Reach Set Approximation through Decomposition with Low-dimensional Sets and High-dimensional Matrices

Sergiy Bogomolov

Marcelo Forets Goran Frehse Frédéric Viry

Andreas Podelski Christian Schilling

Australian National University

Université Grenoble-Alpes

University of Freiburg

HSCC 2018 — April 11, 2018 — Porto, Portugal

Linear time-invariant (LTI) systems

$$\dot{x}(t) = A \cdot x(t) + C \cdot u(t), \quad u(t) \in \mathcal{U}$$

nondeterministic inputs

Task (Safety verification)

Linear time-invariant (LTI) systems

$$\dot{x}(t) = A \cdot x(t) + C \cdot u(t), \quad u(t) \in \mathcal{U}$$
nondeterministic inputs omitted for now

Task (Safety verification)

Safety verification

Task (Safety verification)

Safety verification

Task (Safety verification)

$$\hat{=} \mathsf{Reach}(\mathcal{I}) \cap \mathcal{B} = \emptyset$$

Safety verification

Task (Safety verification)

$$\hat{=} \mathsf{Reach}(\mathcal{I}) \cap \mathcal{B} = \emptyset$$

- Undecidable
- Showing $\widehat{\mathrm{Reach}}(\mathcal{I}) \cap \mathcal{B} = \emptyset$ is sufficient \uparrow overapproximation of $\mathrm{Reach}(\mathcal{I})$

Scalability

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Determines node voltage and branch currents in a circuit

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Scalability

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Determines node voltage and branch currents in a circuit

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

State-of-the-art tool SPACEEX does not scale to such systems "max. number of allocatable variables exceeded"

Scalability

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Determines node voltage and branch currents in a circuit

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

State-of-the-art tool SpaceEx does not scale to such systems "max. number of allocatable variables exceeded"

Task (Scalability)

Find a sweet spot between precision and speed

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use case

Large systems

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use case

• Large systems

Observation

Property only depends on two dimensions

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use case

• Large systems

Observation

Property only depends on two dimensions

• Can we just look at x_1 and x_2 ?

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use case

• Large systems

Observation

Property only depends on two dimensions

Can we just look at x₁ and x₂?
 No, all dimensions are coupled

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use cases

- Large systems
- "Sparse" properties

Example: MNA5

10,913-dimensional Modified Nodal Analysis model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Decomposition use cases

- Large systems
- "Sparse" properties

What can we decompose?

Cartesian decomposition

Cartesian decomposition

Cartesian decomposition

Discretize time Compute overapproximation $\mathcal{X}(0)$ up to time step

Compute successors

$$\mathcal{X}(1) = \Phi \cdot \mathcal{X}(0)$$

Compute successors

$$\mathcal{X}(1) = \Phi \cdot \mathcal{X}(0)$$

$$\mathcal{X}(2) = \Phi \cdot \mathcal{X}(1) = \Phi^2 \cdot \mathcal{X}(0)$$

Compute successors

$$\mathcal{X}(1) = \Phi \cdot \mathcal{X}(0)$$

$$\mathcal{X}(2) = \Phi \cdot \mathcal{X}(1) = \Phi^2 \cdot \mathcal{X}(0)$$

$$\mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0)$$

Compute **high-dimensional** set $\mathcal{X}(0)$ (as before)

Decompose $\mathcal{X}(0)$ into **low-dimensional** sets $\widehat{\mathcal{X}}_1(0)$ and $\widehat{\mathcal{X}}_2(0)$ (Note: In general we do not need to go down to 1D)

Define $\widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)$

Define
$$\widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)$$

original: $\mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0)$

Define
$$\widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)$$

original: $\mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0)$ decomposed: $\widehat{\mathcal{X}}(k) = \Phi^k \cdot \widehat{\mathcal{X}}(0)$?

Define
$$\widehat{\mathcal{X}}(k) := \widehat{\mathcal{X}}_1(k) \times \widehat{\mathcal{X}}_2(k)$$

original: $\mathcal{X}(k) = \Phi^k \cdot \mathcal{X}(0)$

decomposed: $\widehat{\mathcal{X}}_i(k) = \bigoplus_j \Phi_{i,j}^k \cdot \widehat{\mathcal{X}}_j(0)$

$$\widehat{\mathcal{X}}_i(k) = \bigoplus_j \Phi^k_{i,j} \cdot \widehat{\mathcal{X}}_j(0)$$

$$\Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array}\right)$$

$$\widehat{\mathcal{X}}_{i}(k) = \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0)
\widehat{\mathcal{X}}_{1}(1) = a \cdot \widehat{\mathcal{X}}_{1}(0)$$

$$\Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right)$$

$$\begin{split} \widehat{\mathcal{X}}_i(k) &= \bigoplus_j \Phi^k_{i,j} \cdot \widehat{\mathcal{X}}_j(0) \\ \widehat{\mathcal{X}}_1(1) &= a \cdot \widehat{\mathcal{X}}_1(0) \oplus b \cdot \widehat{\mathcal{X}}_2(0) \end{split} \qquad \Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right) \end{split}$$

$$\begin{split} \widehat{\mathcal{X}}_{i}(k) &= \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \\ \widehat{\mathcal{X}}_{1}(1) &= a \cdot \widehat{\mathcal{X}}_{1}(0) \oplus b \cdot \widehat{\mathcal{X}}_{2}(0) \\ \widehat{\mathcal{X}}_{2}(1) &= c \cdot \widehat{\mathcal{X}}_{1}(0) \end{split} \qquad \Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right) \end{split}$$

$$\begin{split} \widehat{\mathcal{X}}_{i}(k) &= \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \\ \widehat{\mathcal{X}}_{1}(1) &= a \cdot \widehat{\mathcal{X}}_{1}(0) \oplus b \cdot \widehat{\mathcal{X}}_{2}(0) \\ \widehat{\mathcal{X}}_{2}(1) &= c \cdot \widehat{\mathcal{X}}_{1}(0) \oplus 0 \cdot \widehat{\mathcal{X}}_{2}(0) \end{split} \qquad \Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right) \end{split}$$

$$\begin{split} \widehat{\mathcal{X}}_{i}(k) &= \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \\ \widehat{\mathcal{X}}_{1}(1) &= a \cdot \widehat{\mathcal{X}}_{1}(0) \oplus b \cdot \widehat{\mathcal{X}}_{2}(0) \\ \widehat{\mathcal{X}}_{2}(1) &= c \cdot \widehat{\mathcal{X}}_{1}(0) \oplus 0 \cdot \widehat{\mathcal{X}}_{2}(0) \end{split} \qquad \Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right) \end{split}$$

$$\begin{split} \widehat{\mathcal{X}}_{i}(k) &= \bigoplus_{j} \Phi_{i,j}^{k} \cdot \widehat{\mathcal{X}}_{j}(0) \\ \widehat{\mathcal{X}}_{1}(1) &= a \cdot \widehat{\mathcal{X}}_{1}(0) \oplus b \cdot \widehat{\mathcal{X}}_{2}(0) \\ \widehat{\mathcal{X}}_{2}(1) &= c \cdot \widehat{\mathcal{X}}_{1}(0) \oplus 0 - \widehat{\mathcal{X}}_{2}(0) \end{split} \qquad \Phi = \left(\begin{array}{c|c} a & b \\ \hline c & 0 \end{array} \right) \end{split}$$

Decomposed reachability algorithm - Summary

Classical LGG algorithm is a special case (with one block)

Precision

- Sacrifice precision due to inter-block dependencies
- Preserve dependencies between intra-block dimensions

Speed

- Perform set operations in decomposed dimensions
- Skip computations for irrelevant dimensions
- Exploit **sparsity** of matrices Φ^k

Implementation & evaluation

Implementation

• JULIAREACH¹, written in Julia

Benchmark settings

- 1D blocks (worst case precision)
- High-dimensional benchmark suite, with inputs
- 1st setting: evaluate **speed** in reach set computation
 - Comparison to state-of-the-art tool SPACEEX
 - Time step 10^{-3} , one dimension
- 2nd setting: evaluate **precision** in safety verification

¹https://github.com/JuliaReach

Model	Dim	JULIAREACH	SPACEEX	Speedup
Motor	8	1.1 s	1.9 s	1.8
Building	48	4.5 s	9.5 s	2.1
PDE	84	4.4 s	61.7 s	13.9
Heat	200	24.7 s	102.8 s	4.1
ISS*	270	2.5 s	79.1 s	32.1
Beam	348	54.0 s	332.1 s	6.1
MNA1	578	140.0 s	crashed	n/a
FOM*	1006	10.6 s	crashed	n/a
MNA5*	10913	1650.3 s	crashed	n/a

^{*}sparse matrix

Model	Dim	JULIAREACH	SPACEEX	Speedup
Motor	8	1.1 s	1.9 s	1.8
Building	48	4.5 s	9.5 s	2.1
PDE	84	4.4 s	61.7 s	13.9
Heat	200	24.7 s	102.8 s	4.1
ISS*	270	2.5 s	79.1 s	32.1
Beam	348	54.0 s	332.1 s	6.1
MNA1	578	140.0 s	crashed	n/a
FOM*	1006	10.6 s	crashed	n/a
MNA5*	10913	1650.3 s	crashed	n/a

^{*}sparse matrix

Model	Dim	JULIAREACH	SPACEEX	Speedup
Motor	8	1.1 s	1.9 s	1.8
Building	48	4.5 s	9.5 s	2.1
PDE	84	4.4 s	61.7 s	13.9
Heat	200	24.7 s	102.8 s	4.1
ISS*	270	2.5 s	79.1 s	32.1
Beam	348	54.0 s	332.1 s	6.1
MNA1	578	140.0 s	crashed	n/a
FOM*	1006	10.6 s	crashed	n/a
MNA5*	10913	1650.3 s	crashed	n/a

^{*}sparse matrix

Model	Dim	JULIAREACH	SPACEEX	Speedup
Motor	8	1.1 s	1.9 s	1.8
Building	48	4.5 s	9.5 s	2.1
PDE	84	4.4 s	61.7 s	13.9
Heat	200	24.7 s	102.8 s	4.1
ISS*	270	2.5 s	79.1 s	32.1
Beam	348	54.0 s	332.1 s	6.1
MNA1	578	140.0 s	crashed	n/a
FOM*	1006	10.6 s	crashed	n/a
MNA5*	10913	1650.3 s	crashed	n/a

^{*}sparse matrix

Reach set comparison - MNA5 model

• Bad states \mathcal{B} : $x_1 \ge 0.2 \lor x_2 \ge 0.15$

Reach set comparison - Building model

• Bad states $B: x_{25} \ge 0.006$

Model	Dim	#Var	Time step	JULIAREACH
Motor	8	2	1×10^{-3}	1.6 s
Building	48	1	2×10^{-3}	1.1 s
PDE	84	84	$3 imes 10^{-4}$	1030.0 s
Heat	200	1	1×10^{-3}	14.8 s
Beam	348	1	$5 imes 10^{-5}$	857.1 s
MNA1	578	1	$4 imes 10^{-4}$	287.2 s
MNA5*	10913	2	3×10^{-1}	719.1 s

^{*}sparse matrix

Model	Dim	#Var	Time step	JULIAREACH
Motor	8	2	1×10^{-3}	1.6 s
Building	48	1	2×10^{-3}	1.1 s
PDE	84	84	3×10^{-4}	1030.0 s
Heat	200	1	1×10^{-3}	14.8 s
Beam	348	1	5×10^{-5}	857.1 s
MNA1	578	1	$4 imes 10^{-4}$	287.2 s
MNA5*	10913	2	3×10^{-1}	719.1 s

^{*}sparse matrix

Model	Dim	#Var	Time step	JULIAREACH
Motor	8	2	1×10^{-3}	1.6 s
Building	48	1	2×10^{-3}	1.1 s
PDE	84	84	3×10^{-4}	1030.0 s
Heat	200	1	1×10^{-3}	14.8 s
Beam	348	1	$5 imes 10^{-5}$	857.1 s
MNA1	578	1	$4 imes 10^{-4}$	287.2 s
MNA5*	10913	2	3×10^{-1}	719.1 s

^{*}sparse matrix

Model	Dim	#Var	Time step	JULIAREACH
Motor	8	2	1×10^{-3}	1.6 s
Building	48	1	2×10^{-3}	1.1 s
PDE	84	84	3×10^{-4}	1030.0 s
Heat	200	1	1×10^{-3}	14.8 s
Beam	348	1	$5 imes 10^{-5}$	857.1 s
MNA1	578	1	4×10^{-4}	287.2 s
MNA5*	10913	2	3×10^{-1}	719.1 s

^{*}sparse matrix

Discrete-time setting

- Reachable states are only computed at discrete time steps
- Assumption: Inputs can only change at discrete time steps
- Comparison to state-of-the-art tool HYLAA
 - Uses simulations, exploiting superposition
- Same settings as before

Model	Dim	#Var	JULIAREACH	HYLAA	Speedup
Motor	8	2	0.3 s	1.6 s	6.5
Building	48	1	0.5 s	2.5 s	4.7
PDE	84	84	22.2 s	3.5 s	0.2
Heat	200	1	4.2 s	13.8 s	3.3
Beam	348	1	7.0 s	169.1 s	24.2
MNA1	578	1	19.7 s	288.2 s	14.6
MNA5*	10913	2	435.7 s	3440.2 s	79.1

^{*}sparse matrix

Model	Dim	#Var	JULIAREACH	HYLAA	Speedup
Motor	8	2	0.3 s	1.6 s	6.5
Building	48	1	0.5 s	2.5 s	4.7
PDE	84	84	22.2 s	3.5 s	0.2
Heat	200	1	4.2 s	13.8 s	3.3
Beam	348	1	7.0 s	169.1 s	24.2
MNA1	578	1	19.7 s	288.2 s	14.6
MNA5*	10913	2	435.7 s	3440.2 s	79.1

^{*}sparse matrix

Model	Dim	#Var	JULIAREACH	HYLAA	Speedup
Motor	8	2	0.3 s	1.6 s	6.5
Building	48	1	0.5 s	2.5 s	4.7
PDE	84	84	22.2 s	3.5 s	0.2
Heat	200	1	4.2 s	13.8 s	3.3
Beam	348	1	7.0 s	169.1 s	24.2
MNA1	578	1	19.7 s	288.2 s	14.6
MNA5*	10913	2	435.7 s	3440.2 s	79.1

^{*}sparse matrix

Conclusion

- Generalized reachability algorithm for LTI systems
- Cartesian decomposition approach
 - Matrix operations in high dimensions
 - Set operations in low dimensions
- Outperforms state-of-the-art tools SPACEEX and HYLAA
 - Speed: Over an order of magnitude faster
 - Dimension: Over an order of magnitude higher (SPACEEX)
- Precision sufficiently good in many cases