the Simplex core of the linear arithmetic solver. These clauses must also be
labelled with partial interpolants. In the following we give interpolants for those theory com-
bination lemmas. We will start with the case where no mixed literals occur, and treat lemmas
containing mixed literals afterwards.

Interpolation of Non-Mixed Theory Combination Lemmas.

If a theory combination lemma t = u∨ t < u∨ t > u or t 6= u∨ t ≤ u contains no mixed
literal, we can compute partial interpolants as follows. If all literals in the clause are A-local,
the formula ⊥ is a partial interpolant. If all literals are B-local, the formula > is a partial
interpolant. These are the same interpolants Pudlák’s algorithm would give for input clauses
from A resp. B.

Otherwise, one of the literals belongs to A and one to B. The symbols t and u have to be
shared between A and B since they appear in all literals. We can derive a partial interpolant
by conjoining the negated literals projected to the A partition.

I ≡ (t 6= u) � A∧ (t ≥ u) � A∧ (t ≤ u) � A. for t = u∨ t < u∨ t > u

I ≡ (t = u) � A∧ (t > u) � A for t 6= u∨ t ≤ u

Since we defined I as ¬C � A, the first property of the partial interpolant holds trivially.
Also I∧¬C � B is equivalent to ¬C and therefore false. The symbol condition is satisfied as t
and u are shared symbols.

Interpolation of AB-Mixed Theory Combination Lemmas.

If we are in the mixed case, all three literals are mixed. One of the two terms must be A-local
(in the following we denote this term by a) the other term B-local (which we denote by b). To
purify the literals, we introduce a fresh auxiliary variable for each literal. Table 3.1 depicts all
possible mixed theory lemmas together with the projections ¬C � A and ¬C � B and a partial
interpolant of the clause.

Lemma 3.2. The interpolants shown in Table 3.1 are correct partial interpolants of their
respective clauses.

Proof. First, we convince ourselves that these interpolants are of the right form: The variables
xa≤b, xb≤a, x¬(a≤b), and x¬(b≤a) appear in the first parameter of LA with positive coefficients.
For the first two clauses that contain the literal a 6= b, the interpolant is allowed to contain

28 3 Binary Interpolants from Proofs

Clause C: a 6= b∨a≤ b
¬C � A: a = xa=b∧−a+ x¬(a≤b) ≤ 0
¬C � B: xa=b = b∧−x¬(a≤b)+b < 0
Interpolant: LA(−xa=b + x¬(a≤b),−ε,x¬(a≤b) ≤ xa=b)

Clause C: a 6= b∨b≤ a
¬C � A: a = xa=b∧a+ x¬(b≤a) ≤ 0
¬C � B: xa=b = b∧−x¬(b≤a)−b < 0
Interpolant: LA(xa=b + x¬(b≤a),−ε,xa=b ≤−x¬(b≤a))

Clause C: a = b∨a < b∨b < a
¬C � A: (pa6=b⊕a = xa6=b)∧−a+ xb≤a ≤ 0∧a+ xa≤b ≤ 0
¬C � B: (¬pa6=b⊕ xa 6=b = b)∧−xb≤a +b≤ 0∧−xa≤b−b≤ 0
Interpolant: LA(xb≤a + xa≤b,0,xb≤a ≤−xa≤b∧ (xb≤a ≥−xa≤b→ EQ(xa6=b,xb≤a)))

Table 3.1 Interpolation of mixed theory combination clauses. We assume a is A-local and b is B-local. The
subscripts of the auxiliary variables indicate the literal whose projection introduced this variable. For readab-
ility, we use a < b and b < a in the trichotomy clause instead of ¬(b≤ a) and ¬(a≤ b).

xa=b at arbitrary positions. Note that in the first interpolant x¬(a≤b)≤ xa=b is false for−xa=b+
x¬(a≤b) > 0 and true for −xa=b + x¬(a≤b) < ε , i. e., −xa=b + x¬(a≤b) ≤ 0. Also, x¬(a≤b) ≥ x
implies x¬(a≤b) ≤ xa=b→ x≤ xa=b. Similarly, for the second interpolant.

In the third clause, F(xb≤a,xa≤b) = xb≤a ≤−xa≤b∧ (xb≤a ≥−xa≤b→ EQ(xa6=b,xb≤a)) is
false for xb≤a+xa≤b > 0 (because of the first conjunct) and true for xb≤a+xa≤b < 0 (because
the implication holds vacuously). Also, xb≤a ≥ x1 and xa≤b ≥ x2 implies F(xb≤a,xa≤b)→
F(x1,x2). To see this, note that F(xb≤a,xa≤b) is false if x1 ≥−x2 and x1 6= xb≤a. The variable
xa6=b appears only in an EQ-term which occurs positively in the partial interpolant.

Next we show

¬C � A |= I (Inductivity)
¬C � B∧ I |=⊥ (Contradiction)

Inductivity.

For the clause a 6= b∨ a ≤ b, the interpolant follows from ¬C � A, as a = xa=b and −a+
x¬(a≤b) ≤ 0 imply x¬(a≤b) ≤ xa=b. Similarly for the clause a 6= b∨ a ≥ b, ¬C � A contains
a = xa=b and a+ x¬(b≤a) ≤ 0, which implies xa=b ≤−x¬(b≤a).

Now consider the clause a = b∨ a < b∨ b < a. Here, ¬C � A implies xb≤a ≤ −xa≤b and
that if xb≤a ≥−xa≤b holds, then xb≤a = a =−xa≤b. Hence, xb≤a ≤−xa≤b∧xb≤a ≥−xa≤b→
EQ(xa6=b,xb≤a) holds.

Contradiction.

Again we only show the first and third case. For the clause C≡ a 6= b∨a≤ b, note that ¬C � B
and LA(−xa=b + x¬(a≤b),−ε,x¬(a≤b) ≤ xa=b) give the contradiction x¬(a≤b) > b = xa=b >
x¬(a≤b). For the clause C ≡ a = b∨ a < b∨ b < a, ¬C � B implies xb≤a ≥ b ≥ −xa≤b. With
xb≤a≤−xa≤b from the interpolant this gives xb≤a = b. Also, xb≤a≥−xa≤b→EQ(xa 6=b,xb≤a)
from the interpolant gives pa 6=b⊕ xa6=b = b. This is in contradiction with ¬pa6=b⊕ xa6=b = b
from ¬C � B. ut

3.4 Linear Real and Integer Arithmetic 29

3.4.2 Pivoting of Mixed Literals

In this section we give the resolution rule for a step involving a mixed inequality a+ b ≤ c
as pivot element.We use the auxiliary variables xa+b≤c and x¬(a+b≤c) during projection of
the mixed literals. The intuition is that x¬(a+b≤c) and −xa+b≤c correspond to the same value
between a and c−b.Since the clause contain a mixed literal, the partial interpolants contain
terms of the form LA(s(x),k,F(x)). The partial interpolant of the result of a resolution step
on the mixed literal a+b≤ c is shown below. We will give details about s3, k3 and F3 later.

C1∨a+b≤ c : I1[LA(c1x¬(a+b≤c)+ s1(x),k1,F1(x¬(a+b≤c),x))]
C2∨¬(a+b≤ c) : I2[LA(c2xa+b≤c + s2(x),k2,F2(xa+b≤c,x))]

C1∨C2 : I1[I2[LA(s3(x),k3,F3(x))]]
(rule-la)

The basic idea is to find for ∃y.F1(y,x) ∧ F2(−y,x) an equivalent quantifier-free for-
mula F3(x). To achieve this we note that we only have to look on the value of F1 for
−k1 ≤ c1x¬(a+b≤c)+ s1(x)≤ 0, since outside of this interval F1 is guaranteed to be true resp.
false. The formula F3 must also be monotone and satisfy the range condition. We choose

s3(x) = c2s1(x)+ c1s2(x),

and then F3 will be false for s3(x) > 0, since either F1(x¬(a+b≤c),x) or F2(−x¬(a+b≤c),x) is
false. The value of k3 must be chosen such that s3(x) < −k3 guarantees the existence of a
value y with c1y+ s1(x)<−k1 and −c2y+ s2(x)< −k2. Hence, in the integer case, the gap
between s2(x)+k2

c2
and −s1(x)−k1

c1
should be bigger than one. Then, c1c2 < c2(−s1(x)− k1)−

c1(s2(x)+ k2). So if we define

k3 = c2k1 + c1k2 + c1c2,

then there is a suitable y for s3(x)<−k3. For F3 we can then use a finite case distinction over
all values where the truth value of F1 is not determined. This suggests defining

F3(x) :≡

⌈
k1+1

c1

⌉∨
i=0

F1

(⌊
−s1(x)

c1

⌋
− i,x

)
∧F2

(
i−
⌊
−s1(x)

c1

⌋
,x
)

(int case)

In the real case, if k1 =−ε , the best choice is y = −s1(x)
c1

, for which F1(y) is guaranteed to be
true. If k1 = 0, we need to consider two cases:

k3 :=

{
k2 if k1 =−ε

0 if k1 = 0

F3(x) :=

F2

(
s1(x)

c1
,x
)

if k1 =−ε

s3(x)< 0∨
(

F1

(
− s1(x)

c1
,x
)
∧F2

(
s1(x)

c1
,x
))

if k1 = 0

(real case)

30 3 Binary Interpolants from Proofs

Note that the formula of the integer case is asymmetric. If
⌈

k2+1
c2

⌉
<
⌈

k1+1
c1

⌉
we can replace

−s1 by s2, k1 by k2, and c1 by c2. This leads to a fewer number of disjuncts in F3. Also note
that we can remove F1 from the last disjunct of F3, as it will always be true.

With these definitions we can state the following lemma.

Lemma 3.3. Let for i = 1,2, si(x) be linear terms over x, ci ≥ 0, ki ∈ Z≥−1 (integer case) or
ki ∈{0,−ε} (real case), Fi(xi,x) monotone formulas with Fi(xi,x)=⊥ for cixi+si(x)> 0 and
Fi(xi,x) = > for cixi + si(x) < −ki. Let s3,k3,F3 be as defined above. Then F3 is monotone,
F3(x) =⊥ for s3(x)> 0 and F3(x) => for s3(x)<−ki.

Proof. Since F1 and F2 are monotone and they occur only positively in F3, F3 must also
be monotone. If s3(x) > 0, then −s1(x)

c1
< s2(x)

c2
. Hence, for every x ≤ −s1(x)

c1
, F2(−x,x) is

false since −c2x+ s2(x) > 0. By definition, every disjunct of F3 (except s3(x) < 0) contains
F2(−x,x) for such an x, so F3(x) is false.

Now assume s3(x) < −k3. For k1 = −ε in the real case, F3(x) = F2(− s1(x)
c1

) is true since
s1(x) + s2(x) < −k2. For k1 = 0, F3 is true by definition. In the integer case define y :=⌊
−s1(x)

c1

⌋
−
⌈

k1+1
c1

⌉
. This implies c1y ≤ −s1(x)− k1 − 1, hence F1(y,x) holds. Also c1y ≥

−s1(x)− k1− c1, hence

c1c2y+ c1s2(x)≥−s3(x)− c2k1− c1c2 > k3− c2k1− c1c2 = c1k2.

Therefore, F2(−y,x) holds. Since y is included in the big disjunction of F3, F3(x) is true. ut

Lemma 3.4. Let for i = 1,2, si(x) be linear terms over x, ci ≥ 0, ki ∈ Z≥−1 (integer case) or
ki ∈ {0,−ε} (real case), Fi(xi,x) monotone formulas with Fi(xi,x) = ⊥ for cixi + si(x) > 0
and Fi(xi,x) => for cixi + si(x)<−ki. Let s3(x) and F3 be as defined above. Then

F3(x)↔ (∃y.F1(y,x)∧F2(−y,x))

Proof (for LA(Z)). Since F3 is a disjunction of F1(y,x)∧F2(−y,x) for different values of y,
the implication from left to right is obvious. We only need to show the other direction. For
this, choose y such that F1(y,x)∧F2(−y,x) holds. We show F3(x). We define z :=

⌊
−s1(x)

c1

⌋
−⌈

k1+1
c1

⌉
. This implies z≤ −s1(x)−k1−1

c1
. We show F3 by a case split on y < z.

Case y < z.

Since F2 is monotone and−y>−z, we have F2(−z,x). Also F1(z,x) holds since c1z+s1(x)<
−k1. This implies F3(x), since F1(z,x)∧F2(−z,x) is a disjunct of F3.

Case z≤ y.

Since F1(y,x) holds, c1y + s1(x) ≤ 0, hence y ≤
⌊
−s1(x)

c1

⌋
. Thus, y is one of the values⌊

−s1(x)
c1

⌋
− i for 0 ≤ i ≤

⌈
k1+1

c1

⌉
. This means the disjunction F3(x) includes F1(y,x) ∧

F2(−y,x). ut

3.4 Linear Real and Integer Arithmetic 31

Proof (for LA(Q)). In the case k1 = −ε , F1(
−s1(x)

c1
,x) is true. From the definition of F3, we

get the implication F3(x)→ ∃y.F1(y,x)∧F2(−y,x) for y = −s1(x)
c1

. If k1 = 0 and s3(x) < 0,

then s2(x)
c2

< −s1(x)
c1

and for any value y in between, F1(y,x)∧F2(−y,x) are true.
For the other direction assume that F1(y,x)∧F2(−y,x) holds. Since F1 is not false, y ≤

−s1(x)
c1

holds. If y = −s1(x)
c1

then F3 holds by definition. In the case k1 = 0 where y < −s1(x)
c1

,
we have s3(x) < 0, since F2(−y,x) is not false. In the case k1 = −ε , we need to show that
F2(

s1(x)
c1

,x) holds. This follows from y≤ −s1(x)
c1

and monotonicity of F2. ut

This lemma can be used to show that (rule-la) is correct.

Theorem 3.3 (Soundness of (rule-la)). Let a + b ≤ c be a mixed literal with the aux-
iliary variable xa+b≤c, and x¬(a+b≤c) be the auxiliary variable of the negated literal. If
I1[LA(c1x¬(a+b≤c)+s1,k1,F1)] is a partial interpolant of C1∨a+b≤ c and I2[LA(c2xa+b≤c+
s2,k2,F2)] is a partial interpolant of C2 ∨¬(a+ b ≤ c) then I1[I2[LA(s3,k3,F3)]] is a partial
interpolant of the clause C1∨C2.

To ease the presentation, we gave the rule (rule-la) with only one LA term per partial
interpolant. The generalised rule requires the partial interpolants of the premises to have the
shapes I1[LA11] . . . [LA1n] and I2[LA21] . . . [LA2m]. The resulting interpolant is

I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]]

where LA3i j is computed from LA1i and LA2 j as explained above.

Proof. The symbol condition holds for I3 if it holds for I1 and I2, which can be seen as
follows. The only symbol that is allowed to occur in I1 resp. I2 but not in I3 is the auxiliary
variable introduced by the literal, i. e., x1 resp. x2. This variable may only occur inside the
LA1 resp. LA2 terms as indicated and, by construction, x¬(a+b≤c) and xa+b≤c do not occur in
LA3. Furthermore, the remaining variables from x occur in s3(x) with a positive coefficient
as required by our pattern and occur only inside the LA pattern in s3 and F3. Thus I3 has the
required form. We will use Lemma 3.1 to show that I3 is a partial interpolant. For this we
need to show inductivity (ind) and contradiction (cont).

In this proof we will use I1[LA1i(x¬(a+b≤c))] to denote the first interpolant

I1[LA(s11 + c11x¬(a+b≤c),k11,F11)] . . . [LA(s1n + c1nx¬(a+b≤c),k1n,F1n)]

and similarly I2[LA2 j(xa+b≤c)] and I1[I2[LA3i j]], the latter standing for

I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]]

where
LA3i j = LA(c2 js1i + c1is2 j,k3i j,F3i j).

Inductivity.

We apply Lemma 3.4 on x¬(a+b≤c) = a, which gives us

32 3 Binary Interpolants from Proofs∧
i j

LA1i(a)∧LA2 j(−a)→ LA3i j

Using the deep substitution lemma, we obtain

I1 [LA1i(a)]∧ I2
[
LA2 j(−a)

]
→ I1

[
I2
[
LA3i j

]]
. (∗)

Now assume the left-hand-side of (ind), which in this case is

∀x1,x2. (−a+ x1 ≤ 0→ I1[LA1i(x1)])∧ (a+ x2 ≤ 0→ I2[LA2 j(x2)]).

Instantiating x1 with a and x2 with −a gives us I1[LA1i(a)] and I2[LA2 j(−a)]. Thus by (∗),
I3 ≡ I1[I2[LA3i j]] holds as desired.

Contradiction.

We assume I1[I2[LA3i j]] and show

∃x1,x2. (−x1−b <−c∧ I1[LA1i(x1)])∨ (−x2 +b≤ c∧ I2[LA2 j(x2)]) (∗)

We do a case distinction on∧
i

(I2[LA3i j]→∃x1. x1 > c−b∧LA1i(x1))

If it holds, then we may get a different value for x1 for every i. However, if LA1i(x1) holds for
some value, it also holds for any smaller value of x1. Take x as the minimum of these values
(or x = c− b+ 1 if the implication holds vacuously for every i). Then, −x− b < −c and∧

i(I2[LA3i j]→ LA1i(x)). With monotonicity we get from I1[I2[LA3i j]] that I1[LA1i(x)] holds.
Hence, the left disjunct of formula (∗) holds.

In the other case there is some i with

I2[LA3i j]∧ (∀x1. x1 > c−b→¬LA1i(x1)). (∗∗)

The second part of Lemma 3.4 gives us∧
j

(LA3i j→∃x1.LA1i(x1)∧LA2 j(−x1))

Then, x1 ≤ c−b by (∗∗). But if LA2 j(−x1) holds, then LA2 j also holds for the smaller value
b− c. This gives us ∧

j

(LA3i j→ LA2 j(b− c))

We obtain I2[LA2 j(b− c)] by applying monotonicity on the left conjunct of formula (∗∗).
Thus the right disjunct of formula (∗) holds for x2 = b− c. ut

3.5 An Example for the Combined Theory 33

3.5 An Example for the Combined Theory

The previous examples showed how to use our technique to compute an interpolant in the
theory of uninterpreted functions, or the theory of linear arithmetic. We will now present an
example in the combination of these theories by applying our scheme to a proof of unsatis-
fiability of the interpolation problem

A≡ t ≤ 2a∧2a≤ s∧ f (a) = q

B≡ s≤ 2b∧2b≤ t +1∧¬(f (b) = q)

where a, b, s, and t are integer constants, q is a constant of the uninterpreted sort U , and f is
an uninterpreted function from integer to U .

We derive the interpolant using Pudlák’s algorithm and the rules shown in this chapter.
Note that the formula is already in conjunctive normal form. Since we use Pudlák’s algorithm,
every input clause is labelled with ⊥ if it is an input clause from A, and > if it is an input
clause from B. We simplify partial interpolants by removing neutral elements of Boolean
connectives.

Since the variables a and b are shared between the theory of uninterpreted functions
and the theory of linear arithmetic, we get some theory combination clauses for a and b.
The only theory combination clause needed to prove unsatisfiability of A ∧ B is the tri-
chotomy clause a = b∨¬(b ≤ a)∨¬(a ≤ b) which has the partial interpolant LA(xb≤a +
xa≤b,0,F [EQ(xa6=b,xb≤a)]) where F [G] ≡ xb≤a ≤ −xa≤b ∧ (xb≤a ≥ −xa≤b → G). The sub-
scripts of the variables indicate the literal whose projection introduced this variable.

We get two lemmas from LA(Z): The first one, ¬(2a ≤ s)∨¬(s ≤ 2b)∨ a ≤ b, states
that we can derive a ≤ b from 2a ≤ s and s ≤ 2b. We project the literals in the conflict, i. e.,
the negation of the lemma, onto A. Summing up the projections yields the partial interpolant
Ia≤b :≡ LA(2x¬(a≤b)− s,−1,2x¬(a≤b) ≤ s). We resolve this lemma with the unit clauses from
the input to get a≤ b.

s≤ 2b :>
2a≤ s :⊥ ¬(2a≤ s)∨¬(s≤ 2b)∨a≤ b : Ia≤b

¬(s≤ 2b)∨a≤ b : Ia≤b

a≤ b : Ia≤b

The second LA(Z)-lemma, ¬(t ≤ 2a)∨¬(2b ≤ t + 1)∨ b ≤ a, states that we can derive
b≤ a from t ≤ 2a and 2b≤ t +1. We annotate the lemma with the partial interpolant Ib≤a :≡
LA(2x¬(b≤a)+ t,−1,2x¬(b≤a)+ t ≤ 0) and propagate this partial interpolant to the unit clause
b≤ a by resolution with input clauses.

2b≤ t +1 :>
t ≤ 2a :⊥ ¬(t ≤ 2a)∨¬(2b≤ t +1)∨b≤ a : Ib≤a

¬(2b≤ t +1)∨b≤ a : Ib≤a

b≤ a : Ib≤a

Additionally, we get one lemma from EUF, f (b) = q∨¬(f (a) = q)∨¬(a = b), that states
that, given f (a) = q and a = b, by congruence, f (b) = q has to hold. We annotate this lemma
with the partial interpolant f (xa=b) = q. Note that this interpolant has the form I(xa=b) as
required by our interpolation scheme. We propagate this partial interpolant to the unit clause

34 3 Binary Interpolants from Proofs

¬(a = b) by resolving the lemma with the input clauses.

f (a) = q :⊥
f (b) = q :> f (b) = q∨¬(f (a) = q)∨¬(a = b) : f (x) = q

¬(f (a) = q)∨¬(a = b) : f (x) = q
¬(a = b) : f (x) = q

From the theory combination clause a = b∨¬(b≤ a)∨¬(a≤ b) and the three unit clauses
derived above, we show a contradiction. We start by resolving with the unit clause a= b using
(rule-eq) and produce the partial interpolant LA(xb≤a + xa≤b,0,F [f (xb≤a) = q]).

a = b∨¬(b≤ a)∨¬(a≤ b) : LA(xb≤a + xa≤b,0,F [EQ(xa6=b,xb≤a)])
¬(a = b) : f (xa=b) = q

¬(b≤ a)∨¬(a≤ b) : LA(xb≤a + xa≤b,0,F [f (xb≤a) = q])

The next step resolves on b≤ a using (rule-la). The variables x¬(b≤a) and xb≤a will be re-
moved from the resulting partial interpolant. From the partial interpolants of the antecedents,
LA(2x¬(b≤a) + t,−1,2x¬(b≤a) + t ≤ 0) and LA(xb≤a + xa≤b,0,F [f (xb≤a) = q]), we get the
following components:

c1 = 2 s1 = t k1 =−1 F1(x)≡ 2x+ t ≤ 0
c2 = 1 s2 = xa≤b k2 = 0 F2(x)≡ F [f (x) = q]

These components yield k3 = 1 · (−1)+2 ·0+2 ·1 = 1. Furthermore,
⌈

k1+1
c1

⌉
= 0 leads to

one disjunct in F3. The corresponding values are
⌊−t

2

⌋
, resp. −

⌊−t
2

⌋
. F1(

⌊−t
2

⌋
) is always true

and can be omitted. The resulting formula G(x) := F3(x) is

G(x)≡ −
⌊
−t
2

⌋
≤−x∧

(⌊
−t
2

⌋
≥−x→ f

(
−
⌊
−t
2

⌋)
= q
)
.

The partial interpolant for the clause ¬(a≤ b) is LA(t +2xa≤b,1,G(xa≤b)).

b≤ a : LA(2x¬(b≤a)+ t,−1,2x¬(b≤a)+ t ≤ 0)
¬(b≤ a)∨¬(a≤ b) : LA(xb≤a + xa≤b,0,F [f (xb≤a) = q])

¬(a≤ b) : LA(t +2xa≤b,1,G(xa≤b))

In the final resolution step, we resolve a≤ b labelled with partial interpolant LA(2x¬(a≤b)−
s,−1,2x¬(a≤b) ≤ s) against ¬(a ≤ b) labelled with LA(t + 2xa≤b,1,G(xa≤b)). We get the
components

c1 = 2 s1 =−s k1 =−1 F1(x)≡ 2x≤ s

c2 = 2 s2 = t k2 = 1 F2(x)≡ G(x).

We get k3 = 2 · (−1)+ 2 · 1+ 2 · 2 = 4. Again,
⌈

k1+1
c1

⌉
= 0 yields one disjunct in F3 with

the values
⌊ s

2

⌋
, and −

⌊ s
2

⌋
, respectively. Again, F1(

⌊ s
2

⌋
) is always true and can be omitted.

The resulting formula is

3.5 An Example for the Combined Theory 35

H ≡ G
(
−
⌊ s

2

⌋)
≡ −

⌊
−t
2

⌋
≤
⌊ s

2

⌋
∧
(⌊
−t
2

⌋
≥
⌊ s

2

⌋
→ f

(
−
⌊
−t
2

⌋)
= q
)
.

The final resolution step yields an interpolant for this problem.

a≤ b : LA(2x¬(a≤b)− s,−1,2x¬(a≤b)− s≤ 0) ¬(a≤ b) : LA(t +2xa≤b,1,G(xa≤b))

⊥ : LA(−2s+2t,4,H)

Thus H is the final interpolant. Now we argue validity of this interpolant.

Interpolant follows from the A-part.

The A-part contains 2a≤ s, which implies a≤
⌊ s

2

⌋
. From t ≤ 2a we get −

⌊−t
2

⌋
≤ a. Hence,

−
⌊−t

2

⌋
≤
⌊ s

2

⌋
. Moreover, −

⌊−t
2

⌋
≥
⌊ s

2

⌋
implies −

⌊−t
2

⌋
= a. So with the A-part we get

f (−
⌊−t

2

⌋
) = q.

Interpolant is inconsistent with the B-part.

The B-part implies s ≤ 2b ≤ t + 1. Hence, we have
⌊ s

2

⌋
≤ b ≤

⌊ t+1
2

⌋
. A case distinction

on whether t is even or odd yields
⌊ t+1

2

⌋
= −

⌊−t
2

⌋
. Therefore,

⌊ s
2

⌋
≤ b ≤ −

⌊−t
2

⌋
holds.

The interpolant guarantees f (−
⌊−t

2

⌋
) = q and −

⌊−t
2

⌋
≤
⌊ s

2

⌋
. Hence, b = −

⌊−t
2

⌋
and with

f (b) 6= q from the B-part we get a contradiction.

Symbol condition is satisfied.

The symbol condition is trivially satisfied since symb(A) = {a, t,s, f ,q} and symb(B) =
{b, t,s, f ,q}. The shared symbols are t, s, f , and q which are exactly the symbols occurring
in the interpolant.

Chapter 4
Tree Interpolants from Proofs

In this chapter, we extend proof tree preserving interpolation to extract tree interpolants from
one proof of unsatisfiability of the input tree. This technique allows us to generate a tree
interpolant without the need for repeated binary interpolation or repeated manipulation of a
proof tree.

4.1 Tree Interpolation

A tree interpolation problem is given by a tree (V,E) where V is a set of vertices, and E ⊆
V ×V is a set of edges, and a labelling function F assigning one formula to every vertex in
V . The edges span a tree pointing to the root vertex, i. e., every vertex except the unique root
vertex has exactly one outgoing edge and the graph has no cycles. Let E∗ be the reflexive
transitive closure of E. We define st(v) := {w | (w,v) ∈ E∗} as the subtree rooted at v and
st(v) :=V \st(v) as the complement of this subtree. For the remainder of this chapter, we fix a
tree interpolation problem (V,E),F . If the conjunction of the labels of all vertices

∧
v∈V F(v)

is unsatisfiable, a tree interpolant exists. A tree interpolant is a labelling function I that assigns
a formula to every vertex in V . These formulas are constrained in a way similar to binary
interpolation. Let vr ∈ V be the (unique) root of the tree. Then, the labelling function I has
to satisfy (i) I(vr) is the formula ⊥, (ii) for every vertex v, (

∧
(vc,v)∈E I(vc))∧F(v) |= I(v),

and (iii) for every vertex v, all symbols in I(v) occur both inside the subtree rooted at v and
outside this subtree, i. e., symb(I(v)) ⊆ (

⋃
w∈st(v) symb(F(w)))∩ (

⋃
w6∈st(v) symb(F(w))). Let

v1,v2 be two vertices in a tree. By lca(v1,v2) we denote the least common ancestor v of v1
and v2, i. e., the vertex v with v1,v2 ∈ st(v) that spans the smallest subtree. The function lca
is associative and we allow it to be applied to a set of vertices.

Tree interpolation can be reduced to repeated binary interpolation. In this case a new binary
interpolation problem is created for every vertex of the interpolation tree. Another possibility
is to extract a tree interpolant from one proof using a form of “sliding window” approach.
Instead of producing new binary interpolation problems, the proof is coloured according to
the current vertex. Essentially, the proof is reinterpreted for every vertex as a proof for the
corresponding binary interpolation problem. However, a naı̈ve approach does not guarantee
the tree interpolant property of the produced interpolants as the following example shows.

37

38 4 Tree Interpolants from Proofs

3: a > d

1: a≤ b∧b≤ c 2: b≤ c∧ c≤ d

Fig. 4.1 Tree interpolation problem with a literal occurring in multiple vertices.

Example 4.1. Consider the tree interpolation problem shown in Figure 4.1. When deriving
a tree interpolant by simply considering different partitioning of the same proof, possible
interpolants include a ≤ b for vertex 1 and c ≤ d for vertex 2. The conjunction of these
two interpolants and the label of vertex 3 (a > d) however is still consistent. Thus, these
interpolants cannot be used to create a valid tree interpolant.

While the previous example can be seen as minimal summaries of the vertices 1 and 2,
maximal summaries yielding a≤ c and b≤ d cannot be used to form a valid tree interpolant,
too. The problem in both approaches is the literal b ≤ c. It gets included in the interpolants
either not at all or twice. Only including this literal exactly once, say in vertex 1 but not in
vertex 2, yields a valid tree interpolant in this case with interpolants a ≤ c for vertex 1 and
c≤ d for vertex 2. The conjunction of these two interpolants with a > d is inconsistent. Thus,
we have a valid tree interpolant. y

In the remainder of this chapter, we show how to extract a tree interpolant from a proof
of unsatisfiability of the conjunction of the labels. We focus on the theories of uninterpreted
functions and linear arithmetic. Furthermore we show how to compute tree interpolants in the
combination of these theories. The basis is to carefully use the interpolation rules for binary
interpolation for every vertex of the interpolation tree.

7: >

5: f (a) = q

1: t ≤ 2a 2: 2a≤ s

6: f (b) 6= q

3: s≤ 2b 4: 2b≤ t +1

Fig. 4.2 Tree interpolation problem used in the remainder of this chapter.

Example 4.2. Consider the tree interpolation problem depicted in Figure 4.2. The tree consists
of 7 vertices (numbered 1 through 7). The labelling function F is shown in the picture, i. e.,
vertex number 7 is labelled with >. All constants are of integral sort and f is a function from
integers to integers.

The conjunction of all the labels is inconsistent. Thus, a tree interpolant exists. Key to
showing unsatisfiability of the conjunction of the labels is the case splitting on a = b. From
vertices 5 and 6 we know that a 6= b due to the congruence a = b→ f (a) = f (b). From
vertices 1 and 2 get know that 2a is an even integer between t and s. Furthermore, vertices 3
and 4 state that 2b is an even integer between s and t +1. From t ≤ 2a ≤ s ≤ 2b ≤ t +1 we
get that 2a = 2b and thus a = b since there is exactly one even integer between t and t + 1.
This leads to a contradiction and proves unsatisfiability of the conjunction of the labels. y

4.1 Tree Interpolation 39

4.1.1 Generality of Tree Interpolation

In the literature about interpolation, binary interpolation and sequence interpolation dom-
inate. Tree interpolation, however, is more general. Thus, we show how to simulate binary
interpolation and sequence interpolation by tree interpolation.

4.1.1.1 Binary Interpolation Through Tree Interpolation

Given a binary interpolation problem consisting of the formulas A and B, we generate a tree
consisting of two vertices as shown in Figure 4.3.

B

A

Fig. 4.3 Tree interpolation problem corresponding to the binary interpolation problem (A,B).

It is easy to see that a tree interpolant exists if and only if a binary interpolant exists. To
compute a binary interpolant using tree interpolation, we compute a tree interpolant and use
the interpolant label of the vertex labelled with A.

Lemma 4.1. Let (A,B) be a binary interpolation problem and let T,F be the corresponding
tree interpolation problem defined above. Let vA be the vertex labelled with A, vB be the
vertex labelled with B, and I be a tree interpolant for T . Then, I(vA) is a binary interpolant
for (A,B).

Proof. We have to show that I(vA) satisfies the conditions for a binary interpolant. From the
conditions for tree interpolants we know that F(vA) ≡ A |= I(vA) and that F(vB)∧ I(vA) ≡
B∧ I(vA) |= I(vB)≡⊥. Furthermore, the symbol condition of tree interpolation specifies that
the symbols occurring in I(vA) are shared between A and B. Thus, I(vA) is a binary interpolant
of (A,B). ut

4.1.1.2 Sequence Interpolation Through Tree Interpolation

A sequence interpolation problem is a generalisation of a binary interpolation problem. It
consists of n formulas F1, . . . ,Fn. A sequence interpolant exists if

∧n
i=1 Fi |= ⊥. Then, a se-

quence interpolant is a sequence of n+1 formulas I0, . . . , In such that

• I0 ≡> and In ≡⊥,
• for all 0≤ i < n, Ii∧Fi+1 |= Ii+1, and
• for all 0 ≤ i ≤ n, symb(Ii) ⊆ (

⋃i
j=1 symb(Fj))∩ (

⋃n
j=i+1 symb(Fj)), i. e., the symbols oc-

curring in the interpolant formula Ii are the symbols that appear both in the prefix up to i
and in the remainder of the sequence of input formulas F1, . . . ,Fn.

40 4 Tree Interpolants from Proofs

A sequence interpolation problem can be seen as a special form of a tree interpolation
problem where the tree degenerates to a linear list. However, we need to add a new vertex to
cover the interpolant I0. We simply label this vertex with > as shown in Figure 4.4.

n: In

1: I1

0: >

Fig. 4.4 Tree interpolation problem corresponding to a sequence interpolation problem.

It is easy to see that a sequence interpolant exists if and only if a tree interpolant exists.

Lemma 4.2. Let F1, . . . ,Fn be a sequence interpolation problem and T,F be the correspond-
ing tree interpolation problem. Let I be a tree interpolant for T,F. Then, I(v0), . . . , I(vn) is a
sequence interpolant.

Proof. For 0≤ i≤ n, we set Ii ≡ I(vi). We immediately get In ≡ I(vn)≡⊥ from the condition
of tree interpolation. Furthermore, since F(v0)≡> |= I(v0), we get I0 ≡ I(v0)≡>. Further-
more, since vertex i is the only child of vertex i+1, the condition for tree interpolation gives
us I(vi)∧F(vi+1) |= I(vi+1) which is equivalent to Ii∧Fi+1 |= Ii+1. The symbol condition is
trivial. ut

4.1.2 Locality of Symbols and Literals in a Tree

We define for every vertex v ∈ V the set of symbols symb(v) containing all symbols that
can occur in the labelling of v according to the symbol condition in the definition of tree
interpolation. Initially we define symb(v) = symb(F(v)). For a symbol a occurring in two
vertices v1,v2 ∈ V , i. e., a ∈ symb(F(v1))∩ symb(F(v2)), we add a to symb(w) for every
vertex w on the paths from v1 resp. v2 to the least common ancestor lca(v1,v2).

Lemma 4.3. Replacing symb(F(w)) with symb(w) does not change the symbol condition of
tree interpolants. In particular⋃

w∈st(v)

symb(F(w)) =
⋃

w∈st(v)

symb(w) and
⋃

w′ /∈st(v)

symb(F(w′)) =
⋃

w′ /∈st(v)

symb(w′).

Proof. Assume we added a to symb(w) for some w ∈ st(v). For w there are v1,v2 ∈ V with
a ∈ symb(F(vi)). At least one of them is a descendent of w, hence there is another vertex
vi ∈ st(v) with a ∈ symb(F(vi)). On the other hand, assume we added a to symb(w′) for some
w′ /∈ st(v). Then again there are v1,v2 ∈ V with a ∈ symb(F(vi)) and w′ lies on the path
of v1 or v2 to lca(v1,v2). If both v1 and v2 would lie in st(v), then v would be a common
ancestor of v1 and v2 which contradicts w′ /∈ st(v). Hence, there is a vertex vi /∈ st(v) with
a ∈ symb(F(vi)). ut

4.1 Tree Interpolation 41

For a term t we write t ∈ symb(v) if all symbols of t occur in v, i. e., symb(t) ⊆ symb(v),
similarly for a literal `. Furthermore, for a symbol a a term t or a literal ` we overload lca to
denote the least common ancestor of all vertices v such that a resp. t resp. ` ∈ symb(F(v)).
Note that lca(t) is only defined if t ∈ symb(v) for some vertex v. By the definition of symb(v)
we have a ∈ symb(lca(a)) and a /∈ symb(v) for all v /∈ st(lca(a)). Intuitively, lca(a) is the
least vertex containing all occurrences of a in its subtree. Having a ∈ symb(lca(a)) is the
main reason why we defined symb(v) as above. This also carries over to terms and literals,
e. g., ` ∈ symb(lca(`)). Note that lca(a1 = a2) can be different from lca(a1,a2). The former
is the lca of all vertices that contain a1 and a2, while the latter is the lca of all vertices that
contain a1 or a2.

7: { f ,q,s, t}

5: { f ,a,q, t,s}

1: {a, t} 2: {a,s}

6: { f ,b,q,s, t}

3: {b,s} 4: {b, t}

Fig. 4.5 The sets symb for the tree interpolation problem shown in Figure 4.2.

Example 4.3. Consider again the tree interpolation problem shown in Figure 4.2. Figure 4.5
shows for each vertex v the set symb(v). We initialise the sets with the sets symb(L(v)). For
the leaves (vertices 1, 2, 3, and 4), we are already done. Now consider the symbol t. It occurs
in vertices 1 and 4. Therefore, lca(t) = 7 and we add t to the sets for vertices 5, 6, and 7
since they are on the paths from vertex 1 resp. 4 to vertex 7. Distribution of s is similar. Now
consider f and q. They both occur in vertices 5 and 6. Thus, their least common ancestor is
7 and we add them to the set for vertex 7. Then, all symbols are distributed as far as possible
and the resulting sets are shown in Figure 4.5. y

4.1.3 Projection Function for Tree Interpolation

Similar to the binary case, we introduce a projection function ` � v that projects a literal ` onto
a vertex v of the tree interpolation problem. If all symbols of ` occur in a single partition, the
literal is not mixed. In that case, we demand that for every partition v, ` � v = ` or ` � v =>.
Moreover, the projection must satisfy the symbol condition, i. e., symb(` � v)⊆ symb(v). We
say ` projects to v, if ` � v = `. Note that if ` projects to v, all symbols of ` occur in v but
not vice versa. We pose another condition on our projection function. If ` projects to v1 and `
projects to v2, then ` also projects to every vertex v on the path from vi (i = 1,2) to lca(v1,v2).
This is similar to the saturation of symb we introduced above. Pudlák style interpolation can
be achieved with the projection ` � v = `, if symb(`)⊆ symb(v), and ` � v =>, otherwise. For
McMillan’s interpolation algorithm set ` � lca(`) = ` and ` � v => for v 6= lca(`).

Due to theory combination or extended cuts and branches, new literals (built from existing
symbols) are generated to refute a given formula. These literals may also be mixed, which
means that no vertex contains all symbols in this literal. If a literal ` contains symbols local

42 4 Tree Interpolants from Proofs

to the subtree of v and symbols local to the remainder of the tree, we say ` is mixed in v. We
denote the set of vertices in which ` is mixed by mixed(`). If this set is non-empty we denote
by mixedparent(`) the least common ancestor of the parents of the vertices in mixed(`) (this
implies that ` is not mixed in mixedparent(`)). Then we can exactly characterise the set
mixed(`) as follows:

Lemma 4.4. Let ` be a literal that is mixed in some vertices and contains the symbols
a1, . . . ,an. Then

mixed(`) =

{
v ∈V | ∃i. 1≤ i≤ n. lca(ai) ∈ st(v) and

mixedparent(`) is a proper ancestor of v

}
Proof. We first show “⊆”. Let v∈mixed(`). Since ` is mixed in v, there is at least one symbol
ai that occurs only inside the subtree of v. Hence, lca(ai) ∈ st(v) for some i. Moreover, the
mixedparent(`) is an ancestor of the parent of v, hence it is a proper ancestor of v.

For the other direction take a vertex v from the set on the right-hand side. Then there is
an i such that lca(ai) ∈ st(v), i. e., ai occurs only inside the subtree of v. It remains to show
that there is another symbol that occurs only outside the subtree of v. There must be a vertex
w ∈mixed(`) such that v is not a proper ancestor of w (otherwise v would be an ancestor of
mixedparent(`)).

Case 1: w is an ancestor of v.

There is a symbol a j that only occurs outside of the subtree of w. Thus, this symbol occurs
only outside of the subtree of v, so ` is mixed in v.

Case 2: w and v have disjoint subtrees.

There is a symbol a j that only occurs inside of w. Thus, this symbol occurs only outside of
the subtree of v, so ` is mixed in v. ut

Example 4.4. Consider again the tree interpolation problem shown in Figure 4.2 on page 38.
Let a = b be a mixed literal. We have lca(a) = 5 and lca(b) = 6. The mixed parent of a = b
is vertex 7. Thus, mixed(a = b) = {5,6}. Note that a = b is not mixed in the leaves since all
symbols occur outside of the respective subtrees, i. e., no leaf is a least common ancestor of
one of the symbols. Since the definition of mixed(`) only depends on the symbols occurring
in ` and the least common ancestors of these symbols, we have

mixed(a = b) =mixed(a 6= b)

=mixed(a≤ b) =mixed(¬a≤ b)

=mixed(b≤ a) =mixed(¬b≤ a). y

We extend the projection function to cope with mixed literals. For every literal ` and every
vertex v j ∈ mixed(`), an auxiliary variable x j is introduced. If ` is not mixed in v, ` � v is
either > or `.

Definition 4.1. Let � be a projection function. The projection function is correct, if and only
if for all literals `

4.1 Tree Interpolation 43

` ⇐⇒ ∃x.
∧
v∈V

` � v

where x = {x j | v j ∈mixed(`)} is the set of all auxiliary variables introduced for the literal `.

To ease notation we extend the projection function to sets of vertices. Hence, for V ′ ⊆V , we
define ` �V ′ :=

∧
v∈V ′ ` � v. There must be at least one vertex v ∈V with ` � v = ` unless ` is

mixed in some vertices.
If ` is not mixed in any vertices, we instantiate ` � v = ` if and only if ` ∈ symb(v) for

Pudláks algorithm, or ` � v = ` only if v is the least common ancestor of the vertices v′ such
that ` ∈ symb(v′). Different projection functions are possible [37] yielding interpolants of
different strength.

4.1.4 Simultaneous Binary Interpolation

To extract tree interpolants from one proof tree we apply (rule-res) per vertex of the interpol-
ation tree. If a literal occurs in the labelling of more than one vertex, we uniquely assign this
literal to one vertex to solve the problem shown in Example 4.1. Thus, for a literal ` occurring
in the input, there is exactly one vertex v0 such that ` � v0 = `. For all other vertices v 6= v0
we have ` � v =>. To extract tree interpolants we use the following modified resolution rule.

C1∨ ` : I1 C2∨¬` : I2

C1∨C2 : I3
(rule-tres)

where I3(v) =



I1(v)∨ I2(v) if ` � v′ => for all v′ /∈ st(v)
I1(v)∧ I2(v) if ` � v′ => for all v′ ∈ st(v)
mixcomb(`, I1(v), I2(v)) if ` is mixed
(I1(v)∨ `)∧
(I2(v)∨¬`)

otherwise

Similarly to the correctness proof of binary interpolation we use partial tree interpolants.
Partial tree interpolants are computed recursively over the proof tree starting from the leaves
of the tree to the root containing the empty clause.

Definition 4.2 (Partial Tree Interpolant). A partial tree interpolant for a clause C is a tree
interpolant for T and F ′ where F ′(v) = F(v)∧ (¬C � v) for v ∈V .

Since the case of mixed literals is different for every theory we delay proving the mixed
case until we instantiate mixcomb. To prove the remaining cases, we first note that if ` �
st(v) = > for some v ∈ V , then ` � st(vc) = > for every child vc of v. Furthermore, if ` �
st(vc) = ` for some child vc of v, then ` � st(v) = `, too. We use these observations to prove
the following lemma.

Lemma 4.5. Assume no literal is mixed. Then, rule (rule-tres) produces partial tree inter-
polants, i. e., if I1 and I2 are partial tree interpolants for C1 ∨ ` resp. C2 ∨¬` then I3 is a
partial tree interpolant for C1∨C2.

44 4 Tree Interpolants from Proofs

Proof. The symbol condition of tree interpolation trivially holds assuming it holds for I1 and
I2. We fix a vertex vp and show

∧
(vc,vp)∈E I3(vc)∧F(vp)∧ (¬C1 ∧¬C2) � vp |= I3(vp) under

the following assumptions:∧
(vc,vp)∈E

I1(vc)∧F(vp)∧ (¬C1∧¬`) � vp |= I1(vp) (4.1)

∧
(vc,vp)∈E

I2(vc)∧F(vp)∧ (¬C2∧ `) � vp |= I2(vp) (4.2)

We assume
∧

(vc,vp)∈E I3(vc)∧F(vp)∧ (¬C1 ∧¬C2) � vp and show I3(vp) and split cases on
the remaining cases of rule (rule-tres).

Case 1.

There is an edge (vc,vp) ∈ E with ` � v = > for all v /∈ st(vc). Then I3(vc) = I1(vc)∨ I2(vc)
and I3(vp) = I1(vp)∨ I2(vp). Also for all other edges (v′c,vp) ∈ E, ` � v => for all v ∈ st(v′c),
hence I3(v′c) = I1(v′c)∧ I2(v′c).

Consider the assumption
∧

(vc,vp)∈E I3(vc). For vc, we get I1(vc)∨ I2(vc) and for all other
vc′ we get I1(vc′)∧ I2(vc′). Since ` � v => for all v /∈ st(vc), we have ` � vp = ¬` � vp =>. If
I1(vc) holds, we get I1(vp) from (4.1). If I2(vc) holds, we get I2(vp) from (4.2). In both cases,
we get I1(vp)∨ I2(vp).

Case 2.

Assume ` � v = > for all v ∈ st(vp). Then I3(vp) = I1(vp)∧ I2(vp) and I3(vc) = I1(vc)∧
I2(vc) for all (vc,vp) ∈ E. From

∧
(vc,vp)∈E I3(vc) we conclude that

∧
(vc,vp)∈E I1(vc) and∧

(vc,vp)∈E I2(vc) hold. Using the induction hypothesis (again ` � vp = >) we derive I1(vp)

and I2(vp) thus I3(vp).

Case 3.

Otherwise I3(vc) =⇒ (I1(vc)∨ `)∧ (I2(vc)∨¬`) for all (vc,vp) ∈ E since we are not in
Case 1. With the induction hypothesis and ` =⇒ ` � vp we derive from

∧
(vc,vp)∈E I3(vc) that

(I1(vp)∨ `)∧ (I2(vp)∨¬`) holds. Since we are not in Case 2, this implies I3(vp). ut

Rule (rule-tres) allows us to compute partial tree interpolants for resolution steps. To com-
pute partial tree interpolants for the leaves of the resolution tree, we distinguish between input
clauses, theory lemmas, and theory combination lemmas. We first consider computation of
partial tree interpolants for input clauses. Every input clause C comes from (at least) one
vertex of the interpolation tree, which we call vC. Since this vertex contains all symbols of
all literals in the clause, the literals cannot be mixed. For a conjunction

∧
`i where every `i

is not mixed in any vertex and a set of vertices V we define
∧
`i \V as the conjunction of

all literals ` such that ` � V = >. Note that for an arbitrary conjunction F , F \V = > if V
contains all vertices in the interpolation tree. With these definitions we can compute partial
tree interpolants for input clauses.

Lemma 4.6. Let C be an input clause of a vertex vC ∈V . Then I with

4.1 Tree Interpolation 45

I(v) =

{
¬(¬C \ st(v)) if vC ∈ st(v)
¬C \ st(v) otherwise

is a partial tree interpolant for C.

Proof. The symbol condition is satisfied in both cases since we always remove the literals
that are local to the (complement of the) subtree. It is also clear that the root vertex is mapped
to ¬>=⊥. Remains to show inductivity, i. e.,

∧
(vc,vp)∈E I(vc)∧¬C � vp∧F(vp) |= I(vp).

We first observe that if vc is a child of vp that does not contain the clause vertex vC in its
subtree and if some ` ∈C projects to some vertex in st(vc) then the assumption of inductivity
contains ¬`. To see this, assume I(vc) ≡ ¬C \ st(vc) does not contain ¬`. This means that `
projects to some vertex v1 in st(vc) and to some vertex v2 in st(vc). Then lca(v1,v2) must be
an ancestor of vp and vp occurs on the path from v1 to lca(v1,v2). By the conditions of the
projection function, ` also projects to vp. Hence ¬C � vp contains ¬`.

We now show inductivity, by case distinction.

Case vC = vp.

Since C ∈F(vp), one of the literals `∈C is true. If ` projects to some vertex in st(vc) for some
child vc of vp, then ¬` occurs in the assumption. Likewise, ¬` occurs in ¬C � vp if ` projects
to vp. Thus, since ` is true, ` does not project to any v in st(vp). Hence, I(vp)≡¬(¬C\st(vp))
is true.

Case there exists a child vc∗ such that vC ∈ st(vc∗).

If C occurs in the child vc∗ of vp, then I(vc∗) =¬(¬C\st(vc∗)). If this assumption holds, there
is a true literal ` in C that does not project to any vertex in st(vc∗). Similar reasoning as in the
previous case shows that it does not project to any vertex in st(vc) for the other children vc of
vp and it does not project to vp. Hence, I(vp)≡ ¬(¬C \ st(vp)) is true.

Case vC does not occur inside the subtree.

Then vC does not occur in st(vc) for all children. By the observation all literals ` ∈ C that
project to some vertex in st(vc) occur negated in the assumption. This also holds if ` projects
to vp. Hence, all `∈C that project to some vertex in st(vp) are false. Thus, I(vp)≡¬C\st(vp)
is true. ut
Example 4.5. Consider again the tree interpolation problem shown in Figure 4.2. We have six
input clauses: t ≤ 2a, 2a ≤ s, s ≤ 2b, 2b ≤ t + 1, f (a) = q, and f (b) 6= q. The projection
of the individual input clauses onto the tree are shown in Figure 4.6. We use the projection
function that simulates Pudláks algorithm. Hence, whenever symb(`)⊆ symb(v), we add ` to
v. Note that the definition of symb implies that (¬`) � v = ¬(` � v) when using this projection
function.

The interested reader might check the projections against the symbol sets shown in Fig-
ure 4.5 on page 41. Since all clauses are unit clauses, the projection of the clauses onto the
tree is equivalent to the projection of the literal onto the tree. It is easy to verify that the pro-
jections are correct, i. e., that for every literal `, the conjunction of the projection of ` onto the
tree is equivalent to `.

46 4 Tree Interpolants from Proofs

7: >

5: t ≤ 2a

1: t ≤ 2a 2: >

6: >

3: > 4: >
(a) Projection of the input clause

t ≤ 2a.

7: >

5: 2a≤ s

1: > 2: 2a≤ s

6: >

3: > 4: >
(b) Projection of the input clause

2a≤ s.

7: >

5: >

1: > 2: >

6: s≤ 2b

3: s≤ 2b 4: >
(c) Projection of the input clause

s≤ 2b.

7: >

5: >

1: > 2: >

6: 2b≤ t +1

3: > 4: 2b≤ t +1

(d) Projection of the input clause
2b≤ t +1.

7: >

5: f (a) = q

1: > 2: >

6: >

3: > 4: >
(e) Projection of the input

clause f (a) = q.

7: >

5: >

1: > 2: >

6: f (b) 6= q

3: > 4: >
(f) Projection of the input

clause f (b) 6= q.

Fig. 4.6 Projections of the input clauses of the tree interpolation problem shown in Figure 4.2 using the
projection function for Pudláks algorithm.

We derive a partial tree interpolant for every input clause according to Lemma 4.6. The
resulting partial tree interpolants are shown in Figure 4.7. Consider the input clause t ≤ 2a
that labels vertex 1, i. e., vc is vertex 1. In vertex 1, the first case of Lemma 4.6 applies since
vc ∈ st(vc). Thus, we have to compute the conjunction of the projection of ¬(t ≤ 2a) onto the
interpolation tree without vc. We get ¬(t ≤ 2a) since the projection onto vertex 5 is ¬(t ≤ 2a)
and the projection onto all other vertices is >. Thus, I(1) = t ≤ 2a. Now consider vertex 5.
Again, we are in the first case since vertex 1 is a child of vertex 5 and, therefore, in the subtree.
When we remove the subtree rooted at vertex 5 and project ¬(t ≤ 2a) onto the resulting tree,
we get >. Thus, I(5) = >. The labelling for the root I(7) = ⊥ is trivial. For all remaining
vertices, vc occurs outside of the subtree and the second case of Lemma 4.6 applies. But
for all these nodes v, we have vc ∈ st(v) and therefore (¬(t ≤ 2a)) � st(v) = ¬t ≤ 2a. Thus,
I(v) = ⊥ in all these cases. The labels for the other input clauses are computed in a similar
way. y

In the remainder of this chapter we show how to construct partial tree interpolants for
different theories and how to combine them.

4.2 Theory Specific Interpolation 47

7: ⊥

5: ⊥

1: ⊥ 2: >

6: >

3: > 4: >
(a)

Partial tree interpolant for
the input clause t ≤ 2a.

7: ⊥

5: ⊥

1: > 2: ⊥

6: >

3: > 4: >
(b)

Partial tree interpolant for
the input clause 2a≤ s.

7: ⊥

5: >

1: > 2: >

6: ⊥

3: ⊥ 4: >
(c)

Partial tree interpolant for
the input clause s≤ 2b.

7: ⊥

5: >

1: > 2: >

6: ⊥

3: > 4: ⊥
(d)

Partial tree interpolant for
the input clause
2b≤ t +1.

7: ⊥

5: ⊥

1: > 2: >

6: >

3: > 4: >
(e)

Partial tree interpolant for
the input clause f (a) = q.

7: ⊥

5: >

1: > 2: >

6: ⊥

3: > 4: >
(f)

Partial tree interpolant for
the input clause f (b) 6= q.

Fig. 4.7 Partial tree interpolants for the input clauses of the tree interpolation problem shown in Figure 4.2.

4.2 Theory Specific Interpolation

Proof trees generated by SMT solvers contain some theory lemmas. These theory lemmas are
clauses that are valid according to the theory that created these lemmas. Thus, if C is a theory
lemma, then ¬C is a theory conflict since it is unsatisfiable according to the theory.

To compute a tree interpolant from a refutation containing theory lemmas, theory specific
methods to compute partial tree interpolants for theory lemmas are needed. Given a theory
lemma C, we distribute the literals in ¬C onto the interpolation tree according to the pro-
jection function. Unfortunately, unlike input clauses, theory lemmas might contain mixed
literals. Thus, besides interpolation for theory lemmas, a theory specific interpolation method
must also provide an instantiation of mixcomb to deal with resolution steps on the mixed
literals of this theory.

We now show how to compute partial tree interpolants for the theories of uninterpreted
functions and the theory of linear arithmetic. Furthermore, we show how to combine the
partial tree interpolants if the pivot of a resolution step is a mixed literal. We show how to
combine the theories and conclude this chapter with the computation of a tree interpolant for
the tree interpolation problem shown in Example 4.2.

48 4 Tree Interpolants from Proofs

4.2.1 Theory of Uninterpreted Functions

The Theory of Uninterpreted Functions can be solved by saturating equalities over the exist-
ing sub-terms in the formula using the usual rules of reflexivity, symmetry, transitivity, and
congruence, see Figure 4.8. Thus, the theory lemmas are instances of these rules, where the
terms a, b, c, f (a1, . . . ,an), and f (b1, . . . ,bn) occur in the input formula. The latter is im-
portant, as it guarantees that there is always a vertex of the tree interpolation problem that
contains the term and thus all its symbols. Thus the terms occurring on one side of an equal-
ity are never mixed. However, the equality literal can be mixed in the sense that there is no
vertex that contains all symbols on the left- and on the right-hand-side of the equality.

a = a (re f lexivity) a 6= b∨b = a (symmetry) a 6= b∨b 6= c∨a = c (transitivity)

a1 6= b1∨·· ·∨an 6= bn∨ f (a1, . . . ,an) = f (b1, . . . ,bn) (congruence)

Fig. 4.8 The lemmas that are generated by the Theory of Uninterpreted Functions. Each term occurring on
one side of an equality is guaranteed to occur in the input formula, i. e. in one partition of the input problem.

Example 4.6. To prove unsatisfiability of the labelling of the interpolation tree depicted in
Figure 4.2, we use the theory lemma a 6= b∨ f (a) 6= q∨ f (b) = q. This lemma is derived using
one application of symmetry, one application of transitivity, one application of congruence,
and two resolution steps.

We first apply congruence to a and b to get f (a) = f (b) and then use symmetry to swap
the sides of the equality. A resolution step is used to combine the applications of congruence
and symmetry.

RES

CONG
a 6= b∨ f (a) = f (b)

SYM
f (a) 6= f (b)∨ f (b) = f (a)

a 6= b∨ f (b) = f (a)

Now, we use transitivity to derive the lemma.

RES

...
a 6= b∨ f (b) = f (a)

TRANS
f (b) 6= f (a)∨ f (a) 6= q∨ f (b) = q

a 6= b∨ f (a) 6= q∨ f (b) = q y

4.2.1.1 Projection of Mixed Literals

We start by giving the projection function for an equality literal ` :≡ a1 = a2. By Lemma 4.4,
every vertex vp ∈ mixed(`) lies on a path between lca(ai) and mixedparent(`) (for some
i ∈ {1,2}). The ai is unique, since vp is not mixed if lca(ai) ∈ st(vp) for both i = 1,2. For
each vertex vp ∈ mixed(`) we introduce an auxiliary variable xp

a1=a2 that captures the value
of this ai. The projection of ` achieves this by fixing the value xp

a1=a2 of a mixed vertex vp to

4.2 Theory Specific Interpolation 49

the value xc
a1=a2

of the (uniquely defined) child vc that lies on the path to the unique lca(ai),
or to the value of ai if vp = lca(ai). The projection of the vertex mixedparent(`) ensures that
a1 = a2 by making the auxiliary variables of the corresponding children equal.

a1 = a2 � vp =



xc1
a1=a2 = xc2

a1=a2 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai = xc
a1=a2

if (vc,vp) ∈ E, vc ∈mixed(`), and ai ∈ symb(vp)

xc
a1=a2

= xp
a1=a2 if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai = xp
a1=a2 if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}

> otherwise

To show correctness of the projection in the sense of Definition 4.1, we show by induction
that for a subtree st(vp) the projection ∃x. (a1 = a2) � st(vp) where x ranges over all auxiliary
variables except xp

a1=a2 is equivalent to (1) ai = xp
a1=a2 if a1 = a2 is mixed in vp and lca(ai) ∈

st(vp) and (2) a1 = a2 if both a1 and a2 occur in st(vp). The induction step can be seen by
distinguishing the cases in the definition of (a1 = a2) � vp as follows.

In the first two cases, we observe that a1,a2 occur inside the subtree of vp. Hence, vp is not
mixed but has at least one mixed child. By Lemma 4.4, vp = mixedparent(`). Usually, this
means that there are exactly two child vertices vc1 and vc2 in which ` is mixed, one an ancestor
of lca(a1) and one an ancestor of lca(a2) (first case). However, it is also possible that ai ∈
symb(vp) for one of the two symbols a1, a2 (second case). In both cases, the corresponding
projection ensures that a1 = a2, provided that the projection on the subtree of vci ensures
ai = xci

a1=a2 .
When ` is mixed in vp, the third or the fourth case applies. Then, for exactly one i∈ {1,2},

lca(ai) occurs in the subtree of vp. If already vp = lca(ai), we are in the forth case and the
projection is xp

a1=a2 = ai. Otherwise, the third case applies and vc is the child containing
lca(ai). By the induction hypothesis, the projection to the subtree already ensures xc

a1=a2
= ai,

hence xp
a1=a2 = ai is ensured for the value ai that occurs in the subtree of vp. The last case

only applies if ` is not mixed in vp and vp 6= mixedparent(`). If a1 and a2 occur in st(vp)
then vp must be an ancestor of mixedparent and the projection of the subtree that contains
mixedparent is equivalent to a1 = a2.

The projection of a disequality a1 6= a2 is tricky. Instead of a plain auxiliary variable xp
a1 6=a2

we introduce a set-valued auxiliary variable X p
a1 6=a2

for every vertex vp where the literal is
mixed. For such a vertex vp one ai (i = 1,2) occurs only in the subtree of vp and the other
only outside the subtree. The projections of the literal enforce that X p

a1 6=a2
contains the value

ai that occurs in the subtree of vertex vi and does not contain the other value. It may contain
other values different from a1 and a2 when the exact value of ai cannot be expressed using
only symbols shared between the subtree of vi and its complement. The projections of a1 6= a2
are defined as follows.

a1 6= a2 � vp =



Xc1
a1 6=a2

∩Xc2
a1 6=a2

= /0 if (vc1 ,vp),(vc2 ,vp) ∈ E and vc1 ,vc2 ∈mixed(`)

ai /∈ Xc
a1 6=a2

if (vc,vp) ∈ E, vc ∈mixed(`), and ai ∈ symb(vp)

Xc
a1 6=a2

⊆ X p
a1 6=a2

if (vc,vp) ∈ E, vc,vp ∈mixed(`)

ai ∈ X p
a1 6=a2

if lca(ai) = vp, vp ∈mixed(`) for some i ∈ {1,2}
> otherwise

50 4 Tree Interpolants from Proofs

Although the projections are different, the cases are exactly the same as for equality. The
fourth and third formulae ensure that X p

a1 6=a2
contains the value ai that occurs in the subtree

of vp. With this property, each of the first two formulae ensures that a1 6= a2.
Despite the definition of the projection function, we do not need set-theoretic reasoning in

our solver. The projections are only used to prove the correctness of the resolution rule and
the theory specific interpolation rules.

Example 4.7. In our running example, the literals a = b and a 6= b occur in the refutation of
the labelling of the vertices. As seen in Example 4.4, mixed(a = b) =mixed(a 6= b) = {5,6}.
Furthermore, the mixed parent of these literals is vertex 7, lca(a) is vertex 5, and lca(b) is
vertex 6.

7: x5
a=b = x6

a=b

5: a = x5
a=b

1: > 2: >

6: b = x6
a=b

3: > 4: >
(a) Projection of a = b.

7: X5
a6=b∩X6

a6=b = /0

5: a ∈ X5
a 6=b

1: > 2: >

6: b ∈ X6
a6=b

3: > 4: >
(b) Projection of a 6= b.

Fig. 4.9 Projections of mixed equality literals onto the interpolation tree from Figure 4.2 on page 38.

The projections of a = b resp. a 6= b are shown in Figure 4.9. It is easy to see that the literal
a = b is preserved if we conjoin the labelling of the vertices in Figure 4.9(a) and existentially
quantify over x5

a=b and x6
a=b which are integer-valued auxiliary variables (since a and b are

integer-valued variables). The projection of a 6= b introduces the variables X5
a6=b and X6

a6=b
which represent sets of integers. If we conjoin the labelling of the vertices and existentially
quantify over X5

a6=b and X6
a 6=b, we get ∃X5

a6=b,X
6
a 6=b. a ∈ X5

a6=b ∧ b ∈ X6
a6=b ∧X5

a 6=b ∩X6
a6=b = /0

which states that a is different from b. y

To facilitate the mixed resolution rule, we pose a syntactic restriction on the partial invari-
ants containing X p

a6=b, namely that the only occurrences are in a positively occurring literals
s ∈ X p

a6=b, where s is an arbitrary term (not containing a set-valued variable). In particular,
s ∈ X p

a6=b may occur only positively. To get a similar notation as in the previous chapter, we
define EQ(X ,s) :≡ s ∈ X and write the interpolant as I[EQ(X ,s1)] . . . [EQ(X ,sn)]. On the
other hand, a variable xp

a=b introduced by a mixed equality may occur anywhere in the partial
interpolant, even under a function application or in the s-part of an EQ(X ,s) term.

4.2.1.2 Mixed Combination for Resolution

The theory lemmas are combined using only the resolution rule, thus the interpolation pro-
cedure presented in Section 4.1.4 can be used. We have to instantiate the function mixcomb
for mixed equality literals. For a mixed equality literal a = b, the interpolant I1(v) is the inter-
polant of a conflict ¬C1 ∧ a 6= b, thus is of the form I1[EQ(Xv

a 6=b,s1)] . . . [EQ(Xv
a6=b,sn)]. The

4.2 Theory Specific Interpolation 51

interpolant I2(v) is of the form I2(xv
a=b) where xv

a=b is the auxiliary variable of a = b for the
vertex v. We define

mixcomb(a = b, I1[EQ(X ,s1)] . . . [EQ(X ,sn)], I2(x)) := I1[I2(s1)] . . . [I2(sn)]

Lemma 4.7. The rule (rule-tres) produces a partial tree interpolants in the case where ` is
an equality a = b that is mixed in some of the vertices: Provided that I1 and I2 are partial tree
interpolants for C1∨ ` resp. C2∨¬` then I3 is a partial tree interpolant for C1∨C2.

Proof. The symbol condition carries over (note that the auxiliary variables are eliminated by
mixcomb) and since we always have I3 = I1∨ I2 for the root vertex its interpolant is still ⊥.

We do a case split over the five cases of the projection function for a = b and a 6= b (two
children are mixed, one child is mixed, the parent and one child is mixed, only the parent is
mixed, and neither parent nor any child is mixed). The last case does not involve mixcomb,
thus the proof given in Section 4.1.4 applies. We now assume that we are in the first four
cases.

In the first two cases the parent is mixedparent(`) and I3(vp) = I1(vp) ∨ I2(vp) since
all symbols occur in st(vp). In the third and forth case the parent is mixed and I3(vp) =
mixcomb(`, I1(vp), I2(vp)). For every child vc, where ` is mixed, the interpolants I1(vc) and
I2(vc) are of the form Ic

1 [EQ(Xc
a6=b,s1)] . . . [EQ(Xc

a6=b,sn)] and Ic
2(x

c
a=b). For the other children,

all symbols in ` occur outside of the subtree; thus, I3(vc) = I1(vc)∧ I2(vc).
So the inductivity rule for I3 becomes:∧

(vc,vp)∈E,vc∈mixed(`)

Ic
1 [I

c
2(s1)] . . . [Ic

2(sn)]∧
∧

(vc,vp)∈E,vc /∈mixed(`)

(I1(vc)∧ I2(vc))

∧ (¬C1) � vp∧ (¬C2) � vp

|= I3(vp)

If we assume (¬C2) � vp and I2(vc) for all children that are not mixed, we can simplify the
inductivity rule for I2 (which holds by induction) to∧

(vc,vp)∈E,vc∈mixed(`)

Ic
2(x

c
a=b)∧ (a = b) � vp |= I2(vp)

Similarly, the inductivity rule for I1 simplifies to∧
(vc,vp)∈E,vc∈mixed(`)

Ic
1 [EQ(Xc

a6=b,s1)] . . . [EQ(Xc
a6=b,sn)]∧ (a 6= b) � vp |= I1(vp)

The main trick is to instantiate in the last formula the variable Xc
a6=b with the set {x|Ic

2(x)}.
Then EQ(Xc

a6=b,si) is si ∈ {x|Ic
2(x)} and simplifies to Ic

2(si). Likewise, we instantiate the vari-
able X p

a6=b with {x|Ip
2 (x)}. The induction hypothesis for I1 contains Xc

a6=b and X p
a6=b also in

(a 6= b) � vp, so we should investigate what the substitution does to this part of the formula.
In the first case (a 6= b) � vp is Xc1

a6=b∩Xc2
a6=b 6= /0, i. e., Ic1

2 (x)∧ Ic2
2 (x) |=⊥. This is implied by

the induction hypothesis for I2, if we assume that I2(vp) does not hold (otherwise inductivity
would hold as I3(vp) = I1(vp)∨ I2(vp)). Similarly in the second case (a 6= b) � vp is b /∈ Xc

a6=b,
i. e., Ic

2(b) |= ⊥, which is again implied by the induction hypothesis for I2. Also in the third
and fourth case (a 6= b) � vp is implied by the induction hypothesis for I2.

52 4 Tree Interpolants from Proofs

To show inductivity, we can assume Ic
1 [I

c
2(s1)] . . . [Ic

2(sn)] for the mixed children. Together
with (a 6= b) � vp these are the assumption in the instantiated induction hypothesis for I1. Thus
we can conclude that the instantiated I1(vp) holds. In the first two cases this implies I3(vp) =
I1(vp)∨ I2(vp). In the third and forth cases this is exactly I3(vp) = Ip

1 [I
p
2 (s1)] . . . [I

p
2 (sn)] after

instantiating. Thus we have shown I3(vp) and inductivity holds. ut

4.2.1.3 Leaf Interpolation

It only remains to show that there is a partial tree interpolant for every theory lemma C. If all
symbols occur outside the subtree, we interpolate it like an input clause that occurs outside
the subtree. Otherwise, if all symbols occur in the subtree, we interpolate it like an input
clause that occurs in some node in st(v). Thus all interpolants have the form

I(v) =


¬C \ st(v) if symb(C)⊆ symb(st(v))
¬(¬C \ st(v)) if symb(C)⊆ symb(st(v))
.

The inductivity follows in the same way as in Lemma 4.6 if both parent and child interpolants
fall into the first two cases. Only if the clause is mixed in the parent or a child vertex we still
have to show inductivity. Note that if a theory lemma is mixed, at least one of its literals
must be mixed, since for every pair of symbols in a clause there is a literal that contains both
symbols.

Interpolation of Reflexivity

The reflexivity axiom is never mixed and a partial interpolant is I with

I(v) =

{
¬C \ st(v) if a /∈ symb(st(v)),
¬(¬C \ st(v)) otherwise.

Interpolation of Symmetry

For symmetry we have to find a partial interpolant of a = b∧b 6= a. Here we need to consider
the case where the literals are mixed, e. g., lca(a) ∈ st(v) and b occurs only in st(v). The
partial interpolant is

I(v) =


¬C \ st(v) if a,b ∈ symb(st(v)),
¬(¬C \ st(v)) otherwise if a,b ∈ symb(st(v))
xa=b ∈ Xb6=a if a = b is mixed

We show inductivity:
∧

I(vc)∧ (¬C) � vp→ I(vp).

4.2 Theory Specific Interpolation 53

Case a = b is mixed in vp.

W. l. o. g. lca(a)∈ st(v) and b /∈ st(v). If lca(a)∈ st(vc) for some child vc, then I(vc)∧(¬C) �
vp is xc

a=b ∈Xc
b6=a∧xc

a=b = xp
a=b∧Xc

b6=a⊆X p
b 6=a, which implies I(vp)= xp

a=b ∈X p
b6=a. Otherwise

lca(a) = vp and (¬C) � vp is a = xp
a=b∧a ∈ X p

b6=a, which implies I(vp).

Case a,b ∈ symb(st(vp)) and a = b is mixed in some child.

Then the mixed child contains either lca(a) or lca(b), w. l. o. g., lca(a) (the other case is
symmetric). We call the mixed child vca.

If lca(b) is in the subtree of another child vcb, that child is also mixed because it contains b
only in the subtree and a only outside the subtree. We have I(vca)∧ I(vcb)∧¬C � vb↔ xca

a=b ∈
Xca

b6=a ∧ xcb
a=b ∈ Xcb

b6=a ∧ xca
a=b = xcb

a=b ∧Xca
b6=a ∩Xcb

b6=a = /0. This leads to a contradiction. Hence,
inductivity holds.

Otherwise, b∈ symb(vp) and I(vca)∧¬C � vp↔ xc
a=b ∈ Xc

b6=a∧xc
a=b = b∧b /∈ Xc

b6=a, which
is a contradiction. Thus, inductivity holds.

Interpolation of Transitivity

For transitivity, we first consider the case where a 6= c is mixed. W. l. o. g., a occurs only in
st(v) and c only in st(v). We have to find a shared term that is equal to a and c. If b is shared
it can be used. Otherwise either a = b or b = c is mixed and the corresponding auxiliary
variable can be used. We define

aux1(a,b,c)(v) =


xv

a=b if a = b is mixed in v,
xv

b=c if b = c is mixed in v,
b otherwise.

If a = c is not mixed but the clause is mixed, then a = b, b = c or both are mixed. If only
one of them, say b = c, is mixed then a is shared. We define

aux2(a,b,s)(v) =

{
xv

a=b if a = b is mixed in v,
s otherwise.

Finally, the partial interpolant for transitivity is

I(v) =



¬C \ st(v) if a,b,c ∈ symb(st(v)),
¬(¬C \ st(v)) otherwise if a,b,c ∈ symb(st(v)),
aux1(a,b,c)(v) ∈ Xv

a6=c if a 6= c is mixed,
aux2(a,b,a)(v) = aux2(b,c,c)(v) if a,c ∈ symb(st(v)),
aux2(a,b,a)(v) 6= aux2(b,c,c)(v) if a,c ∈ symb(st(v)).

Again we only need to consider the cases where the clause is mixed in the parent or in one
child. The proof of inductivity requires to consider a lot of different cases depending which
literals are mixed in vp and vc. However, each case is trivial.

54 4 Tree Interpolants from Proofs

Interpolation of Congruence

In the congruence clause a1 6= b1∨ ·· ·∨an 6= bn∨ f (a1, . . . ,an) = f (b1, . . . ,bn) the clause is
only mixed if the last literal, which contains all symbols, is mixed. We assume w. l. o. g. that
lca(f (a1, . . . ,an)) ∈ st(v). The symbol f is shared and f (b1, . . . ,bn) occurs in st(v). We find
for each equality ai = bi a shared term si as follows. We choose si = ai if ai occurs in st(v),
si = bi if bi occurs in st(v) and otherwise si = xai=bi (then, ai = bi is mixed). The interpolant
is

I(v)=


¬C \ st(v) if ai,bi ∈ symb(st(v)) for 1≤ i≤ n,
¬(¬C \ st(v)) otherwise if ai,bi ∈ symb(st(v)) for 1≤ i≤ n,
f (s1, . . . ,sn) ∈ Xv

f (a1,...,an)6= f (b1,...,bn)
otherwise.

Again, the proof requires a lot of case splits. The cases, however, are trivial.

4.2.1.4 Example

We now show how to derive a partial tree interpolant for the theory lemma a 6= b∨ f (a) 6=
q∨ f (b) = q used to refute the labelling of the tree interpolation problem shown in Figure 4.2
on page 38. We already presented a derivation of this lemma using the proof rules described
above in Example 4.6 on page 48.

7: ⊥

5: EQ(X5
f (a)6= f (b), f (x5

a=b))

1: > 2: >

6: EQ(X6
f (a)6= f (b), f (x6

a=b))

3: > 4: >

Fig. 4.10 Partial tree interpolant for the congruence clause a 6= b∨ f (a) = f (b).

We first compute a partial tree interpolant for the congruence clause a 6= b∨ f (a) = f (b).
We simply use ⊥ to label the root. For all leaves, the symbols a, b, and f occur outside
of the subtree. Thus, the first case applies. Considering the projection of a = b shown in
Figure 4.9(a) on page 50, we conclude that > is a valid label for the leaves. Note that the
projection of f (a) 6= f (b) is similar to the one of a 6= b only with a resp. b replaced by
f (a) resp. f (b). For vertices 5 and 6, the last case applies since a = b and f (a) 6= f (b) are
mixed in these vertices. Thus, we get the labels f (xi

a=b) ∈ X i
f (a)6= f (b) for i = 5,6. These labels

can be expressed as EQ(X i
f (a)6= f (b), f (xi

a=b)). The resulting partial tree interpolant for the
congruence clause is shown in Figure 4.10.

Next we compute a partial tree interpolant for the symmetry clause f (a) 6= f (b)∨ f (b) =
f (a). Again, the labels for the root and the leaves are trivial. The labels for vertices 5 and 6
correspond to the third case. For i= 5,6, we get xi

f (a)= f (b) ∈X i
f (b)6= f (a). These labels can again

be expressed as EQ(X i
f (b)6= f (a),x

i
f (a)= f (b)). The resulting partial tree interpolant is shown in

Figure 4.11.

4.2 Theory Specific Interpolation 55

7: ⊥

5: EQ(X5
f (a)6= f (b),x

5
f (a)= f (b))

1: > 2: >

6: EQ(X6
f (a)6= f (b),x

6
f (a)= f (b))

3: > 4: >

Fig. 4.11 Partial tree interpolant for the symmetry clause f (a) 6= f (b)∨ f (b) = f (a).

Now we resolve the two clauses on the pivot literal f (a) = f (b). The labels for the root and
the leaves are trivial. For the vertices 5 and 6 we use mixcomb to combine the labels. Consider
vertex 5. We have I1(5) = EQ(X5

f (a)6= f (b), f (x5
a=b)) and I2(5) = EQ(X5

f (a)6= f (b),x
5
f (a)= f (b))

which can be seen as I(x5
f (a)= f (b)). If we apply the instantiation of mixcomb to uninterpreted

functions we get EQ(X5
f (a)6= f (b), f (x5

a=b)) which corresponds to I1(5). The same reasoning
leads to a label for vertex 6. The partial tree interpolant after this resolution step is the same
as the partial interpolant for the congruence clause and is shown in Figure 4.10.

7: ⊥

5: x5
f (b)= f (a) = q

1: > 2: >

6: x6
f (b)= f (a) 6= q

3: > 4: >

Fig. 4.12 Partial tree interpolant for the transitivity clause f (b) 6= f (a)∨ f (a) 6= q∨ f (b) = q.

Next we compute a partial tree interpolant for the transitivity clause f (b) 6= f (a)∨ f (a) 6=
q∨ f (b) = q. The labels for the root and the leaves are trivial. For the other cases, we have to
match the rules against our instantiation, i. e., the variables a, b, and c in the rule are replaced
by f (b), f (a), and q, respectively. Since f (b) 6= q occurs in vertex 6, only the last two cases
can apply. Now consider vertex 5. We use the fourth case to derive aux2(f (b), f (a), f (b)) =
aux2(f (a),q,q) which evaluates to x5

f (b)= f (a) = q since f (b) = f (a) is mixed in vertex 5,
but f (a) = q is not. For vertex 6 we are in the last case. We derive aux2(f (b), f (a), f (b)) 6=
aux2(f (a),q,q) which evaluates to x5

f (b)= f (a) 6= q.

7: ⊥

5: f (x5
a=b) = q

1: > 2: >

6: f (x6
a=b) 6= q

3: > 4: >

Fig. 4.13 Partial tree interpolant for the theory lemma a 6= b∨ f (a) 6= q∨ f (b) = q.

Finally, we resolve the result of the resolution of congruence and symmetry with transit-
ivity on the pivot f (b) = f (a). The labels for the root and the leaves are trivial. For vertices
5 and 6 we use mixcomb where I1(i) = EQ(X i

f (a)6= f (b), f (xi
a=b)). Thus, we replace xi

f (b)= f (a)

56 4 Tree Interpolants from Proofs

with f (xi
a=b) and get the labels depicted in Figure 4.13. Note that this partial tree interpolant

is also a partial tree interpolant for the clause a 6= b created by resolving against the input
clauses f (a) = q and f (b) 6= q. We skip the derivation of the partial tree interpolants since all
steps are trivial given the partial tree interpolants for the input clauses from Figure 4.7.

4.2.2 Theory of Linear Arithmetic

Our solver for linear arithmetic is based on a variant of the Simplex approach [39, 62]. A the-
ory conflict is a conjunction of literals ` j of the form ∑i ci jai≤ c j. The proof of unsatisfiability
is given by Farkas coefficients k j ≥ 0 for each inequality ` j. These coefficients have the prop-
erties ∑ j k jci j = 0 and ∑ j k jc j < 0. In the following we use the notation of adding inequalities
(provided the coefficients are positive). Thus, we write ∑ j k j` j for ∑i(∑ j k jci j)ai ≤ ∑ j k jc j.
With the property of the Farkas coefficients we get a contradiction (0 < 0) and this shows that
the theory conflict is unsatisfiable.

A conjunction of literals may have rational but no integer solutions. In this case, there are
no Farkas coefficients that can prove the unsatisfiability. So for the integer case, our solver
may introduce extended branches [35], which are just branches of the DPLL engine on newly
introduced literals. In the proof tree this results in resolution steps with these literals as pivots.
We first show how to project mixed literals, then show the general form of partial interpolants,
explain interpolation of theory conflicts (i. e., negated theory lemmas), and finally explain
how to combine partial interpolants in a resolution step on a mixed literal.

4.2.2.1 Projection of Mixed Literals

Literals generated by extended branches or theory combination might be mixed. To define the
projection of a mixed linear inequality ` :≡ c1a1 + . . .+ cnan ≤ c we introduce an auxiliary
variable for every vertex in mixed(`). First we define a helper projection function

c1a1 + · · ·+ cnan � vp = ∑
i | lca(ai)=vp

ciai

Thus, the projection of the sum to vp is the sum of all terms that occur in vp for the last
time. We extend the projection to sets of vertices by summing up the projections onto the
individual vertices ∑ciai �V := ∑v∈V (∑ciai � v). Then, the projection of ` to vp is defined as
the projection of the sum minus the auxiliary variables for the mixed vertices.

4.2 Theory Specific Interpolation 57

` � vp =



(c1a1 + · · ·+ cnan � vp)+

∑
c | (vc,vp)∈E∧vc∈mixed(`)

−xc
`+

∑
i | vp∈st(lca(ai))∧vp 6=lca(ai)

ciai ≤ c
if vp =mixedparent(`)

(c1a1 + · · ·+ cnan � vp)+

∑
c | (vc,vp)∈E∧vc∈mixed(`)

−xc
`+ xp

` ≤ 0 if vp ∈mixed(`)

> otherwise

Lemma 4.8. The projection above is correct for mixed literals. Let ` be a literal with
mixed(`) 6= /0, then ` ⇐⇒ ∃{x j

` | v j ∈mixed(`)}.
∧

v∈V ` � v.

Proof. Let ` :≡ a1c1 + . . .+ cnan ≤ c be a literal such that mixed(`) 6= /0. For every v j ∈
mixed(`) we introduce an auxiliary variable x j

` . Let x :≡{x j
` | v j ∈ (st(vp)\{vp})∩mixed(`)}.

We first show by induction over vp

∃x.
∧

v j∈st(vp)

` � v j ⇐⇒


> if mixed(`)∩ st(vp) = /0

∑
i | lca(ai)∈st(vp)

ciai + xp
` ≤ 0 if vp ∈mixed(`)

∑i ciai ≤ c if mixedparent(`) ∈ st(vp)

.

vp is a leaf.

Note that the last case is impossible since if vp = lca(symb(`)) then ` cannot be mixed in vp
and the first case would apply. The remaining cases are trivial.

vp is an inner vertex.

If ` is not mixed in any vertex in st(vp) the proof is trivial.
If vp ∈ mixed(`) we get ∃x.

∧
v j∈st(vc) ` � v j = ∑

i | lca(ai)∈st(vc)
ciai + xc

` ≤ 0 per induction

hypothesis for every child vc ∈ mixed(`), and
∧

v j∈st(vc) ` � v j = > for all other children.
Furthermore, ` � vp = ∑

(vc,vp)∈E∧vc∈mixed(`)
−xc

` + ∑
i | lca(ai)=vp

ciai + xp
` ≤ 0. Combining the pro-

jections onto the subtrees of the children and the projection onto vp we get ∃x.
∧

v j∈st(vp) ` �

v j→ ∑
i | lca(ai)∈st(vp)

ciai+xp
` ≤ 0. To prove the other direction we set xc

` =− ∑
i | lca(ai)∈st(vc)

ciai.

If vp = mixedparent(`) we get for every child vc ∈ mixed(`) from the induction hypo-
thesis ∃x.

∧
v j∈st(vc) ` � v j ⇐⇒ ∑

i | lca(ai)∈st(vc)
ciai + xc

` ≤ 0. Furthermore, we have ` � vp =

∑c | (vc,vp)∈E∧vc∈mixed(`)−xc
`+∑i | lca(ai)=vp ciai + ∑

i | vp∈st(lca(ai))∧vp 6=lca(ai)
ciai ≤ c. The remain-

ing steps for this case are the same as in the previous case.
Finally, if mixedparent(`) ∈ st(vp), but vp 6=mixedparent(`), we can only have one child

vc such that mixedparent(`) ∈ st(vc). In the subtrees of all other children, ` is not mixed.
By induction hypotheses we get ∃x. ∑i ciai ≤ c for vc and > for the remaining children.
Additionally, ` � vp =>. Thus, the conjunction yields the goal formula.

58 4 Tree Interpolants from Proofs

Since all vertices are contained in the subtree of the root and no literal can be mixed in the
root, the last case applies. Thus, the projection function is correct. ut

Example 4.8. To refute the conjunction of the labels of the interpolation tree shown in Fig-
ure 4.2 on page 38, we use the literals a≤ b, b≤ a, and their negations a < b and b < a. We
first normalise the literals.

a≤ b≡ a−b≤ 0
b≤ a≡ b−a≤ 0
a < b≡ a−b≤−1
b < a≡ b−a≤−1

Note that the last two normalisations use integer reasoning to transform a strict inequality
into a non-strict one. Since these literals occur in the resolution proof of the conjunction of
the labels of the input problem, we need to compute purifications.

7: −x5
a−b≤0− x6

a−b≤0 ≤ 0

5: a+ x5
a−b≤0 ≤ 0

1: > 2: >

6: −b+ x6
a−b≤0 ≤ 0

3: > 4: >
(a) Projection of a−b≤ 0.

7: −x5
b−a≤0− x6

b−a≤0 ≤ 0

5: −a+ x5
b−a≤0 ≤ 0

1: > 2: >

6: b+ x6
b−a≤0 ≤ 0

3: > 4: >
(b) Projection of b−a≤ 0.

7: −x5
a−b≤−1− x6

a−b≤−1 ≤−1

5: a+ x5
a−b≤−1 ≤ 0

1: > 2: >

6: −b+ x6
a−b≤−1 ≤ 0

3: > 4: >
(c) Projection of a−b≤−1.

7: −x5
b−a≤−1− x6

b−a≤−1 ≤−1

5: −a+ x5
b−a≤−1 ≤ 0

1: > 2: >

6: b+ x6
b−a≤−1 ≤ 0

3: > 4: >
(d) Projection of b−a≤−1.

Fig. 4.14 Projection of the mixed literals from linear arithmetic for the tree interpolation problem shown in
Figure 4.2.

The purifications are shown in Figure 4.14. In all cases, the literals are only mixed in
vertices 5 and 6. Thus, the mixed parent is vertex 7. We use the last case of the projection
for the leaves resulting in the formula >. For the remaining cases we need lca(a) = 5 and
lca(b) = 6. With these observations we compute the projections of the literals onto the re-
maining vertices. Note that the sum of the projection onto the vertices (where we treat > as
0≤ 0) yields the projected literal and cancels out every auxiliary variable. y

4.2.2.2 Form of Partial Interpolants

With the projection function extended to mixed literals we now show how to compute partial
interpolants. We start with an example to motivate the structure of our partial interpolants.

4.2 Theory Specific Interpolation 59

Example 4.9. The formula t ≤ 2a ≤ r ≤ 2b + 1 ≤ t has no integer solution but a rational
solution. Introducing the branch a≤ b∨b < a leads to the theory conflicts t ≤ 2a≤ 2b≤ t−1
and r ≤ 2b+1≤ 2a−1≤ r−1 (note that ¬(a≤ b)≡ b < a is equivalent to b+1≤ a). The
corresponding proof tree is given below. The Farkas coefficients in the theory lemmas are
given in parenthesis. Note that the proof tree shows the clauses, i. e., the negated conflicts. A
node with more than two parents denotes that multiple applications of the resolution rule are
taken one after another.

¬(r ≤ 2b+1) (·1)
¬(b+1≤ a) (·2)
¬(2a≤ r) (·1)

¬(t ≤ 2a) (·1)
¬(a≤ b) (·2)

¬(2b+1≤ t) (·1)

r ≤ 2b+1

2a≤ r

t ≤ 2a

2b+1≤ t

a≤ b ¬(a≤ b)

⊥

Now consider the problem of deriving an interpolant between A≡ t ≤ 2a≤ r and B≡ r≤
2b+1≤ t. We can obtain an interpolant by annotating the above resolution tree with partial
interpolants. To compute a partial interpolant for the theory lemma ¬(r≤ 2b+1)∨¬(b+1≤
a)∨¬(2a ≤ r), we project the negated clause according to the definition in Section 3.2.2,
which gives

r ≤ 2b+1∧ x¬(a≤b) ≤ a∧−x¬(a≤b)+b+1≤ 0∧2a≤ r.

Then, we sum up the A-part of the conflict (the second and fourth literal) multiplied by their
corresponding Farkas coefficients. This yields the interpolant 2x¬(a≤b) ≤ r. Similarly, the
negation of the theory lemma ¬(t ≤ 2a)∨¬(a≤ b)∨¬(2b+1≤ t) is purified to

t ≤ 2a∧ xa≤b +a≤ 0∧−xa≤b ≤ b∧2b+1≤ t,

which yields the partial interpolant 2xa≤b + t ≤ 0. Note, that we have to introduce different
variables for each literal. Intuitively, the variable x¬(a≤b) stands for a and xa≤b for −a. Using
Pudlák’s algorithm we can derive the same interpolants for the clause a≤ b resp. ¬(a≤ b).

For the final resolution step, the two partial interpolants 2x¬(a≤b) ≤ r and 2xa≤b + t ≤ 0
are combined into the final interpolant of the problem. Summing up these inequalities with
x¬(a≤b) = −xa≤b we get t ≤ r. While this follows from A, it is not inconsistent with B. We
need an additional argument that, given r = t, r has to be an even integer. This also follows
from the partial interpolants when setting x¬(a≤b) =−xa≤b: t ≤−2xa≤b = 2x¬(a≤b) ≤ r. The
final interpolant computed by our algorithm is t ≤ 2

⌊ r
2

⌋
.

In general, we can derive additional constraints on the variables if the constraint resulting
from summing up the two partial interpolants holds very tightly. We know implicitly that
x¬(a≤b) = −xa≤b is an integer value between t/2 and r/2. If t equals r or almost equals
r there are only a few possible values which we can explicitly express using the division
function as in the example above. We assume that the (partial) interpolant F always has a
certain property. There is some term s and some constant k, such that for s > 0 the interpolant
is always false and for s <−k the interpolant is always true (in our case s = t− r and k = 0).
For a partial interpolant that still contains auxiliary variables x, we additionally require that
s contains them with a positive coefficient and that F is monotone on x, i. e., x ≥ x′ implies
F(x)→ F(x′). y

To mechanise the reasoning used in the example above, our resolution rule for mixed
inequality literals requires that the individual labels of the partial tree interpolant are patterns

60 4 Tree Interpolants from Proofs

of a certain shape. An auxiliary variable of a mixed inequality literal may only occur in the
pattern if the negated literal appears in the clause. Let x denote the set of auxiliary variables
that occur in the pattern. We require that these variables only occur inside a special sub-
formula of the form LA(s(x),k,F(x)). The first parameter s is a linear term over the variables
in x and arbitrary other terms not involving x. The coefficients of the variables x in s must
all be positive. The second parameter k ∈ Qε is a constant value. In the real case we only
allow the values 0 and −ε . In the integer case we allow k ∈ Z,k ≥ −1. The third parameter
F(x) is a formula that contains the variables from x at arbitrary positions. We require that
F is monotone, i. e., x ≥ x′ implies F(x)→ F(x′). Moreover, F(x) = ⊥ for s(x) > 0 and
F(x) = > for s(x) < −k. The sub-formula LA(s(x),k,F(x)) stands for F(x) and it is only
used to remember what the values of s and k are.

The intuition behind the formula LA(s(x),k,F(x)) is that s(x) ≤ 0 summarises the in-
equality chain that follows from the subtree of the current vertex. On this chain there may be
some constraints on intermediate values. In the example above the A-part contains the chain
t ≤ 2a≤ r, which is summarised to s≤ 0 (with s = t−r). Furthermore the A-part implies that
there is an even integer value between t and r. If s <−k (with k = 0 in this case), t and r are
distinct, and there always is an even integer between them. However, if −k ≤ s≤ 0, the truth
value of the interpolant depends on whether t is even.

In the remainder of the section, we give the interpolants for the leaves produced by the
linear arithmetic solver and for the resolvent of the resolution step if the pivot is a mixed
linear inequality.

4.2.2.3 Leaf Interpolation

As mentioned above, our solver produces for a clause C≡¬`1∨·· ·∨¬`m some Farkas coef-
ficients k1, . . . ,km ≥ 0 such that ∑ j k j` j yields a contradiction 0 < 0. A partial interpolant
for a theory lemma can be computed by summing up the projection of the conflict onto the
respective subtrees: I(v) is defined as ∑ j k j(` j � st(v)) (if ` j � st(v) => we regard it as 0≤ 0,
i. e., it is not added to the sum).

Lemma 4.9. Summing up the projections onto the individual subtrees yields a partial tree
interpolant for a lemma C ≡ ¬`1∨·· ·∨¬`m.

Proof. Let k1, . . . ,km be the Farkas coefficients used to prove unsatisfiability of ¬C. To see
that the symbol condition holds, we first note that all symbols that only occur inside of the
subtree have to be removed from the interpolant since ∑ki`i leads to a contradiction. If a
symbol local to the subtree was not removed when summing up the subtree, it would not get
removed at all and ∑ki`i would not be contradictory.

To show inductivity, we split cases on the current vertex v.

v is a leaf.

Since all ki are positive, we can sum up all literals `i � v and get I(v) = ∑
m
i=1 ki(`i � v) since in

this case, st(v) = {v}. This sum trivially follows from ¬C � v.

4.2 Theory Specific Interpolation 61

v is an inner vertex.

We have to show tree inductivity, i. e.,
∧

(vc,v)∈E I(vc)∧F(v)∧ (¬C � v) |= ∑
m
i=1 ki(` � st(v)).

For every child vc we have I(vc) = ∑
m
i=1 ki(` � st(vc)). Since for every literal `, the projection

` � v′ equals ` for exactly one vertex v′, no literal ` is summed up in I(vc) more than one.
Additionally, if ` is summed up in one I(vc), then ` � v = > and we will not add it again.
Since all ki are positive, we get

∧
(vc,v)∈E ∑

m
i=1 ki(`i � st(vc))∧ (¬C � v) |= ∑

m
i=1 ki(` � st(v))

sicne ¬C � v contains `i � v for all i.
Additionally, if v is the root, we have ¬C � v = ¬C. In this case we get I(v) = ∑

m
i=1 ki`i

which corresponds to the proof of unsatisfiability of ¬C. Thus, I(v) =⊥. ut

The linear constraint ∑ j k j(` j � st(v)) can be expressed as s(x)≤ 0. Thus, we can equival-
ently write this interpolant in our pattern as LA(s(x),−ε,s(x) ≤ 0). Since the Farkas coef-
ficients are all positive and the auxiliary variables introduced to define ` � st(v) for mixed
literals contain x positively for the current vertex, the resulting term s(x) will also always
contain x with a positive coefficient.

Example 4.10. We use the theory lemmas ¬(2a ≤ s)∨¬(s ≤ 2b)∨ a ≤ b and ¬(t ≤ 2a)∨
(2b ≤ t + 1)∨ b ≤ a to refute the conjunction of the labels of the tree interpolation problem
shown in Figure 4.2 on page 38. To compute the labels for the partial tree interpolants for
these clauses, we sum up for every node the projections onto the subtree (see Figure 4.6
on page 46 and Figure 4.14 on page 58 for the purification of the individual literals). The
resulting partial tree interpolants are shown in Figure 4.15.

7: ⊥

5: LA(2x5
¬(a≤b)− s,−1,2x5

¬(a≤b)− s≤ 0)

1: > 2: 2a≤ s

6: LA(s+2x6
¬(a≤b),−1,s+2x6

¬(a≤b) ≤ 0)

3: s≤ 2b 4: >
(a) Partial tree interpolant for the clause ¬(2a≤ s)∨¬(s≤ 2b)∨a≤ b

7: ⊥

5: LA(t +2x5
¬(b≤a),−1, t +2x5

¬(b≤a) ≤ 0)

1: t ≤ 2a 2: >

6: LA(2x6
¬(b≤a)− t−1,−1,2x6

¬(b≤a)− t ≤ 1)

3: > 4: 2b≤ t +1

(b) Partial tree interpolant for the clause ¬(t ≤ 2a)∨¬(2b≤ t +1)∨b≤ a

Fig. 4.15 Partial tree interpolants for the lemmas from linear arithmetic used to refute the conjunction of the
labels of the tree interpolation problem from Figure 4.2.

Note that the partial tree interpolants do not change when resolving these lemmas with
the input clauses 2a ≤ s, s ≤ 2b, t ≤ 2a, and 2b ≤ t + 1 to generate the clauses a ≤ b and
b ≤ a and computing the interpolants using Pudláks algorithm. To see this, we first remark
that the last case of rule (rule-tres) applies only if the pivot of the resolution is the vertex
containing this clause. For every vertex on the path from this leaf to root, we the first case

62 4 Tree Interpolants from Proofs

since all vertices outside that subtree project the pivot literal to >. The remaining cases use
the second case. Second, we remark that, besides the usual simplification and absorption of
neutral elements, i. e., F ∧> ≡ F , F ∧⊥ ≡⊥, F ∨⊥ ≡ F , and F ∨> ≡>, we also simplify
(⊥∨F)∧ (F ∨¬F)≡ F in the leaves where the fourth case of rule (rule-tres) applies. y

4.2.2.4 Pivoting of Mixed Literals

Now, we give the resolution rule for a step involving a mixed inequality a + b ≤ c as
pivot element. To simplify presentation, we fix a vertex v and omit the dependency onto
v. I. e., we write I to denote I(v) and x for an auxiliary variable xv. Furthermore, we as-
sume the mixed literal was never merged during resolution. In the following we denote
the auxiliary variable of the negated literal ¬(a + b ≤ c) with x¬(a+b≤c) and the auxili-
ary variable of a + b ≤ c with xa+b≤c. The intuition here is that x¬(a+b≤c) and −xa+b≤c
correspond to the same value between a and c− b. The partial interpolants combined by
a resolution step on pivot a + b ≤ c have form I1[LA(c1xa+b≤c + s1(x),k1,F1(x1,x))] and
I2[LA(c2x¬(a+b≤c)+ s2(x),k2,F2(x2,x))]. The result of the combination should have form
I1[I2[LA(s3(x),k3,F3(x))]]. We now show how to derive s3, k3 and F3 for both integer and
real arithmetic.

The basic idea is to find for ∃x.F1(x,x)∧F2(−x,x) (note that xa+b≤c = −x¬(a+b≤c)) an
equivalent quantifier-free formula F3(x). To achieve this we note that we only have to look
on the value of F1 for −k1 ≤ c1x¬(a+b≤c) + s1(x) ≤ 0, since outside of this interval F1 is
guaranteed to be true resp. false. The formula F3 must also be monotone and satisfy the range
condition. We choose

s3(x) = c2s1(x)+ c1s2(x),

and then F3 will be false for s3(x) > 0, since either F1(x,x) or F2(−x,x) is false. The value
of k3 must be chosen such that s3(x)<−k3 guarantees the existence of a value x with c1x+
s1(x) < −k1 and −c2x+ s2(x) < −k2. Hence, in the integer case, the gap between s2(x)+k2

c2

and −s1(x)−k1
c1

should be bigger than one. Then, c1c2 < c2(−s1(x)− k1)− c1(s2(x)+ k2). So
if we define

k3 = c2k1 + c1k2 + c1c2,

then there is a suitable x for s3(x)<−k3. For F3 we can then use a finite case distinction over
all values where the truth value of F1 is not determined. This suggests defining

F3(x) :≡

⌈
k1+1

c1

⌉∨
i=0

F1

(⌊
−s1(x)

c1

⌋
− i,x

)
∧F2

(
i−
⌊
−s1(x)

c1

⌋
,x
)

(int case)

In the real case, if k1 =−ε , the best choice is x= −s1(x)
c1

. Then, c1x+s1(x) = 0< ε guarantees
F1(x) is true. If k1 = 0, we need to consider two cases:

4.2 Theory Specific Interpolation 63

k3 :=

{
k2 if k1 =−ε

0 if k1 = 0

F3(x) :=

F2

(
s1(x)

c1
,x
)

if k1 =−ε

s3(x)< 0∨
(

F1

(
− s1(x)

c1
,x
)
∧F2

(
s1(x)

c1
,x
))

if k1 = 0

(real case)

Note that the formula of the integer case is asymmetric. If
⌈

k2+1
c2

⌉
<
⌈

k1+1
c1

⌉
we can replace

−s1 by s2, k1 by k2, and c1 by c2. This leads to a fewer number of disjuncts in F3. Also note
that we can remove F1 from the last disjunct of F3, as it will always be true.

With these definitions we can state the following lemmas.

Lemma 4.10. Let for i = 1,2, si(x) be linear terms over x, ci ≥ 0, ki ∈Z≥−1 (integer case) or
ki ∈{0,−ε} (real case), Fi(xi,x) monotone formulas with Fi(xi,x)=⊥ for cixi+si(x)> 0 and
Fi(xi,x) = > for cixi + si(x) < −ki. Let s3,k3,F3 be as defined above. Then F3 is monotone,
F3(x) =⊥ for s3(x)> 0 and F3(x) => for s3(x)<−ki.

Proof. Since F1 and F2 are monotone and they occur only positively in F3, F3 must also
be monotone. If s3(x) > 0, then −s1(x)

c1
< s2(x)

c2
. Hence, for every x ≤ −s1(x)

c1
, F2(−x,x) is

false since −c2x+ s2(x) > 0. By definition, every disjunct of F3 (except s3(x) < 0) contains
F2(−x,x) for such an x, so F3(x) is false.

Now assume s3(x) < −k3. For k1 = −ε in the real case, F3(x) = F2(− s1(x)
c1

) is true since
s1(x) + s2(x) < −k2. For k1 = 0, F3 is true by definition. In the integer case define y :=⌊
−s1(x)

c1

⌋
−
⌈

k1+1
c1

⌉
. This implies c1y ≤ −s1(x)− k1 − 1, hence F1(y,x) holds. Also c1y ≥

−s1(x)− k1− c1, hence

c1c2y+ c1s2(x)≥−s3(x)− c2k1− c1c2 > k3− c2k1− c1c2 = c1k2.

Therefore, F2(−y,x) holds. Since y is included in the big disjunction of F3, F3(x) is true. ut

Lemma 4.11. Let for i = 1,2, si(x) be linear terms over x, ci ≥ 0, ki ∈ Z≥−1 (integer case)
or ki ∈ {0,−ε} (real case), Fi(xi,x) monotone formulas with Fi(xi,x) =⊥ for cixi+si(x)> 0
and Fi(xi,x) => for cixi + si(x)<−ki. Let F3 be as defined above. Then

F3(x)↔ (∃x.F1(x,x)∧F2(−x,x))

Proof (for LA(Z)). Since F3 is a disjunction of F1(x,x)∧F2(−x,x) for different values of x,
the implication from left to right is obvious. We only need to show the other direction. For
this, choose x such that F1(x,x)∧F2(−x,x) holds. We show F3(x). We define y :=

⌊
−s1(x)

c1

⌋
−⌈

k1+1
c1

⌉
. This implies y≤ −s1(x)−k1−1

c1
. We show F3 by a case split on x1 < y.

Case x < y.

Since F2 is monotone and−x>−y, we have F2(−y,x). Also F1(y,x) holds since c1y+s1(x)<
−k1. This implies F3(x), since F1(y,x)∧F2(−y,x) is a disjunct of F3.

64 4 Tree Interpolants from Proofs

Case y≤ x.

Since F1(x,x) holds, c1x + s1(x) ≤ 0, hence x ≤
⌊
−s1(x)

c1

⌋
. Thus, x is one of the values⌊

−s1(x)
c1

⌋
− i for 0 ≤ i ≤

⌈
k1+1

c1

⌉
. This means the disjunction F3(x) includes F1(x,x) ∧

F2(−x,x). ut

Proof (for LA(Q)). In the case k1 = −ε , F1(
−s1(x)

c1
,x) is true. From the definition of F3, we

get the implication F3(x)→ ∃x.F1(x,x)∧F2(−x,x) for x = −s1(x)
c1

. If k1 = 0 and s3(x) < 0,

then s2(x)
c2

< −s1(x)
c1

and for any value x1 in between, F1(x,x)∧F2(−x,x) are true.
For the other direction assume that F1(x,x)∧F2(−x,x) holds. Since F1 is not false, x ≤

−s1(x)
c1

holds. If x = −s1(x)
c1

then F3 holds by definition. In the case k1 = 0 where x < −s1(x)
c1

,
we have s3(x) < 0, since F2(−x,x) is not false. In the case k1 = −ε , we need to show that
F2(

s1(x)
c1

,x) holds. This follows from x≤ −s1(x)
c1

and monotonicity of F2. ut

If the mixed pivot has been merged during resolution steps, the partial interpolants con-
tain multiple occurrences of LA terms which we abbreviate by LAi, i. e., they have form
I[LA1(s1,k1,F1)] . . . [LAn(sn,kn,Fn)] which we write as I[LAi]. We abbreviate the formula
I1[I2[LA311] . . . [LA31m]] . . . [I2[LA3n1] . . . [LA3nm]] by I1[I2[LA3i j]]. With this notation we get

mixcomb(t ≤ c, I1[LA1i(x)], I2[LA2 j(−x)]) :≡ I1[I2[LA3i j]].

We need the following lemma to prove correctness of the mixed combination.

Lemma 4.12. Let I1[LA1i], I2[LA2 j], and I1[I2[LA3i j]] as defined above. Then,

I1[I2[LA3i j]] ⇐⇒ ((∃x. I1[LA1i(x)]∧ I2[LA2 j(−x)])∨∀x. I1[LA1i(x)]).

Proof. We split the proof into three parts. First, we show ∀x. I1[LA1i(x)]→ I1[I2[LA3i j]]. For
each i, there exists xi such that LA1i(x) is false since s1i(x) > 0. Furthermore, the coefficient
of x in LA1i(x) is positive and this formula is monotone on x. We choose x = max(xi) and
conclude (∀x. I1[LA1i(x)]) ⇐⇒ I1[⊥] since for the chosen x, all LA1i(x) are ⊥. Furthermore
we have

∧
i, j⊥→ I2[LA3i j]. With Lemma 2.1 we get I1[I2[LA3i j]].

Next, we use Lemma 4.11 to compute for each i, j an xi j with

LA3i j→ LA1i(xi j)∧LA2 j(−xi j)

For every i, set xi = min{xi j|LA3i j}. If this set is empty, we choose xi such that LA1i(xi) holds.
Then, LA1i(xi) and LA3i j → LA2 j(−xi) hold for all i, j. We choose x = max{xi|I2[LA3i j]}. If
the set is empty, we choose an arbitrary value for xi. Then, I2[LA3i j]→ LA1i(x). Therefore,
I1[I2[LA3i j]]→ I1[LA1i(x)]. If the set was not empty, then I2[LA3i j] was true for i where x = xi.
Hence, I2[LA2 j(−x)] is true, since LA3i j→ LA2 j(−x). If the set was empty, then I1[⊥] is true,
hence ∀xI1[LA1i(x)] holds. ut

This lemma can be used to show that our instantiation of mixcomb for mixed inequalities
is correct.

Theorem 4.1 (Soundness of mixcomb instantiation for inequalities). Let t ≤ c be a mixed
literal. If I1 is a partial tree interpolant of C1 ∨ t ≤ c and I2 is a partial tree interpolant of

4.2 Theory Specific Interpolation 65

C2∨¬(t ≤ c), then I3 computed according to rule (rule-tres) is a partial tree interpolant for
C1∨C2.

Proof. We only consider the cases where t ≤ c is mixed in vertex vp or where vp =
mixedparent(t ≤ c). The remaining cases have proofs similar to those of Lemma 4.5. Fur-
thermore, we partition the children of vp into the sets Vm of children in which t ≤ c is mixed,
and Vr of children vc such that t ≤ c � vc = > since all symbols occur outside of the subtree
rooted at vc.

The symbol condition holds in both cases since, in the mixcomb rule, we remove the aux-
iliary variables of the literal created for vp. All other variables and symbols are still allowed
assuming I1 and I2 satisfy the symbol condition.

If t ≤ c is mixed in vp, we assume∧
v∈Vm

I1(v)[I2(v)[LAv
3i j]]∧

∧
v∈Vr

I1(v)∧ I2(v)∧F(vp)∧¬(C1∨C2) � vp

and show I1(vp)[I2(vp)[LAvp
3i j]] under the assumptions∧

v∈Vm

I1(v)[LAv
1i(xv)]∧

∧
v∈Vr

I1(v)

∧F(vp)∧¬(C1∨ t ≤ c) � vp |= I1(vp)[LAvp
1i (xp)] (4.3)∧

v∈Vm

I2(v)[LAv
2 j(−xv)]∧

∧
v∈Vr

I2(v)

∧F(vp)∧¬(C2∨¬(t ≤ c)) � vp |= I2(vp)[LAvp
2 j(−xp)] (4.4)

Note that t ≤ c � vp and (¬(t ≤ c)) � vp contain auxiliary variables for every vertex in vm and
the auxiliary variable xp

t≤c resp. xp
¬(t≤c) for the current vertex. In the remainder of this proof,

we use xp to denote xp
¬(t≤c).

From Lemma 4.12 and I1(v)[I2(v)[LAv
3i j]] we either get for each v ∈ Vm a xv such that

I1(v)[LAv
1i(x

v)]∧ I2(v)[LAv
2 j(−xv)], or there is at least one v ∈Vm such that ∀x. I1(v)[LAv

1i(x)]
holds.

In the first case we instantiate the variables for the children in the projections to the
witnesses of the existential quantifier and vp such that t ≤ c � vp and (¬t ≤ c) � vp hold,
i. e., we set xp =−∑i| lca(ai)=vp ciai +∑v∈Vm xv. Then, we get I1(vp)[LAvp

1i (x
p)] from (4.3) and

I2(vp)[LAvp
2 j(−xp)] from (4.3). Using Lemma 4.12 we get I1(vp)[I2(vp)[LAp

3i j]].
If for some children ∀x. I1(v)[LAv

1i(x)] holds, it holds for all v ∈ Vm. Using Lemma 4.12
we get I1(vp)[I2(vp)[LAp

3i j]].
If vp =mixedparent(t ≤ c), we have to show I1(vp)∨ I2(vp) from the assumptions∧

v∈Vm

I1(v)[I2(v)[LAv
3i j]]∧

∧
v∈Vr

I1(v)∧ I2(v)∧F(vp)∧¬(C1∨C2) � vp (4.5)

∧
v∈Vm

I1(v)[LAv
1i(xv)]∧

∧
v∈Vr

I1(v)∧F(vp)∧¬(C1∨ t ≤ c) � vp |= I1(vp) (4.6)

∧
v∈Vm

I2(v)[LAv
2 j(−xv)]∧

∧
v∈Vr

I2(v)∧F(vp)∧¬(C2∨¬(t ≤ c)) � vp |= I2(vp) (4.7)

66 4 Tree Interpolants from Proofs

Again, we split I1(v)[I2(v)[LAv
3i j]] according to Lemma 4.12. If for all v∈Vm ∀x. I1(v)[LAv

1(x)]
holds, we choose an x such that (¬t ≤ c) � vp holds. Then, we get I1(vp) from (4.6). Otherwise,
we get an xv for every v ∈ Vm. With these values, either (¬t ≤ c) � vp or t ≤ c � vp holds
yielding either I1(vp) or I2(vp) by (4.6) or (4.7). ut

4.3 Combining Theories

Typical problems in SMT contain literals from various theories. To combine these theories,
the Nelson–Oppen [75] combination method is typically used. In the remainder of this chapter
we show how to compute partial tree interpolants in the context of Nelson–Oppen based the-
ory combination. We focus the presentation on the combination of the theory of uninterpreted
functions with the theory of linear arithmetic.

4.3.1 Nelson–Oppen-based Theory Combination

In the Nelson–Oppen combination methods, theories are required to only share the equality
symbol. Furthermore, theories need to be stably infinite. A theory is stably infinite if and only
if every finite model embeds into an infinite one. This property is satisfied by most theories.
The theory of uninterpreted functions and the theory of linear arithmetic considered in this
thesis are two prominent examples of stably infinite theories.

If both requirements mentioned above are satisfied, two theories can be combined using
a procedure consisting of three steps. First, the input formula is purified such that every
literal only contains symbols interpreted by one or both theories. This is achieved by adding
new symbols to the formula. Consider the formula f (x+1) = y where f is an uninterpreted
function, and x and y are integers. Then, purification creates the equisatisfiable formula f (s)=
y∧ s = x+1. The atom f (s) = y is then interpreted by the theory of uninterpreted functions
while s = x+1 is interpreted by the theory of linear arithmetic. Purification is saturated until
completion yielding a formula that can be separated w. r. t. the different theories.

Then, the algorithm guesses an arrangement of the new symbols introduced during purific-
ation. This arrangement is a set of equalities and disequalties between these symbols. Nelson
and Oppen showed that sharing only equalities between the theories is sufficient to amalgam-
ate the models generated by every theory for the symbols interpreted by this theory into a
model for the original input formula. For convex theories, the arrangement is typically de-
duced from the formula since entailed equalities can cheaply be propagated.

Finally, solving is preformed of the purified formula and the arrangement. If the solver
returns unsatisfiability, a new arrangement is tested until either a satisfiable arrangement is
found or all arrangements are proven unsatisfiable.

Various improvements to the procedure have been proposed in recent years. These im-
provements reduce the number of assignments guessed during the second phase of the al-
gorithm. Regardless of the improvements of the combination procedure, only equalities
between terms shared by multiple theories need to be propagated. If for two new symbols

4.3 Combining Theories 67

equality between these symbols is not propagated, the individual theory solvers generate
(partial) models where these symbols are assigned different values.

In the context of interpolation, the equalities of the arrangement might mix symbols pro-
duced by the purification of the labelling of different vertices. Then, the equality literal might
be mixed. Furthermore, this literal might occur in theory lemmas among with other mixed
literals and non-mixed literals. Note however that theory combination only creates equalities
for symbols created during purification. These symbols represent terms already present in the
input. Thus, theory combination does not create new terms.

Additionally, theories might introduce theory combination clauses to relate (dis-)equalities
to the operators used by the theory. Consider, e. g., the theory of linear arithmetic. Equality is
expressed by the clauses s 6= t∨s≤ t and s 6= t∨s≥ t where only s≤ t and s≥ t are interpreted
by the theory of linear arithmetic. We use the trichotomy clause s = t ∨¬(s ≤ t)∨¬(s ≥ t)
to express disequality. These clauses can be seen as a way to propagate (dis-)equalities from
resp. to the theory of linear arithmetic. Note that, in the context of interpolation, these clauses
might be mixed.

4.3.2 Interpolating the Combination of Uninterpreted Functions and
Linear Arithmetic

To combine linear arithmetic with the theory of uninterpreted functions, we use trichotomy
clauses s = t ∨¬(s ≤ t)∨¬(s ≥ t), and clauses s 6= t ∨ s ≤ t and s 6= t ∨ s ≥ t interpreting
equality in the vocabulary of linear arithmetic. These clauses might occur in a proof tree.
Thus, we need to compute partial tree interpolants for them. We distinguish two different
cases.

In the first case we assume both literals are not mixed in any vertex of the interpolation
tree. Then, we can compute an interpolant for every vertex by conjoining the projections of
the negated literals onto v, i. e., we set

I(v) = (s 6= t) � v∧ (s≥ t) � v∧ (s≤ t) � v

I(v) = (s = t) � v∧ (s > t) � v

for s = t ∨¬(s≤ t)∨¬(s≥ t) resp. s 6= t ∨ s≤ t.
In the second case, the literals are mixed. Note however that we only consider a limited

form of mixed literals. In the Nelson–Oppen combination method, we only generate new
equalities between terms that are shared between the two theories. Since in all combination
clauses, an equality is created, the left hand side and the right hand side must already exist in
the input. These equalities might contain shared symbols, but the left hand side and the right
hand side have to contain at least one symbol local to a subtree. We will denote these symbols
a and b for the symbol containing a part local to the current subtree, resp. local to outside of
the current subtree.

To compute partial tree interpolants we first note that one of the literals is mixed if and
only it the other literals of the clauses are mixed, too. Thus, the mixedparent vertices of all
literals are the same. Furthermore, for all vertices where mixedparent is not a descendent,
all symbols occur outside of the subtree. This already gives us two important cases. Two

68 4 Tree Interpolants from Proofs

more cases are given by the fact that the least common ancestor of a might be different from
mixedparent. If mixedparent is in the subtree of the current vertex, both symbols occur inside
the subtree. These cases lead to the following definition.

Definition 4.3. Let δ ∈ {−1,1}, a = b be a mixed literal, and v∗ = mixedparent(·) be the
mixed parent of the mixed literals. Then,

I(v) =


⊥ if v∗ ∈ st(v)
−δya=b + x¬(δa−δb≤0) ≤ 0 if a ∈ symb(v)∧ v ∈mixed(·)
δya=b + x¬(δa−δb≤0) ≤ 0 if b ∈ symb(v)∧ v ∈mixed(·)
> otherwise

I(v) =



⊥ if v∗ ∈ st(v)
x¬(a−b≤0)+ x¬(b−a≤0) ≤ 0∧
(x¬(a−b≤0)+ x¬(b−a≤0) ≥ 0→ x¬(a−b≤0) ∈ Ya6=b) if a ∈ symb(v)∧ v ∈mixed(·)
x¬(a−b≤0)+ x¬(b−a≤0) ≤ 0∧
(x¬(a−b≤0)+ x¬(b−a≤0) ≥ 0→−x¬(a−b≤0) ∈ Ya6=b) if b ∈ symb(v)∧ v ∈mixed(·)
> otherwise

are partial tree interpolants for the theory combination clauses a 6= b∨ δa− δb ≤ 0 resp.
a = b∨ a− b < 0∨ b− a < 0. To ease presentation we omitted the reference to the current
vertex.

Lemma 4.13. The formulas given in Definition 4.3 satisfy the conditions of partial tree inter-
polants.

Proof. We first note that the formulas satisfy the restrictions of our interpolation scheme. The
formulas could easily be folded into LA and EQ form. Then, all variables created by projec-
tion of arithmetic literals occur positively in the sum, the set-valued variable Ya6=b occurs only
if a 6= b occurs in the negation of the trichotomy clause and only in the correct position for
our pattern.

Next we have to show tree inductivity. Consider Cδ . If all symbols occur outside the sub-
tree of v, the projection of the literals is >. Thus, > satisfies the conditions for partial tree
interpolants in this case. Now assume a ∈ symb(v) and v ∈ mixed(·). We get two cases. If
v = lca(a), the projection of ¬Cδ onto v yields a = ya=b∧−δa+ x¬(δa−δb≤0) ≤ 0. Note that
the clause is not mixed in the children since both symbols occur outside of the subtree rooted
at a child. Hence, the interpolants of the children are > by induction hypothesis. We con-
clude that −δya=b + x¬(δa−δb≤0) ≤ 0 follows from the interpolants of the children and the
projection of the negated clause.

If v = lca(b), we get ya=b = b∧ δb+ x¬(δa−δb≤0) ≤ 0 when projecting ¬Cδ onto v. The
interpolant δya=b + x¬(δa−δb≤0) ≤ 0 follows from this formula and the interpolants of the
children which are again >.

Now let v be a vertex such that the literals are mixed in v, but v is not v∗. Since the
argumentation is symmetric, we assume b only occurs outside of the subtree. Then, we get
the projection yc

a=b = yp
a=b∧−xc

¬(δa−δb≤0)+ xp
¬(δa−δb≤0) ≤ 0. With the interpolant δyc

a=b +

xc
¬(δa−δb≤0) ≤ 0 we get δyp

a=b + xp
¬(δa−δb≤0) ≤ 0.

4.3 Combining Theories 69

Finally consider v = v∗. Let v1 and v2 be the children of v∗ in which the literals are mixed.
Then, the projection of the negated clause is yv1

a=b = yv2
a=b∧−xv1

¬(δa−δb≤0)−xv2
¬(δa−δb≤0) ≤−ε

since v∗ is neither lca(a) nor lca(b). Together with the interpolants−δyv1
a=b+xv1

¬(δa−δb≤0)≤ 0
and δyv2

a=b + xv2
¬(δa−δb≤0) ≤ 0 from the two mixed children we get 0 ≤ −ε which is contra-

dictory. Thus, ⊥ is a correct interpolant for v and, by induction, all vertices above v.
Now consider trichotomy. Again, if all symbols occur outside the subtree of v, all projec-

tions are > and > is a valid interpolant. If v = lca(a), we get the projection a ∈ Ya6=b∧−a+
x¬(a<b) ≤ 0∧ a+ x¬(b<a) ≤ 0. Summing up the inequalities we get x¬(a<b) + x¬(b<a) ≤ 0.
Furthermore, if x¬(a<b) = −x¬(b<a) holds, x¬(a<b) = a has to hold. Thus, in this case,
x¬(a<b) ∈ Ya 6=b follows from the projection.

If v = lca(b) we get b ∈ Ya6=b ∧ b+ x¬(a<b) ≤ 0∧−b+ x¬(b<a) ≤ 0. Reasoning similar
than before yields the desired interpolant. Note that in this case, if x¬(a<b) = −x¬(b<a), then
x¬(a<b) =−b.

Now assume v is a vertex between lca(a) and v∗. Then, the projection of trichotomy onto v
gives Y c

a6=b ⊆Y p
a6=b∧−xc

¬(a<b)+xp
¬(a<b) ≤ 0∧−xc

¬(b<a)+xp
¬(b<a) ≤ 0. Furthermore, by induc-

tion hypothesis, we get for all non-mixed children the interpolant > and for the mixed chil-
dren xc

¬(a<b)+ xc
¬(b<a) ≤ 0∧ (xc

¬(a<b)+ xc
¬(b<a) ≥ 0→ xc

¬(a<b) ∈ Y c
a6=b. Combining the linear

constraints we get xp
¬(a<b)+xp

¬(b<a) ≤ 0. If xp
¬(a<b) =−xp

¬(b<a), we get xc
¬(a<b)+xc

¬(b<a) ≥ 0
and xc

¬(a<b) = xp
¬(a<b). Thus, in this case, xp

¬(a<b) ∈ Y c
a6=b ⊆ Y p

a6=b yields the desired formula.
Finally, let v = v∗. Let v1 and v2 be the two children in which the clauses are mixed. Then,

the projection is Y v1
a6=b∩Y v2

a6=b = /0∧−xv1
¬(a<b)−xv2

¬(a<b) ≤ 0∧−xv1
¬(b<a)−xv2

¬(b<a) ≤ 0. From the
induction hypothesis we get for the non-mixed children the interpolant>, for the child whose
subtree contains a we get (w. l. o. g. we assume this child has index 1) xv1

¬(a<b)+ xv1
¬(b<a) ≤

0∧ (xv1
¬(a<b)+ xv1

¬(b<a) ≥ 0→ xv1
¬(a<b) ∈ Y v1

a6=b) and for the other mixed child we get xv2
¬(a<b)+

xv2
¬(b<a) ≤ 0∧ (xv2

¬(a<b)+ xv2
¬(b<a) ≥ 0→−xv2

¬(a<b) ∈ Y v2
a6=b). Combining the linear constraints

we get xv1
¬(a<b) =−xv2

¬(a<b). Thus we get xv1
¬(a<b) ∈ Y v1

a 6=b and xv1
¬(a<b) =−xv2

¬(a<b) ∈ Y v2
a6=b. This

is contradictory with Y v1
a6=b∩Y v2

a6=b = /0. Thus, ⊥ is an interpolant for v∗ and all vertices above
it. ut

Example 4.11. In our running example shown in Figure 4.2 on page 38, we use the trichotomy
clause a = b∨¬(b ≤ a)∨¬(a ≤ b) to refute the conjunction of the labels of the vertices in
the input tree. We now compute a partial tree interpolant for this clause.

7: ⊥

5:
x5

b≤a + x5
a≤b ≤ 0∧

(x5
b≤a + x5

a≤b ≥ 0→ EQ(X5
a6=b,x

5
b≤a))

1: > 2: >

6:
x6

b≤a + x6
a≤b ≤ 0∧

(x6
b≤a + x6

a≤b ≥ 0→ EQ(X6
a6=b,−x6

b≤a))

3: > 4: >

Fig. 4.16 Partial tree interpolant for the clause a = b∨¬(b≤ a)∨¬(a≤ b).

Since the literals are only mixed in vertices 5 and 6, the labels for the other vertices are
trivial. In vertex 5, we have a ∈ symb(v5), but not b. Thus, we have the second case of Defin-

70 4 Tree Interpolants from Proofs

ition 4.3. We use the variables x5
b≤a, x5

a≤b, and X5
a6=b in the projection of the literals b ≤ a,

a ≤ b, and a 6= b, respectively. Similarly, we compute the label for vertex 6. But this time,
b ∈ symb(v6), while a is not. Thus, the third case applies. Note that there is a small but sig-
nificant difference between case two and three in the EQ term. The auxiliary variable x5

b≤a
occurs positively in the EQ term in vertex 5.

We can write the labels in LA form. Let xi abbreviate xi
b≤a + xi

a≤b. Then, we can write for
i = 5,6 the label of vertex i as LA(xi,0,xi ≤ 0∧ (xi ≥ 0→ EQ(X i

a 6=b,(−1)δi6xi
b≤a)) where δi6

is the Kronecker delta, i. e., it is 1 if and only if i = 6 and 0 in all other cases. y

4.4 An Example for the Combined Theory

7: >

5: f (a) = q

1: t ≤ 2a 2: 2a≤ s

6: f (b) 6= q

3: s≤ 2b 4: 2b≤ t +1

Fig. 4.17 Tree Interpolation Problem from Example 4.2

We now show how to compute a tree interpolant for the tree interpolation problem from
Example 4.2 (the interpolation tree is shown again in Figure 4.17). We first show how to
derive a tree interpolant for this problem. Then, we prove correctness of the generated tree
interpolant.

4.4.1 Derivation of a Tree Interpolant

The complete proof of unsatisfiability of the conjunction of the labels of the vertices uses
a lot of resolution steps. We already considered in previous examples how to use resolution
on theory lemmas and input clauses to create the unit clauses a 6= b, b ≤ a, and a ≤ b and
the corresponding partial tree interpolants. We first restate the partial tree interpolants in
Figure 4.18 before combining them with the interpolant for the trichotomy clause presented in
Example 4.11. To simplify presentation, let Fi[t] := xi

b≤a +xi
a≤b ≤ 0∧ (xi

b≤a +xi
a≤b ≥ 0→ t).

We compute the final interpolant from the partial tree interpolants of these clauses. For
this, we annotate the resolution proof

4.4 An Example for the Combined Theory 71

7: ⊥

5: f (x5
a=b) = q

1: > 2: >

6: f (x6
a=b) 6= q

3: > 4: >
(a) Clause a 6= b.

7: ⊥

5: LA(2x5
¬(a≤b)− s,−1,2x5

¬(a≤b)− s≤ 0)

1: > 2: 2a≤ s

6: LA(s+2x6
¬(a≤b),−1,s+2x6

¬(a≤b) ≤ 0)

3: s≤ 2b 4: >
(b) Clause a≤ b.

7: ⊥

5: LA(t +2x5
¬(b≤a),−1, t +2x5

¬(b≤a) ≤ 0)

1: t ≤ 2a 2: >

6: LA(2x6
¬(b≤a)− t−1,−1,2x6

¬(b≤a)− t ≤ 1)

3: > 4: 2b≤ t +1

(c) Clause b≤ a.

7: ⊥

5: F5[EQ(X5
a 6=b,x

5
b≤a)]

1: > 2: >

6: F6[EQ(X6
a 6=b,−x6

b≤a)]

3: > 4: >
(d) Clause a = b∨¬(b≤ a)∨¬(a≤ b).

Fig. 4.18 Partial tree interpolants for the clauses containing mixed literals. Derivation of the labels were
shown in Example 4.10 and Example 4.11.

...
a≤ b

...
b≤ a

a = b∨¬(b≤ a)∨¬(a≤ b)

...
a 6= b

¬(b≤ a)∨¬(a≤ b)
¬(a≤ b)
⊥

with partial tree interpolants. The final interpolant will be the annotation of the empty clause.
In the first resolution step, we combine the partial tree interpolant for trichotomy with

the partial tree interpolant for the clause a 6= b. Figure 4.19 shows the resulting partial tree
interpolant after the resolution step with the pivot a = b. The labels for the vertices 1 to
4 and 7 are trivial since the pivot is not mixed in these vertices. In vertices 5 and 6 we
use the instantiation of mixcomb for uninterpreted functions. For vertex 5, we identify the
components I1 ≡ F5 and I2(x) ≡ f (x) = q. We apply mixcomb and compute I1[I2(x5

b≤a)] ≡

72 4 Tree Interpolants from Proofs

7: ⊥

5: F5[f (x5
b≤a) = q]

1: > 2: >

6: F6[f (−x6
b≤a) 6= q]

3: > 4: >

Fig. 4.19 Partial tree interpolant for the clause ¬(b≤ a)∨¬(a≤ b).

F5[f (x5
b≤a) = q]. We compute the label for vertex 6 as I1[I2(−x6

b≤a)] ≡ F6[f (−x6
b≤a) 6= q],

were I1 ≡ F6 and I2(x)≡ f (x) 6= q.
The next resolution step has pivot b ≤ a. Since this literal is mixed, we use the instanti-

ation of mixcomb to mixed inequalities. Again, the labels for vertices 1 to 4 and 7 are trivial
given that b ≤ a is not mixed in these vertices. To compute the label for vertex 5, we com-
bine LA(2x5

b≤a− s,−1,2x5
b≤a− s ≤ 0) with LA(x5

b≤a + x5
a≤b,0,F [f (x5

b≤a) = q]). From these
patterns we extract the components

c1 = 2 s1 = t k1 =−1 F1(x)≡ t +2x≤ 0

c2 = 1 s2 = x5
a≤b k2 = 0 F2(x)≡ F [f (x) = q]

which lead to the components s3 = t + 2x5
a≤b and k3 = 2 · 0 + 1 · (−1) + 2 · 1 = 1. Since

k1 = −1, we get one disjunction in the resulting formula. We instantiate the definition of F3
from Section 4.2.2.4 and compute

G5(x) =−
⌊
−t
2

⌋
+ x≤ 0∧

(
−
⌊
−t
2

⌋
+ x≥ 0→ f

(
−
⌊
−t
2

⌋)
= q
)
.

Similarly, we combine the patterns LA(2x6 − t − 1,−1,2x6 − t ≤ 1) with LA(x6
b≤a +

x6
a≤b,0,F6[f (−x6

b≤a) 6= q]) to compute the label for vertex 6. From the components

c1 = 2 s1 =−t−1 k1 =−1 F1(x)≡ 2x− t ≤ 1

c2 = 1 s2 = x6
a≤b k2 = 0 F2(x)≡ F [f (−x) 6= q]

we compute the components s3 =−t−1+2x6
a≤b and k3 = 1. Again, since k1 =−1, we only

get one disjunct in the resulting formula which we will call G6. We compute this formula
from the components above and the definition in Section 4.2.2.4:

G6(x) =−
⌊

t +1
2

⌋
+ x≤ 0∧

(
−
⌊

t +1
2

⌋
+ x≥ 0→ f

(⌊
t +1

2

⌋)
6= q
)

Note that we simplified the argument of f by removing the double negation that would occur
when instantiating x6

b≤a in f (−x6
b≤a) 6= q with−

⌊ t+1
2

⌋
. The partial tree interpolant computed

for the clause ¬(a≤ b) is shown in Figure 4.20.
In the final resolution step, we resolve on a ≤ b to generate the empty clause and, thus,

refuting the conjunction of the labels of the input interpolation problem. Again, the literal is
mixed and we use the instantiation of mixcomb to inequalities. Since a≤ b is only mixed in

4.4 An Example for the Combined Theory 73

7: ⊥

5: LA(t +2x5
a≤b,1,G5(x5

b≤a))

1: t ≤ 2a 2: >

6: LA(−t−1+2x6
a≤b,1,G6(−x6

b≤a))

3: > 4: 2b≤ t +1

Fig. 4.20 Partial tree interpolant for the clause ¬(a≤ b).

vertices 5 and 6, the labels for the other vertices a computed as a disjunction (for vertex 7) or a
conjunction (for vertices 1 to 4) of the labels of the partial tree interpolants of the antecedents.

For vertex 5, we combine the patterns LA(2x5
a≤b − s,−1,2x5

a≤b − s ≤ 0) and LA(t +
2x5

a≤b,1,G5(x5
b≤a)). From the components

c1 = 2 s1 =−s k1 =−1 F1(x)≡ 2x− s≤ 0
c2 = 2 s2 = t k2 = 1 F2(x)≡ G5(x)

we get s3 = 2t−2s, k3 =−1 ·2+1 ·2+2 ·2 = 4. Since k1 =−1, we get only one disjunction
in the resulting formula. The corresponding instantiation for x5

a≤b is −
⌊ s

2

⌋
. The resulting

formula can be expressed as G5
(
−
⌊ s

2

⌋)
.

For vertex 6, we combine the patterns LA(s+2x6
a≤b,−1,s+2x6

a≤b ≤ 0) and LA(−t−1+
2x6

a≤b,1,G6(−x6
b≤a)). The components

c1 = 2 s1 = s k1 =−1 F1(x)≡ s+2x≤ 0
c2 = 2 s2 =−t−1 k2 = 1 F2(x)≡ G6(x)

give us s3 = 2s+ 2(−t− 1) = 2s− 2t− 2 and k3 = 1 · 2− 1 · 2+ 2 · 2 = 4. Again, k1 = −1
leads to only one disjunct in the resulting formula. The corresponding instantiation for x6

a≤b
is −

⌊−s
2

⌋
and the resulting formula is G6

(
−
⌊−s

2

⌋)
.

7: ⊥

5:
−
⌊−t

2

⌋
−
⌊ s

2

⌋
≤ 0∧(

−
⌊−t

2

⌋
−
⌊ s

2

⌋
≥ 0→ f

(
−
⌊−t

2

⌋)
= q
)

1: t ≤ 2a 2: 2a≤ s

6:
−
⌊ t+1

2

⌋
−
⌊−s

2

⌋
≤ 0∧(

−
⌊ t+1

2

⌋
−
⌊−s

2

⌋
≥ 0→ f

(⌊ t+1
2

⌋)
6= q
)

3: s≤ 2b 4: 2b≤ t +1

Fig. 4.21 Tree interpolant for the tree interpolation problem from Example 4.2.

Since we derived the empty clause, no resolution step has to be done on this clause. Thus,
the LA pattern is no longer needed and we simply expand it to its third component. The
resulting interpolant is shown in Figure 4.21.

74 4 Tree Interpolants from Proofs

4.4.2 Correctness of the Generated Interpolant

To show correctness of the generated tree interpolant shown in Figure 4.21, we have to proof
that the tree interpolant satisfies the conditions for tree interpolants given in Section 4.1.

Label of the root is ⊥.

This condition is trivially satisfied by the root (vertex 7) which is labelled with ⊥.

For all vertices, the interpolant label of the children and the input label of the vertex imply
the interpolant label of the vertex.

This condition is trivial for the leaves (vertices 1 to 4) where the interpolant label equals the
input label.

Next we consider vertex 5. We have t ≤ 2a ≤ s∧ f (a) = q from the interpolant labels
of the children and the input label of vertex 5. We first show −

⌊−t
2

⌋
−
⌊ s

2

⌋
≤ 0. Using the

simplification −b−xc= dxe, we get
⌈ t

2

⌉
≤
⌊ s

2

⌋
. If t < s, this formula holds trivially. If t = s,

we have to show that t is even. This follows directly from t ≤ 2a ≤ s and t = s. Second, we
show f

(⌈ t
2

⌉)
= q if

⌈ t
2

⌉
=
⌊ s

2

⌋
. If t is even, there is some i such that t = 2i. Then,

⌈ t
2

⌉
=

i =
⌊ s

2

⌋
gives us two possible values for s: 2i and 2i+ 1. In both cases, the only even value

between t and s is 2i. Thus, i = a and
⌈ t

2

⌉
= a. With f (a) = q we get f

(⌈ t
2

⌉)
= q. Finally

we notice that −
⌊−t

2

⌋
−
⌊ s

2

⌋
≤ 0∧

(
−
⌊−t

2

⌋
−
⌊ s

2

⌋
≥ 0→ f

(
−
⌊−t

2

⌋)
= q
)

is equivalent to
the formula

⌈ t
2

⌉
≤
⌊ s

2

⌋
∧
(⌈ t

2

⌉
=
⌊ s

2

⌋
→ f

(⌈ t
2

⌉)
= q
)

which was used in the argumentation
above.

Next we consider vertex 6. The argumentation is similar than in the previous case. From
−
⌊ t+1

2

⌋
−
⌊−s

2

⌋
≤ 0 we get

⌈ s
2

⌉
≤
⌊ t+1

2

⌋
which is implied by s≤ 2b≤ t+1. If equality holds,

we conclude
⌊ t+1

2

⌋
= b. With f (b) 6= q we get f

(⌊ t+1
2

⌋)
6= q.

Finally, we consider vertex 7. From −
⌊−t

2

⌋
−
⌊ s

2

⌋
≤ 0 we get

⌈ t
2

⌉
≤
⌊ s

2

⌋
and from

−
⌊ t+1

2

⌋
−
⌊−s

2

⌋
≤ 0 we get

⌈ s
2

⌉
≤
⌊ t+1

2

⌋
. If t is the even integer 2i, we have

⌈ t
2

⌉
=
⌈ 2i

2

⌉
= i

and
⌊ t+1

2

⌋
=
⌊ 2i+1

2

⌋
= i. Thus,

⌈ t
2

⌉
=
⌊ t+1

2

⌋
. If t is the odd integer 2i− 1, we have

⌈ t
2

⌉
=⌈ 2i−1

2

⌉
= i =

⌊ 2i
2

⌋
=
⌊ t+1

2

⌋
. In both cases we have

⌈ t
2

⌉
=
⌊ t+1

2

⌋
= i. Thus, we have i ≤

⌊ s
2

⌋
and

⌈ s
2

⌉
≤ i. To satisfy both conditions at the same time, s has to be the even integer 2i.

Thus, we have −
⌊−t

2

⌋
−
⌊ s

2

⌋
= 0 and −

⌊ t+1
2

⌋
−
⌊−s

2

⌋
= 0. Since

⌈ t
2

⌉
=
⌊ t+1

2

⌋
we derive

unsatisfiability from f
(
−
⌊−t

2

⌋)
= q and f

(⌊ t+1
2

⌋)
6= q.

Symbol condition is satisfied.

Figure 4.5 on page 41 shows the symbols present in a subtree. To check the symbol condition,
we have to find for every vertex and every symbol occurring in the interpolant label of the
vertex a vertex inside the subtree and a vertex outside the subtree such that the symbol occurs
in this vertex.

4.4 An Example for the Combined Theory 75

The symbol conditions holds trivially for the root. The symbols occurring in the subtree
rooted at vertex 5 and those occurring in the subtree rooted at vertex 6 only differ in a resp.
b. Thus, in both vertices, t,s, f ,q occur inside and outside of the subtree. The cases for the
leaves are trivial to check.

Since all conditions for a tree interpolant are satisfied, the labelling function shown in
Figure 4.21 is correct.

Chapter 5
SMTInterpol

The techniques presented in the previous chapters are implemented in our interpolating
SMT solver SMTInterpol [21]. SMTInterpol proved competitive to other SMT solvers
when solving SMT queries. It regularly participates in the SMT solver competitions SMT-
COMP [3, 26]. Various version of SMTInterpol were evaluated during SMT-EVAL 2013 [27].
In 2014, SMTInterpol received a Gödel medal for ranking second in the SMT competition.
Since its introduction in 2012, SMTInterpol also participates the application track [14]. This
track simulates interaction between the solver and a user by repeatedly posing satisfiability
problems to the solver. Unfortunately, this track does not cover interpolation which represents
the major usage of SMTInterpol.

SMTInterpol is written in Java. It has a rich API which follows closely the extension to the
SMTLIB 2 standard [4]. We restrict the presentation of SMTLIB features in this chapter to
those added by SMTInterpol that are described in this thesis. For standard features We refer
to the tutorial [25].

5.1 Architecture

In this section, we will shortly explain the different components of SMTInterpol and the
techniques implemented by these components.

User Interaction

SMTInterpol supports the SMTLIB [4] script language and provides a Java API modelled
after the commands of this language through its Script interface. Users can either give
commands via an SMTLIB file or the standard input channel of the solver, or use the API.

CNF Conversion

Every asserted formula gets converted into Conjunctive Normal Form (CNF), which is a
conjunction of disjunctions of literals. SMTInterpol uses a variant of the encoding proposed
by Plaisted and Greenbaum [78] to convert a formula into CNF. If production of assignments

77

78 5 SMTInterpol

to named Boolean terms contained in the input formula is enabled, SMTInterpol uses Tseitin
encoding [86] for the named term. The term in the input is then replaced by a proxy literal
and the corresponding definitions are added to the clause database of the DPLL core. Tseitin
encoding ensures that the DPLL core propagates the correct value to the proxy literal.

Preprocessing

Various preprocessing techniques for SMT formulas exist. SMTInterpol only includes some
trivial preprocessing rules. These preprocessing rules are designed to remove unnecessary
parts of the formula by absorption or idempotency. For integer division and modulo, SMTInt-
erpol creates a new variable representing the result of the division or modulo operation. Then,
we add axioms to relate the new variable to the division or the modulo. For example, if t

c for
an integer-valued term t and an integral constant c occurs in the input, we generate an aux-
iliary variable x, replace t

c by x and add the axioms c · x ≤ t and t− |c| < x. These axioms
represent a truncation of the division when considered over the reals.

SMTInterpol does not contain sophisticated preprocessing techniques to handle term if-
then-else constructs [61]. Instead, we use an encoding based on a new variable that captures
the value of the term if-then-else and suitable axioms.

Note that all these preprocessing steps are applied to one formula at a time. SMTInterpol
does not simplify a formula with respect to the previously asserted formulas. We would also
need to justify such simplifications when producing interpolants.

DPLL Core

SMTInterpol follows the DPLL(T) paradigm [46]. The DPLL engine [31, 30] serves as a
truth enumerator and communicates with a set of satellite theories. It is implemented as a
custom-build SAT solver that can also handle creation of new literals during solving. The
core is able to log resolution proofs.

Satellite Theories

SMTInterpol currently contains two satellite solvers: one for uninterpreted functions and one
for linear arithmetic. The solver for the theory of uninterpreted functions is based on congru-
ence closure [34]. The solver for linear arithmetic implements a variant of Simplex [39]. Ad-
ditionally, it uses the “cuts from proofs” [35] technique to deal with integer or mixed integer
problems. Theories are combined using model-based theory combination [32]. Every satellite
solver can propagate literals to the DPLL core. The core might ask the satellite solver for an
explanation of the propagation in form of a clause. In this case, the satellite solvers provide a
clause annotated with enough information to reconstruct the internal proof of unsatisfiability.

The solver for uninterpreted functions provides a trace of the steps used to connect the
terms that should not be equal. The trace omits reflexivity and symmetry steps to reduce the
overhead of proof generation.

The solver for the theory of linear arithmetic provides Farkas coefficients such that the
weighted sum of the negation of the literals in the clause yields a conflict.

5.2 Interpolation 79

Models and Proofs

SMTInterpol can produce models for satisfiable formulas and resolution proofs for unsat-
isfiable formulas. From these proofs, SMTInterpol can extract unsatisfiable cores or Craig
interpolants.

Interpolants

The architecture of the interpolation engine follows roughly the DPLL(T) paradigm: A core
interpolator produces partial interpolants for the resolution steps while theory specific inter-
polators [70, 24] produce partial interpolants for T -lemmas. In the presence of mixed literals,
i. e., literals that do not occur in any block of the interpolation problem, special mixed literal
interpolators combine partial interpolants according to the rules presented in the previous
chapters.

5.2 Interpolation

To support interpolation, SMTInterpol extends the SMTLIB standard with a non-standard
get-interpolants command. This command expects as parameters a description of the
interpolation problem. To add a formula to an interpolation problem, it has to be named,
i. e., asserted using the command (assert (! formula :named Name)). A binary
interpolation problem is the simplest form supported by SMTInterpol. To specify a binary
interpolation problem, the names of two formulas have to be given. The first name represents
the A part and the second name the B part of the binary interpolation problem. All other parts,
if named or not, are considered as extension to the background theory. Thus, all their symbols
are assumed shared and might appear in the interpolant. SMTInterpol supports combination
of multiple named formulas when specifying a part through the and connector.

If more than two parameters are supplied, an inductive sequence of interpolants is com-
puted. Since a query for a sequence of interpolants can be seen as a restricted form of a query
for tree interpolants, we encode trees in a similar way than sequences. The following EBNF
describes our tree interpolation encoding:

tree ::= symbol | subtreessymbol

subtrees ::= tree | tree(subtrees)

The non-terminal symbol matches a name of a named formula or the conjunction of such
names. The first rule encodes a tree as either a single symbol (for a single-node tree) or as the
encoding of the subtrees of the root vertex followed by the symbol labeling the root vertex.
The encoding of the first child requires no parenthesis (thus yielding a simple encoding for a
sequence), but its siblings need to be parenthesized to encode the tree structure. Note that the
grammar above is LALR(1) and is easy to parse. The formulas appear in the same order as
in a post-order traversal of the tree. E. g., to compute the interpolants for the tree depicted in
Figure 5.1, the command is

80 5 SMTInterpol

φ1 φ2

φ3 φ4

φ5 φ6

Fig. 5.1 Example Formula Tree

(get-interpolants phi1 phi2 (phi3 phi4) phi5 phi6)

The command can be used after a satisfiability check returned unsat and before a command
that changes the assertion stack of the solver. Interpolant computation can be redone with a
different partition by calling get-interpolants again with different arguments.

The solver replies to this command with a parenthesized sequence of interpolants (I1
I2 ...In-1) that correspond to the post-order traversal of the tree. The last interpolant,
which is the interpolant false annotating the root vertex, is omitted from the returned se-
quence. The tree structure is also omitted from the output. Note that this output unifies binary
interpolation, sequence interpolation, and tree interpolation since they can all be expressed as
tree interpolation.

Since SMTInterpol extracts interpolants from proof trees, proof production or interpolant
production has to be enabled. This is done by setting the options :produce-proofs resp.
:produce-interpolants to true before setting the logic. Note however that these
options are not synonyms in SMTInterpol. Since we do not simplify input formulas across
different assertions, we do not need to track the conversion from an assertion into CNF if we
want to compute interpolants. This partial tracking removes some memory overhead. Thus,
if only interpolants are desired, enabling only interpolants is cheaper than enabling complete
proofs.

5.3 New Literals

As mentioned before, literals that do not occur in the input formulas pose a major difficulty
to interpolation. We have several sources for such new literals in SMTInterpol. Some of these
sources are due to common solving techniques, others are specific to SMTInterpol.

Theory Combination

SMTInterpol uses a variant of model-based theory combination. Equalities that are deduced
by a solver are directly propagated to the other solver. In the case of linear arithmetic, the
solver is not always able to detect which equalities to propagate. To overcome this problem,
the solver only suggest to the DPLL core to decide an equality. This capability is needed
especially in the case on non-convex theories like linear integer arithmetic. Note that, while
the equalities shared between the theory solvers might not be present in the input, the symbols
they equate are already present. Thus, only a new literal built from existing symbols is created.

SMTInterpol uses a special notion of shared terms. Consider the terms x, y, x+ 1, y+ 1,
5x−7, and 5y−7. If they occur in the congruence closure graph, they all represent different

5.3 New Literals 81

terms. If, e. g., x= y is detected during solving, the equalities x+1= y+1, and 5x−7= 5y−7
should be propagated directly. To solve this problem, SMTInterpol uses linear offset terms
to reduce the number of variables considered by the linear arithmetic solver. A linear offset
term consists of a variable v known to the linear arithmetic solver, a multiplicative constant
c, and an offset o and has form c ·v+o. Then, considering the example terms from above, the
linear arithmetic solver only needs to reason about x and y and the equality on the terms x+1
and y+1 corresponds to the equality x = y for the linear arithmetic solver.

To propagate equalities between the solvers, we use lemmas of the form a= b→ c ·a+o=
c · b+ o or c · a+ o = c · b+ o→ a = b where c and o are constants. The literal a = b is
considered by the theory solver for linear arithmetic and c ·a+o = c ·b+o is a linear offset
equality considered by the theory solver for the theory of uninterpreted functions.

Since equalities between shared terms can be mixed, we need specialised interpolation
rules for such equalities. Even if one of the literals is interpreted by the linear arithmetic
solver, we consider them as equalities in the proof tree and compute interpolants that can
be used with the instantiation of mixcomb to uninterpreted functions. Since we have one
mixed equality and one mixed disequality in the conflict, i. e., the negated clause, we need
interpolants of the form F [EQ(X6=, f (x=))](x=) where X6= is the auxiliary variable introduced
by the projection of the disequality and x= is the variable introduced by projection of the
equality. The general form indicates that the EQ term occurs positively in the formula F and
the auxiliary variable x= occurs either in the s-part of the EQ term or at arbitrary positions in
the remaining formula.

We consider two cases. First, let the linear arithmetic solver propagate an equality to the
solver for uninterpreted functions. W. l. o. g. the lemma has form a = b→ c · a+ o = c ·
b+ o where a = b is an equality used by the linear arithmetic solver and c · a+ o = c · b+
o is an equality used by the solver for uninterpreted functions. The corresponding conflict
is a = b∧ c · a+ o 6= c · b+ o. We project this conflict onto the current part and solve the
projection of a = b for the part local to the current part (either a or b). Then, we substitute the
generated equation into the projection of the disequality. The generated interpolant has form
EQ(Xc·a+o6=c·b+o,c · ca=b +o).

3: /0

1: {a} 2: {b}

Fig. 5.2 Distribution of the relevant symbols for interpolant computation of the theory combination clauses
for linear offset terms.

Example 5.1. Consider the clause a 6= b∨5a+7 = 5b+7 with the symbol distribution shown
in Figure 5.2. Both literals are mixed in vertices 1 and 2. For vertex 1, we compute the
projection of the negated clause as a = x1

a=b∧5a+7 ∈ Y 1
5a+76=5b+7. We use the first conjunct

to eliminate a from the second conjunct and compute the label 5x1
a=b + 7 ∈ Y 1

5a+7 6=5b+7 for
vertex 1. Similarly, we compute the label 5x2

a=b +7 ∈ Y 2
5a+7 6=5b+7 for vertex 2. The label for

vertex 3 has to be ⊥ to satisfy the conditions for partial tree interpolants. This label follows
from the labels computed for vertices 1 and 2, and the projection x1

a=b = x2
a=b∧Y 1

5a+76=5b+7∩
Y 2

5a+7 6=5b+7 = /0 of the negated clause onto vertex 3. y

82 5 SMTInterpol

Second, let the solver for uninterpreted functions propagate a value to the solver for linear
arithmetic. W. l. o. g. the lemma has form c ·a+o = c ·b+o→ a = b. If a resp. b is a rational-
valued term, we can solve the projection of the equality for this term and substitute it in the
projection of the linear equality. If these terms are integer-valued, we need to make sure that
the solution is also divisible without remainder by c. Hence, the resulting interpolant will
contain a divisibility predicate. The resulting interpolant has form EQ(Xa=b,

xc·a+o=c·b+o−o
c) if

the terms are rational-valued. For integer values, we add the conjunct c | xc·a+o=c·b+o− o to
ensure that the value of the s term in the EQ form is not truncated.

Example 5.2. Consider the clause 5a+7 6= 5b+7∨a = b and the symbol distribution shown
in Figure 5.2. Since the terms are integer-valued, we compute for vertices 1 and 2 labels
containing divisibility predicates. For vertex 1, we compute EQ(X1

a=b,x
1
5a+7=5b+7 − 7) ∧

5 | x1
5a+7=5b+7−7. Similarly, we compute EQ(X1

a=b,x
2
5a+7=5b+7−7)∧5 | x2

5a+7=5b+7−7 for
vertex 2. The label of vertex 3 has to be ⊥. It also follows form the labels for the vertices 1
and 2, and the projection of the clause onto vertex 3 which is X1

a=b∩X2
a=b = /0∧x1

5a+7=5b+7 =

x2
5a+7=5b+7. y

Cut Generation

To solve linear integer arithmetic, SMTInterpol first tries to solve the relaxation of the input
problem to linear real arithmetic. If a model is found that contains at least one integer variable
that does not have an integral value, SMTInterpol uses extended branches [35] to exclude the
current model from the relaxation. This technique lends itself to interpolation since the newly
created literals don’t need to be justified in the proof tree. Essentially, they act like case splits
and occur as pivots in some resolution steps.

Note however that the newly created branching literals might be mixed. We do not need
to restrict the generation of these branching literals to avoid mixed literals. This is a bene-
fit of our algorithm for proof tree preserving (tree) interpolation and a difference to other
interpolating SMT solvers.

Bound Propagation

To solve linear arithmetic, SMTInterpol uses a variant of the Simplex adaptation to SMT [39].
Internally, bound propagation is integrated into the Simplex algorithm in the following two
ways.

First, let c be a constant and x be a variable. If the solver already knows x 6= c and the
literal x≤ c gets assigned, the bound is refined into c− ε before continuing with the original
algorithm. Since in the case of linear integer arithmetic we have ε = 1, the new bound might
be subject to a disequality as well. Thus, in the case of linear integer arithmetic, multiple such
refinement steps are possible before the actual bound gets asserted.

Second, let xb = ∑i∈N + aibxi +∑i∈N − aibxi be a row in the Simplex tableau with aib > 0
for all i ∈N + and aib < 0 for all i ∈N −. Then, if for all i ∈N +, vi has an upper bound,
and for all i ∈ N −, vi has a lower bound, SMTInterpol computes an upper bound for xb
and similarly for the lower bound. If the computed upper resp. lower bound refines the upper
resp. lower bound known for xb, it gets asserted as a composite bound. This bound might not
correspond to a literal present in the input, but can be explained from literals in the input.
Note that composite bounds might depend upon other composite bounds.

5.4 Proof of Concept 83

When explaining these newly created bounds, we sometimes prefer to create new literals
to shorten the proof tree. These new literals, however, are built from an existing variable and
a bound. Thus, these literals are mixed if and only if the variable is mixed1.

5.4 Proof of Concept

SMTInterpol is used as a proof of concept implementation of the algorithms described in the
Chapters 3 and 4. It is implemented in the programming language Java and distributed under
LGPL version 3 or later. These conditions make SMTInterpol a platform-independent, free
to use candidate for both SMT solving and interpolation. The solver can be downloaded from

http://ultimate.informatik.uni-freiburg.de/smtinterpol/

and its sources can be found at

https://github.com/juergenchrist/smtinterpol/

1 Note that in the context of Simplex for SMT, a variable might actually represent a sum of variables.

http://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/juergenchrist/smtinterpol/

Chapter 6
Future Work

There are many possible directions for future work on interpolation in the context of SMT.
We classify them in three parts.

6.1 Theory Specific Interpolation

The algorithm presented in this thesis is parameterised by a combination function depending
on a theory. We showed how to instantiate this function for the theories of uninterpreted
functions and linear arithmetic. Further theories like the theory of arrays [13, 85], the theory
of bit-vectors [48], or the theory of non-linear arithmetic, to just name a few, are interesting
candidates for future work. Existing techniques in these fields do not integrate theory-specific
interpolation into an interpolation algorithm that supports other theories. Instead, they either
build interpolating rules from scratch or reduce the interpolation problem to an interpolation
problem in a theory where interpolation is well studied. Integration of such theories into the
algorithm for proof tree preserving interpolation from Chapter 3 and the algorithm for proof
tree preserving tree interpolation form Chapter 4 will allow us to compute interpolants for
almost all verification conditions produced by interpolation-based software model checkers.

6.2 Quantifiers

Interpolation in the context of quantifiers was investigated in several papers [71, 73, 63, 19].
These methods generate quantified interpolants where quantifiers are introduced to satisfy the
symbol condition of the definition of Craig interpolants. A notable exception is the work by
Jhala and McMillan [60]. They generate quantified array interpolants that describe common
loop invariants.

An interesting direction of future work will be to integrate quantifier reasoning into the
algorithms. To generate interpolants that contain quantifiers and, at the same time, are useful
in the context of interpolation-based software model checking, new solving techniques are
needed to produce lemmas for which quantified (partial) interpolants can be computed. The

85

86 6 Future Work

quantifiers should not just be introduced to satisfy the symbol condition. Instead, quantifiers
should be used to express some property that is likely to be useful in the context of software
model checking.

6.3 Strength Variation

Given an input problem to interpolation, the resulting interpolant is not unique. In fact, dif-
ferent interpolants for the same problem exist. These interpolants differ in logic strength. The
desired strength depends on the usage scenario of the interpolant. We identify two possible
directions.

First, we can try to find the right proof. At the moment, the first proof generated by the
SMT solver is used to compute an interpolant. In some cases, however, this proof might use
an argument that is not good for the current usage scenario. In interpolation-based software
model checking, for example, a proof is a certificate that a given error path is spurious, i. e.,
not possible in the not concrete system. A model checker tries to create an invariant from this
certificate by interpolation. Consider a finite unrolling of a loop that is part of the error path.
If the certificate argues that it is impossible to exit the loop after only this finite number of
unrollings, the generated interpolant will not generalise to a loop invariant that summarises
all loop iterations. Thus, a different proof might be desirable in this scenario. Iteration of
proofs can be achieved by means of iteration of unsatisfiable cores [79, 66].

Second, even if we have the right proof, we still need to extract the right interpolant.
Strength modification can be done in various ways. D’Silva et al. [38] present a method to
alter the strength of interpolants generated from resolution refutations generated by a SAT
solver. In binary interpolation, if a literal occurs in A and B, we can choose to put it either
in A, or in B, or in both. This leads to different cases in the interpolation algorithm when
this literal acts as the pivot of a resolution step. Exposing the capabilities offered by this
method to users, however, is non-trivial. Cimatti et al. [24] present a method to alter the
strength of the partial interpolants generated for lemmas in the theory of linear arithmetic.
The idea is to strengthen the partial interpolant by not including shared literals. This method
can be exploited to generate different sequence interpolants and tree interpolants. The theory
of linear arithmetic, for example, computes partial interpolants by summing up parts of a
proof. The proofs generated by SMT solver, however, might have some slack, i. e., instead
of producing the proof 1 ≤ 0, they might produce the proof c ≤ 0 for c > 1. In this case,
we have slack that can be added to the summary while preserving inconsistency with the
part that is not summed up. This technique is interesting in the case of interpolation-based
software model checking since the resulting interpolant should not only satisfy the conditions
of sequence or tree interpolants. Some labels of the resulting interpolant should cover [72]
other labels. Covering expresses that the set of models of the first formula is a superset of
the set of models of the second formula. If the formulas computed at the loop entry point
at different iterations of the loop cover, an inductive invariant for the loop is found. Hence,
improving the covering relation improves the accuracy of the software model checker.

A different direction of research regarding strength variation is the effect of proof manipu-
lation. SMTInterpol already contains some proof manipulation techniques [44]. One possible

6.3 Strength Variation 87

future research is to investigate the effect of various proof manipulations [28, 81, 9] on the
strength of the generated interpolant.

Chapter 7
Conclusion

In this thesis, we presented proof tree preserving interpolation and extended it to tree interpol-
ation. The algorithm tackles the problem of interpolation in the context of proofs generated
by state of the art SMT solvers. It builds upon existing algorithm for interpolation in pro-
positional logic and adds specialised methods to lift these algorithm to the context of SMT.
Special care has to be taken for mixed literals, i. e., literals that do not occur in the input but
are created during solving on various occasions. Contrary to other techniques, proof tree pre-
serving interpolation deals with these literals without restricting the solver or manipulating
the proof tree. We showed correctness of the techniques. Since we do not restrict the solver,
completeness of the technique follows from completeness of the solver. In other words, for
every proof generated by an SMT solver, proof tree preserving interpolation can compute an
interpolant.

The contributions of this thesis can be summarised as follows.

• We presented proof tree preserving interpolation. We instantiated the algorithm for the
theories of uninterpreted functions and the theories of linear arithmetic over integers or
reals. We showed how to combine these theories to compute quantifier-free interpolants
for formulas that are difficult for other interpolation techniques.

• We extended the algorithm to tree interpolation. This enables us to compute tree inter-
polants (and, thus, sequence interpolants) from one proof tree without the need to solve
repeated binary interpolation problems or repeatedly manipulate a proof. Again, we in-
stantiated this technique to the theories of uninterpreted functions and linear arithmetic of
integers or reals.

• We present our proof of concept implementation SMTInterpol which is an open-source
SMT solver that can compute binary interpolants and tree interpolants using the algorithms
developed for proof tree preserving (tree) interpolation.

89

References
1. iZ3 documentation. http://research.microsoft.com/en-us/um/redmond/projects/

z3/old/iz3documentation.html. Accessed: 2012-10-05.
2. A. Albarghouthi and K. L. McMillan. Beautiful interpolants. In CAV, pages 313–329. Springer, 2013.
3. C. Barrett, M. Deters, L. de Moura, A. Oliveras, and A. Stump. 6 years of SMT-COMP. J. Autom.

Reasoning, 50(3):243–277, 2013.
4. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: 2.0. In SMT, 2010.
5. C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theories. In Handbook of

Satisfiability, pages 825–885. IOS Press, 2009.
6. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software verification. In CAV,

pages 184–190. Springer, 2011.
7. D. Beyer, D. Zufferey, and R. Majumdar. CSIsat: Interpolation for LA+EUF. In CAV, pages 304–308.

Springer, 2008.
8. A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185

of Frontiers in Artificial Intelligence and Applications. IOS Press, February 2009.
9. J. Boudou and B. W. Paleo. Compression of propositional resolution proofs by lowering subproofs.

In Automated Reasoning with Analytic Tableaux and Related Methods - 22th International Conference,
TABLEAUX 2013, Nancy, France, September 16-19, 2013. Proceedings, pages 59–73. Springer, 2013.

10. A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. Beyond quantifier-free interpolation in extensions of
Presburger arithmetic. In VMCAI, pages 88–102. Springer, 2011.

11. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Sebastiani. To ackermann-ize
or not to ackermann-ize? On efficiently handling uninterpreted function symbols in SMT(EUF∪T). In
LPAR, pages 557–571. Springer, 2006.

12. R. Bruttomesso, S. Ghilardi, and S. Ranise. From strong amalgamability to modularity of quantifier-free
interpolation. In IJCAR, pages 118–133. Springer, 2012.

13. R. Bruttomesso, S. Ghilardi, and S. Ranise. Quantifier-free interpolation of a theory of arrays. Logical
Methods in Computer Science, 8(2), 2012.

14. R. Bruttomesso and A. Griggio. Broadening the scope of SMT-COMP: the application track. In COM-
PARE, pages 18–27. CEUR-WS.org, 2012.

15. R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. Flexible interpolation with local proof trans-
formations. In ICCAD, pages 770–777. IEEE, 2010.

16. F. Cassez, C. Müller, and K. Burnett. Summary-based inter-procedural analysis via modular trace refine-
ment. In FSTTCS, pages 545–556. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

17. J. Christ, E. Ermis, M. Schäf, and T. Wies. Flow-sensitive fault localization. In VMCAI, pages 189–208.
Springer, 2013.

18. J. Christ and J. Hoenicke. Proof tree preserving tree interpolation. J. Autom. Reasoning. submitted.
19. J. Christ and J. Hoenicke. Instantiation-based interpolation for quantied formulae. In SMT 2010: 8th

International Workshop on Satisfiability Modulo Theories, 2010.
20. J. Christ and J. Hoenicke. Extending proof tree preserving interpolation to sequences and trees. In SMT,

2013.
21. J. Christ, J. Hoenicke, and A. Nutz. SMTInterpol: An interpolating SMT solver. In SPIN, pages 248–254.

Springer, 2012.
22. J. Christ, J. Hoenicke, and A. Nutz. Proof tree preserving interpolation. In TACAS, pages 124–138.

Springer, 2013.
23. J. Christ, J. Hoenicke, and A. Nutz. Proof tree preserving interpolation. Reports of SFB/TR 14

AVACS 89, SFB/TR 14 AVACS, February 2013. ISSN: 1860-9821, http://www.avacs.org.
24. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo theor-

ies. In TACAS, pages 397–412. Springer, 2008.
25. D. R. Cok. jSMTLIB: Tutorial, validation and adapter tools for SMT-LIBv2. In NASA Formal Methods,

pages 480–486. Springer, 2011.
26. D. R. Cok, A. Griggio, R. Bruttomesso, and M. Deters. The 2012 SMT competition. In SMT, pages

131–142. EasyChair, 2012.
27. D. R. Cok, A. Stump, and T. Weber. The 2013 SMT evaluation. Technical Report 2014-017, Department

of Information Technology, Uppsala University, July 2014.

91

http://research.microsoft.com/en-us/um/redmond/projects/z3/old/iz3documentation.html
http://research.microsoft.com/en-us/um/redmond/projects/z3/old/iz3documentation.html

92 References

28. S. Cotton. Two techniques for minimizing resolution proofs. In Theory and Applications of Satisfiab-
ility Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, pages 306–312. Springer, 2010.

29. W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J.
Symb. Log., 22(3):269–285, 1957.

30. M. Davis, G. Logemann, and D. W. Loveland. A machine program for theorem-proving. Commun. ACM,
5(7):394–397, 1962.

31. M. Davis and H. Putnam. A computing procedure for quantification theory. J. ACM, 7(3):201–215, 1960.
32. L. de Moura and N. Bjørner. Model-based theory combination. Electr. Notes Theor. Comput. Sci.,

198(2):37–49, 2008.
33. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340. Springer, 2008.
34. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. J. ACM,

52(3):365–473, 2005.
35. I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and practical technique for solving linear

inequalities over integers. In CAV, pages 233–247. Springer, 2009.
36. K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A certifying model checker for

infinite-state concurrent systems. In TACAS, pages 271–274. Springer, 2010.
37. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant strength. In VMCAI, pages

129–145. Springer, 2010.
38. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant strength. In VMCAI, pages

129–145. Springer, 2010.
39. B. Dutertre and L. de Moura. A fast linear-arithmetic solver for DPLL(T). In CAV, pages 81–94. Springer,

2006.
40. E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In VMCAI, pages 186–201. Springer,

2012.
41. E. Ermis, A. Nutz, D. Dietsch, J. Hoenicke, and A. Podelski. Ultimate kojak - (competition contribution).

In TACAS, pages 421–423. Springer, 2014.
42. E. Ermis, M. Schäf, and T. Wies. Error invariants. In FM, pages 187–201. Springer, 2012.
43. A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs. In POPL, pages 129–142. ACM,

2013.
44. P. Fontaine, S. Merz, and B. W. Paleo. Compression of propositional resolution proofs via partial regular-

ization. In Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction,
Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, pages 237–251. Springer, 2011.

45. A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground interpolation for the theory of equality.
In TACAS, pages 413–427. Springer, 2009.

46. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision proced-
ures. In CAV, pages 175–188. Springer, 2004.

47. A. Goel, S. Krstic, and C. Tinelli. Ground interpolation for combined theories. In CADE, pages 183–198.
Springer, 2009.

48. A. Griggio. Effective word-level interpolation for software verification. In FMCAD, pages 28–36. FM-
CAD Inc., 2011.

49. A. Griggio. A practical approach to satisability modulo linear integer arithmetic. JSAT, 8(1/2):1–27,
2012.

50. A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient interpolant generation in satisfiability modulo linear
integer arithmetic. In TACAS, pages 143–157. Springer, 2011.

51. A. Gupta, C. Popeea, and A. Rybalchenko. Solving recursion-free horn clauses over LI+UIF. In APLAS,
pages 188–203. Springer, 2011.

52. M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann, A. Nutz, C. Schilling, and
A. Podelski. Ultimate automizer with smtinterpol - (competition contribution). In TACAS, pages 641–
643. Springer, 2013.

53. M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstraction. In SAS, pages 69–85.
Springer, 2009.

54. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages 471–482. ACM, 2010.
55. J. Henry, M. Asavoae, D. Monniaux, and C. Maiza. How to compute worst-case execution time by

optimization modulo theory and a clever encoding of program semantics. In LCTES, pages 43–52. ACM,
2014.

References 93

56. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In POPL, pages
232–244. ACM, 2004.

57. T. S. Hoang, S. Itoh, K. Oyama, K. Miyazaki, H. Kuruma, and N. Sato. Validating the consistency of
specification rules. Technical report, Yokohama Research Laboratory, Hitachi Ltd., 2015.

58. G. Huang. Constructing craig interpolation formulas. In COCOON, pages 181–190. Springer, 1995.
59. H. Jain, E. M. Clarke, and O. Grumberg. Efficient craig interpolation for linear diophantine (dis)equations

and linear modular equations. Formal Methods in System Design, 35(1):6–39, 2009.
60. R. Jhala and K. L. McMillan. Array abstractions from proofs. In CAV, pages 193–206. Springer, 2007.
61. H. Kim, F. Somenzi, and H. Jin. Efficient term-ite conversion for satisfiability modulo theories. In SAT,

pages 195–208. Springer, 2009.
62. T. King, C. Barrett, and B. Dutertre. Simplex with sum of infeasibilities for SMT. In FMCAD, pages

189–196. IEEE, 2013.
63. L. Kovács and A. Voronkov. Interpolation and symbol elimination. In CADE, pages 199–213. Springer,

2009.
64. D. Kroening, J. Leroux, and P. Rümmer. Interpolating quantifier-free Presburger arithmetic. In LPAR,

pages 489–503. Springer, 2010.
65. J. Kühn, P. Schoonbrood, A. Stollenwerk, C. Brendle, N. Wardeh, M. Walter, R. Rossaint, S. Leonhardt,

S. Kowalewski, and R. Kopp. Safety conflict analysis in medical cyber-physical systems using an smt-
solver. In Gemeinsamer Tagungsband der Workshops der Tagung Software Engineering 2015, Dresden,
Germany, 17.-18. März 2015., pages 19–23. CEUR-WS.org, 2015.

66. M. H. Liffiton and A. Malik. Enumerating infeasibility: Finding multiple muses quickly. In CPAIOR,
pages 160–175. Springer, 2013.

67. R. Loos and V. Weispfenning. Applying linear quantifier elimination. Comput. J., 36(5):450–462, 1993.
68. C. Lynch and Y. Tang. Interpolants for linear arithmetic in SMT. In ATVA, pages 156–170. Springer,

2008.
69. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, pages 1–13. Springer, 2003.
70. K. L. McMillan. An interpolating theorem prover. In TACAS, pages 16–30. Springer, 2004.
71. K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1):101–121, 2005.
72. K. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136. Springer, 2006.
73. K. L. McMillan. Quantified invariant generation using an interpolating saturation prover. In TACAS,

pages 413–427. Springer, 2008.
74. K. L. McMillan. Interpolants from Z3 proofs. In FMCAD, pages 19–27. FMCAD Inc., 2011.
75. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans. Program.

Lang. Syst., 1(2):245–257, 1979.
76. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. J. ACM, 27(2):356–

364, 1980.
77. R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In RTA, pages 453–468. Springer,

2005.
78. D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation. J. Symb. Comput.,

2(3):293–304, 1986.
79. A. Previti and J. Marques-Silva. Partial MUS enumeration. In AAAI. AAAI Press, 2013.
80. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb.

Log., 62(3):981–998, 1997.
81. S. Rollini, R. Bruttomesso, and N. Sharygina. An efficient and flexible approach to resolution proof re-

duction. In Hardware and Software: Verification and Testing - 6th International Haifa Verification Con-
ference, HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Selected Papers, pages 182–196. Springer,
2010.

82. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In VMCAI, pages
346–362. Springer, 2007.

83. O. Sery, G. Fedyukovich, and N. Sharygina. Incremental upgrade checking by means of interpolation-
based function summaries. In FMCAD, pages 114–121. IEEE, 2012.

84. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In CADE, pages 219–234.
Springer, 2005.

85. N. Totla and T. Wies. Complete instantiation-based interpolation. In POPL, pages 537–548. ACM, 2013.
86. G. S. Tseitin. On the complexity of derivation in propositional calculus. In Automation of Reasoning 2:

Classical Papers on Computational Logic 1967-1970, pages 466–483. Springer, 1983.

94 References

87. S. Vijzelaar, K. Verstoep, W. Fokkink, and H. Bal. Bonsai: Cutting models down to size. In PSI. Springer,
2014.

88. G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In CADE, pages 353–
368. Springer, 2005.

	Introduction
	Preliminaries
	Binary Interpolants from Proofs
	Binary Interpolation
	Proof Tree Based Interpolation
	A Generic Interpolation Algorithm
	Projection of Mixed Literals

	Uninterpreted Functions
	Leaf Interpolation
	Pivoting of Mixed Equalities

	Linear Real and Integer Arithmetic
	Leaf Interpolation
	Pivoting of Mixed Literals

	An Example for the Combined Theory

	Tree Interpolants from Proofs
	Tree Interpolation
	Generality of Tree Interpolation
	Locality of Symbols and Literals in a Tree
	Projection Function for Tree Interpolation
	Simultaneous Binary Interpolation

	Theory Specific Interpolation
	Theory of Uninterpreted Functions
	Theory of Linear Arithmetic

	Combining Theories
	Nelson–Oppen-based Theory Combination
	Interpolating the Combination of Uninterpreted Functions and Linear Arithmetic

	An Example for the Combined Theory
	Derivation of a Tree Interpolant
	Correctness of the Generated Interpolant

	SMTInterpol
	Architecture
	Interpolation
	New Literals
	Proof of Concept

	Future Work
	Theory Specific Interpolation
	Quantifiers
	Strength Variation

	Conclusion
	References

