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Linear time-invariant (LTI) systems

x(t) = A-x(t) + C-u(t), u(tyeld
t
nondeterministic inputs

x(t) 4

<— bad states B

<«<— executions

initial states 7 — ;

Task (Safety verification)
Verify that no execution leads to a bad state
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Safety verification

Task (Safety verification)
Verify that no execution leads to a bad state

x(t)
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Safety verification

Task (Safety verification)
Verify that no execution leads to a bad state
= Reach(Z) N B=10

x(t)

Reach(Z) —

<— bad states B

<«<— executions
t

initial states Z —
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Safety verification

Task (Safety verification)
Verify that no execution leads to a bad state
= Reach(Z) N B=10

e Undecidable

o Showing Reach(Z) N B =0 is sufficient

0
overapproximation of Reach(Z)

t
x(1) <— bad states B

Reach(I) — @](I)
<«<— executions
t

initial states Z —
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Scalability

Example: MNAbS
10,913-dimensional Modified Nodal Analysis model

e Determines node voltage and branch currents in a circuit

e Bad states B: x; > 0.2V x» > 0.15
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Scalability

Example: MNAbS
10,913-dimensional Modified Nodal Analysis model

e Determines node voltage and branch currents in a circuit

e Bad states B: x; > 0.2V x» > 0.15

State-of-the-art tool SPACEEX does not scale to such systems

“max. number of allocatable variables exceeded”

Task (Scalability)
Find a sweet spot between precision and speed
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Decomposition

Example: MNAbD
10,913-dimensional Modified Nodal Analysis model
e Bad states B: x; > 0.2V x» > 0.15

Decomposition use case
e Large systems

Observation
Property only depends on two dimensions

e Can we just look at x; and xp?
No, all dimensions are coupled
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Decomposition

Example: MNAbD
10,913-dimensional Modified Nodal Analysis model
e Bad states B: x; > 0.2V x» > 0.15

Decomposition use cases
e Large systems
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Decomposition

Example: MNAbD
10,913-dimensional Modified Nodal Analysis model

e Bad states B: x; > 0.2V x» > 0.15

Decomposition use cases
e Large systems
e “Sparse” properties

What can we decompose?
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X3

Cartesian decomposition

X1

X2
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X3

Cartesian decomposition

project to x1

X .
! project to x/x3

X2

5/15



X3

Cartesian decomposition

project to xq

/

project to X2/X3
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Reachability algorithm by Le Guernic and Girard (LGGQG)

X2

initial states 7 —

X1
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Reachability algorithm by Le Guernic and Girard (LGGQG)

Discretize time
Compute overapproximation X'(0) up to time step

X2

=

X(0) —

initial states 7 —

X1
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Reachability algorithm by Le Guernic and Girard (LGGQG)

Compute successors

X(1) = - x(0)

X2

X(0) —

initial states 7 —

X1
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Reachability algorithm by Le Guernic and Girard (LGG)
Compute successors
X(1) = - x(0)
X(2) = Xx(1) = o2 X(0)

X(0) —

initial states 7 —

X1
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Reachability algorithm by Le Guernic and Girard (LGG)

Compute successors
X(1) = o - X(0)
X(2) = ¢ x(1) = o2 X(0)
X(k) = ok - x(0)

X(0) —

initial states 7 —

X1
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LGG algorithm with Cartesian decomposition

Compute high-dimensional set X'(0) (as before)

X2

X(0) —

initial states 7 —

e

X1

6/15



LGG algorithm with Cartesian decomposition

Decompose X'(0) into low-dimensional sets X;(0) and X5(0)

(Note: In general we do not need to go down to 1D)

X2

X2(0) —

(0) —

initial states 7 —

X1
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LGG algorithm with Cartesian decomposition
Define X'(k) := X1 (k) x Xa(k)

X2

Y,(0) —
X(0) — >
x(0) —
initial states 7 —

\

X1
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LGG algorithm with Cartesian decomposition
Define X'(k) := X1 (k) x Xa(k)

original: X (k)= ok x(0)
X2
Y,(0) —
X(0) —>
X(0) —
initial states Z —
X1
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LGG algorithm with Cartesian decomposition

~

Define X'(k) := X1 (k) x Xa(k)

original: X (k)= ok x(0)

decomposed: X (k) = ok . X(0) ?
X2
Y,(0) —

X(0)
(0) —
initial states 7 —
X1
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LGG algorithm with Cartesian decomposition

~

Define X'(k) := X1 (k) x Xa(k)

original: X (k) = (Dk X (0)
decomposed: /‘?( k)=€; ¢ XJ(O)
X2
%(0)
X(0) —
X(0) —
initial states 7 — X1
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Example
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/1’(0) —

initial states Z —

X1
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Example

/i;(k) @ cb A'( 0) al|b
??1(1)—3')(1(0) ¢:<c 0)
X2
%,(0)
X(0) —
X(0) —
initial states 7 — X1
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%,(0) —
x(0) —
x(0) —

initial states Z —

X1
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Xi(k) = @; ®f ;- X(0) alb
Xi(1) = a- 11(0) © b- X5(0) = (ﬁ?)
~ ] = )

%(0)
%(0) —
X(0) —

initial states Z —

X1
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X(1)
Xo(1)
%(0)
X(0)
)

X(0

initial states 7 —

X1
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X(1)
Xo(1)
%(0)
X(0)
)

X(0

initial states 7 —

X1
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Decomposed reachability algorithm — Summary

Classical LGG algorithm is a special case (with one block)

Precision

e Sacrifice precision due to inter-block dependencies

e Preserve dependencies between intra-block dimensions

Speed
e Perform set operations in decomposed dimensions
e Skip computations for irrelevant dimensions

e Exploit sparsity of matrices ®*
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Implementation & evaluation

Implementation

e JULIAREACH!, written in Julia

Benchmark settings
e 1D blocks (worst case precision)

e High-dimensional benchmark suite, with inputs

e 15t setting: evaluate speed in reach set computation
e Comparison to state-of-the-art tool SPACEEX

e Time step 1073, one dimension

e 2" setting: evaluate precision in safety verification

"https://github.com/JuliaReach
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https://github.com/JuliaReach

Reachability in dense time

Model Dim  JULIAREACH SPACEEX Speedup
Motor 8 1.1s 19s 1.8
Building 48 45s 95s 2.1
PDE 84 4.4 s 61.7 s 13.9
Heat 200 24.7 s 102.8 s 4.1
ISS* 270 25s 79.1s 32.1
Beam 348 540 s 332.1s 6.1
MNA1 578 140.0 s crashed n/a
FOM* 1006 10.6 s crashed n/a
MNA5* 10913  1650.3 s crashed n/a

*sparse matrix
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Reachability in dense time

Model Dim  JULIAREACH SPACEEX Speedup
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*sparse matrix
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Reach set comparison — MNA5 model

e Bad states B: x; > 0.2V x» > 0.15
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Reach set comparison — Building model

e Bad states B: x»5 > 0.006
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Safety property verification in dense time

Model #Var Time step JULIAREACH
Motor 2 1x1073 165
Building 2x 1073 1.1s
PDE 84 3x10°* 1030.0 s
Heat 1 1x1073 14.8 s
Beam 1 5x10°° 857.1s
MNAL1 1 4x107*% 287.2's
MNAS5* 2 3x107! 719.1s

*sparse matrix

12/15



Safety property verification in dense time

Model #Var Time step JULIAREACH
Motor 2 1x1073 165
Building 2x 1073 1.1s
PDE 84 3x10°* 1030.0 s
Heat 1 1x1073 14.8 s
Beam 1 5x10°° 857.1s
MNAL1 1 4x107* 287.2's
MNAS5* 2 3x107! 719.1s

*sparse matrix

12/15



Safety property verification in dense time

Model #Var Time step JULIAREACH
Motor 2 1x1073 165
Building 1 2x10°3 1.1s
PDE 84 3x10°* 1030.0 s
Heat 1 1x1073 14.8 s
Beam 1 5x107° 857.1s
MNAL1 1 4x107* 287.2's
MNAS5* 2 3x107t 719.1s

*sparse matrix

12/15



Safety property verification in dense time

Model #Var Time step JULIAREACH
Motor 2 1x1073 165
Building 2x 1073 1.1s
PDE 84 3x10°* 1030.0 s
Heat 1 1x1073 14.8 s
Beam 1 5x10°° 857.1s
MNAL1 1 4x107*% 287.2's
MNAS5* 2 3x107! 719.1s

*sparse matrix

12/15



Discrete-time setting

Reachable states are only computed at discrete time steps
Assumption: Inputs can only change at discrete time steps

Comparison to state-of-the-art tool HyLAA
e Uses simulations, exploiting superposition

Same settings as before
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Safety property verification in discrete time

Model Dim  #Var JuLIAREACH HyYLAA Speedup
Motor 8 2 0.3s 16s 6.5
Building 48 1 0.5s 25s 4.7
PDE 84 84 22.2s 35s 0.2
Heat 200 1 4.2s 13.8 s 3.3
Beam 348 1 7.0s 169.1 s 24.2
MNA1 578 1 19.7 s 288.2 s 14.6
MNA5* 10913 2 435.7 s 3440.2 s 79.1

*sparse matrix
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Conclusion

Generalized reachability algorithm for LTI systems

Cartesian decomposition approach
e Matrix operations in high dimensions

e Set operations in low dimensions

Outperforms state-of-the-art tools SPACEEX and HYLAA
e Speed: Over an order of magnitude faster

e Dimension: Over an order of magnitude higher
(SPACEEX)

Precision sufficiently good in many cases
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