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Abstract

Formal software verification is concerned with the correctness of programs with
respect to some specification. Although there exist examples of the usage of
program verification tools and methods for large enterprises, the benefits remain
inaccessible to most software developers and companies, because the usage of
formal methods incorporates high entry costs: Expensive experts have to be
employed or personnel has to be trained in expressing requirements and spec-
ifications of systems in formal languages. Especially small and medium sized
enterprises do not have the necessary resources to provide this training or to hire
experts. In this work we examine the path from informal requirements to ver-
ified programs on the basis of a case-study for a real-world embedded system.
We use existing techniques to lower the complexity inherent to the creation of
formal requirements and describe, how non-expert users can create specifications
for programs from those requirements. The specifications can then be used by
present program verification tools to decide if the program is correct with respect
to the requirements or not.



Zusammenfassung

Formale Softwareverifikation beschäftigt sich mit der Korrektheit von Program-
men in Hinblick auf eine Spezifikation. Obwohl es zahlreiche Beispiele für die
Anwendung von Verifikationswerkzeugen und -methoden in großen Unternehmen
gibt, erschließen sich deren Vorteile für die meisten Firmen und Softwareentwick-
ler nicht, da der Einsatz formaler Methoden mit hohen Einstiegskosten verbun-
den ist: Entweder müssen teure Experten eingestellt oder das eigene Personal
im Umgang mit formalen Sprachen für das Formulieren von Anforderungen und
Spezifikationen geschult werden. Insbesondere kleine und mittelständische Un-
ternehmen (KMU) verfügen nicht über die notwendigen Ressourcen, um ihre
Mitarbeiter zu trainieren oder Experten anzustellen. Die vorliegende Arbeit
beschäftigt sich daher mit möglichen Erleichterungen für diese Unternehmen.
Wir betrachten den Ablauf, der von informellen Anforderungen zu verifizierten
Programmen führt, auf der Basis eines Fallbeispiels für ein industriell entwick-
eltes eingebettetes System. Wir verwenden bereits vorhandene Techniken um die
der Erzeugung formaler Anforderungen innewohnende Komplexität zu reduzieren
und beschreiben, wie Benutzer, die nicht in der Anwendung formaler Methoden
geschult sind, aus diesen Anforderungen Spezifikationen für ein bereits existieren-
des Programm erstellen können. Diese Spezifikation kann danach von bestehen-
den Programmverifikationswerkzeugen verwendet werden, um zu entscheiden, ob
das Programm korrekt in Hinblick auf die Anforderungen an das System ist.



Acknowledgements

I would like to thank Andreas Podelski and all members of the Department of
Software Engineering for the great work environment they provided and the many
fruitful discussions we had since I started working there. In the context of this
work, I would like to thank Amalinda Oertel for her guidance through the large
amount of literature in requirements engineering and for the time she invested to
contest my ideas. Furthermore, I want to thank Jochen Hoenicke, Jürgen Christ,
Stefan Maus and especially Sergio Feo-Arenis for their valuable advice on the
usage of VCC and some interesting conversations about the semantics of C, and
Martin Schäf for his suggestions concerning scientific writing. Also, I would like
to thank Axel Gembe for the explanations regarding the F.BZ 100 source code
and hardware as well as for the discussions about usability of formal methods.
Most important, I want to thank my advisor Bernd Westphal for the endless
discussions, his patience with my sometimes too pragmatic approaches and his
invaluable guidance through every aspect of this work: Without his paramount
contributions, I could have never conquered the chasm between airy ideas and
scientific writing. Last but not least I would like to thank Christin Gudopp for
the many hours she sacrificed to correct this work.

On a personal level, I would like to thank Rebecca Albrecht for her continuing
support during the dark weeks of writing as well as her patience with my writing-
moods, and my parents, whose steady support through every phase of my life
made everything possible in the first place.



Contents

Contents i

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Analysis 5

3 Approach 14

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Domain Requirements . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Background: The Temporal Logics CTL and TCTL . . . . 15

3.1.2.1 CTL . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2.2 TCTL . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.3 Background: Requirement Pattern Systems . . . . . . . . 20

3.1.4 Signature of Formal Requirements . . . . . . . . . . . . . . 26

3.2 Software and the Real World . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 The Interface between Requirements and Software . . . . . 28

3.2.2 Software Description . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 Hardware Description . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 The Interface between Requirements and Hardware . . . . 32

3.3 Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Software Specification . . . . . . . . . . . . . . . . . . . . 34

i



3.3.2 Program Verifier . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Machine-Level Specification . . . . . . . . . . . . . . . . . 39

4 Case Study 44

4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Obtaining Domain Requirements . . . . . . . . . . . . . . . . . . 45

4.3 Formalizing Domain Requirements . . . . . . . . . . . . . . . . . 50

4.4 Obtaining a Software Description . . . . . . . . . . . . . . . . . . 51

4.5 Creating the IRS . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Software Specification . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Preparing the Code . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Generating the MLS . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Related Work 62

6 Discussion 64

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 68

ii



1 Introduction

1.1 Motivation

Formal methods use mathematically-based techniques for the analysis of arti-
facts throughout the software development cycle. The usage of formal meth-
ods promises the “cost-effective development of software with very low defect
rates” [1]. The cost-effectiveness of formal methods is due to the very low de-
fect rate, which in turn allows dramatically lower maintenance costs. There is
even reason to believe, that formal methods actually lower the overall costs [2].
But although by now there are numerous examples where formal methods are
successfully applied in industrial settings (see [3] for a recent survey), they all
take place in large enterprises. The main reason for this seems to be the high
entry costs associated with formal methods [4]. The high entry costs are mainly
caused by the high level of expertise needed for the successful application of for-
mal methods [1, 5], which is not present in most developers. Large enterprises
have the necessary resources to bridge this gap by providing extensive training
or employing expensive experts. But small and medium sized enterprises (SMEs)
usually can not afford those resources, although they are equally concerned with
the development of safety-critical software systems. Because they cannot af-
ford the entry costs, they cannot benefit from the later occurring reduction in
maintenance-cost.

Most of the reported examples for the use of formal methods come from
large, safety-critical systems like airplanes [6], railroad systems [7–10], flood-
barriers [11, 12] or physical access-control systems [13]. Those systems have a
need for high reliability as their failure puts human lives and large amounts of
money at risk. Therefore, the broad use of formal methods despite their high en-
try costs is justifiable. Some SMEs are providing products with an equal need for
high reliability, but due to the complexity of formal methods, they are commonly
not able to employ them without taking large financial risks. This complexity of
formal methods caused some responses among the research community prompting
for a better usability of formal methods; Clarke and Wing stated more than ten
years ago that formal software verification should be applicable “with as much
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1.2. RESEARCH QUESTION CHAPTER 1. INTRODUCTION

ease as compilers” [14] and Craigen et al. are convinced that “ [verification-]tools
need to be integral parts of the development environment” [15].

Nowadays many tools try to stand up to this challenge by providing easier user
interfaces and by requiring lesser user interaction (e.g. [16–20]). But to the best of
our knowledge, they still do not find wide application outside of large enterprises
or research.

This work tries to find a way to introduce formal methods to SMEs without
the need for extensive training. As a starting point, consider the following, not
uncommon scenario:

In a small company, there is a programmer concerned with developing a software
for an embedded system in C. The embedded system is going to be used in a
safety-critical environment, e.g. it is responsible for the release of an airbag or for
detecting fire and signaling an alarm. On his desk lies a document written by his
boss, which contains all requirements for the system. Our developer is at the point
where he wants to check whether his software fulfills those requirements or not.
He knows that the system needs a high degree of reliability and therefore wishes
to use formal program verification. But because he is an average programmer,
he has no formal education in logic or modelling programs [1, 5], and therefore
he wants to use a tool that works directly on the C code of the program. His
first problem lies in the requirements document provided by his boss: All the
requirements talk about the behaviour of the system as a whole, and not about
the software. Inspecting the tools he wants to use, he discovers, that they need
a specification in terms of the program, so he concludes: I need a way to express
the requirements in terms of the program.

In the following, we will describe how we approached the problem of the developer.
During this process, we also identify some practical obstacles that have yet to be
addressed by research.

1.2 Research Question

The present work attempts to answer the following main question: How could
SMEs with limited resources and non-expert personnel employ formal methods
to verify, that the software of an embedded system is correct with respect to a set
of requirements for this embedded system? An answer to this question depends
on several sub-questions:

• When can we say that the software of an embedded system is correct with
respect to the requirements for the whole embedded system?

• What kinds of requirements are verifiable on the software alone?
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• What challenges have to be faced by developers in SMEs when using avail-
able tools and techniques for program verification, and how can we overcome
them?

It is clear that the answers to those questions depend on a multitude of aspects,
of which we can only address a few. Therefore we make some assumptions about
the setting in which we search for an approach and the approach itself:

• We restrict the approach to programs written in C, because we are familiar
with tools that can be used to verify C code.

• We consider only embedded systems for a number of reasons:

– They are typically smaller, therefore we can perform our experiments
faster.

– Their requirements are closer to the system, which could make the
relationship between requirements for the system to requirements for
the software easier.

– There is a greater likelihood for a safety-critical application of the em-
bedded system, therefore we suspect that companies are more willing
to invest resources in the application of formal methods.

• We consider only embedded systems that consist of one component, i.e. a
single microprocessor with a single program running on it. The reason for
this is that we do not want to concern ourselves with the relation between
requirements for a whole embedded system and the requirements for the
various single devices it could be made of.

• We require that the program directly interacts with the hardware. We as-
sume that there is no additional abstraction layer between program and
hardware (i.e. no operating system, no underlying middleware which en-
capsulates memory access or interrupts). The reason for this restriction is,
that any additional abstraction layer between hardware and software could
depreciate the significance of the verification results. We would have to
make sure that the abstraction layer itself cannot violate the requirements,
either by taking it into account or by assuming it is already verified.

• We assume that the hardware of the embedded system is already correct,
as we do not provide support to analyze the hardware.

We use the following criteria to guide our search for an appropriate approach and
justify some of our choices:
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• Whenever possible we try to maximize the expected usability for our target
group, the non-expert developers in SMEs. If we can choose between better
analysis results and better usability, we opt for better usability. After all,
utilizing only a small part of the improvements offered by formal methods
is better than using none because the entry cost would get too high. This
also includes the hiding of as much formalisms as possible from the target
group.

• We try to design our approach with possibilities for automation in mind.
If possible, we will try to divide the work by separating parts that we
imagine can be automated (e.g. by providing new tools) from parts that
will always be “hand-made”. The possibility of automation allows for an
easier concealment of formalisms and therefore for a higher likelihood of
acceptance by the target group.

• We favor the reuse of artifacts or activities already available in embedded
system development in SME over the introduction of new artifacts. Again,
our target group is indeed interested in the results provided by formal meth-
ods, but they are unlikely to perform massive changes to their development
process just to try it out. Therefore our goal must be to introduce the ben-
efits of formal methods with as little change to their development process
as possible.

1.3 Document structure

The rest of the document is organized as follows:

• Chapter 2 discusses the relation between requirements, system and software
and provides an outline for our approach. We also define here what it means
for a software to be correct with respect to the requirements for the system.

• Chapter 3 explains the three main aspects of our approach: How a non-
expert user can formalize requirements, how he can relate them to the
software and how this relation can be used to verify the correctness of the
software with respect to the requirements.

• In Chapter 4 we present our case-study, which is based on an authentic
embedded system. Furthermore, we report the challenges we had to face
along the way and how they influenced our approach.

• Chapter 5 discusses the related work.

• In Chapter 6 we discuss our conclusions and possible future work.
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2 Analysis

If we want to show that a program fulfills a set of requirements for an embedded
system, we must first examine the relation between the requirements and the
embedded system. This understanding is crucial, as we need to find out what we
actually show with formal methods and how the correctness result of a program
verifier relates to the correctness of an embedded system with respect to its
requirements. In the following, we describe what we mean by requirements for
embedded systems, or more generally, for products.

Requirements are a part of almost every product development, regardless of the
product. Bridges, airplanes, kernel drivers or kitchen tools: If products are to be
build, someone has to imagine what the product should be. Those requirements
differ naturally in their size, their complexity and their level of abstraction, com-
monly defined by the complexity of the product: The greater the complexity of
a product gets, the more abstraction takes place in certain stages of the develop-
ment cycle; partly to tame that complexity as a whole, partly because specialized
people attend to different parts of the product and want to abstract away things
not important for them [21–24].

People view different parts of the product from different, abstract points of view,
which, in turn, leads to more and different abstractions. The kind of abstraction
is, for this argument at least, insignificant. But the nature of it is significant, as
it demands a mapping from the abstract concepts to their concrete counterparts
– without such a mapping, even an implicit or unused one, the best abstraction
is useless, as it is no longer a suitable tool to simplify the thinking about the
product.

If an abstraction was created in a reflective way – that is, by looking at an already
existing concrete thing and describing it with a certain abstraction – it might be
easy to get such a mapping. But requirements formulate an abstract idea of a yet
non-existent product; there is no concrete thing (at least not yet) and therefore
the mapping always contains a certain uncertainty. This unsureness does not only
stem from the different possible implementations, but also from the overwhelming
amount of implicit information contained in even the best requirements. Consider
the following example requirement:
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“The central unit has to refresh the system status on its display every 60s.”

If we now wanted to verify this requirement for a given product, we would imme-
diately observe some problems: What is the system status, what is the central
unit and what exactly is the display of the central unit? The answers to those
questions may be obvious if we had the necessary prior knowledge, if we had read
the complete requirements document or if we simply had any experience in the
corresponding area of expertise. Because we have those questions, we can now
conclude that it is not enough to have requirements, one also has to know about
the domain they stem from. Dines Bjørner defined domains in [25] as follows:

“A domain is (i) an area of human activity and/or (ii) an area of
semi- or fully mechanised activity and/or (iii) an area of nature that
can be described, and parts of all of which that can be potentially be
subject to partial or total computerisation. We understand a domain
when we can describe it in an objective way.”

Analogical, M. Jackson described in [23] that “most computing problems are lo-
cated in the real world – the physical world of employees, customers, lifts with
doors and buttons, web sites, telephone switches, warehouses, aeroplanes, motor
cars, railway trains, bank accounts and nuclear power plants”.

Both, Jackson and Bjørner, talk about the same thing: The reasons to develop
new products with new software. The distinction is only in scope, as domains are
a part of the real world. As such, domains do not only provide the reason to build
products, but also the terms to describe and constrain them. Early requirements
are therefore necessarily stated in terms of the domain and have to view the
product as black-box. They cannot look inside the product and talk about its
inner workings. Ideally, they are the requirements that must be met to solve this
certain problem in the domain, nothing more and nothing less. Therefore, we see
the product as a solution to a problem in a domain.

A specialization of such a product is of course an embedded system. A system may
consist of different components, i.e. functional entities consisting of software, a
hardware on which the software runs and input and output devices that connect
the hardware to the environment. As mentioned before, we assume that our
system consists only of a single component, so that the requirements as well only
talk about that one component.
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Figure 2.1: The Four Variable Model [26].

The connection between the domain and the system exists at the input and out-
put devices of the hardware. This principle was introduced as four variable model
by [26], which described the relation between requirements and software as a set
of four relations (NAT , REQ, IN , OUT ) over four variables (monitored, input,
output, controlled). Figure 2.1 shows the scope of the relations over a system and
its environment. The system is seen as an abstract composition of software and
input and output devices. We are mainly interested in the correspondence be-
tween (a) input and monitored variables and (b) output and controlled variables.
In the four variable model, the input variables are functions that map points
in time to values of hardware registers. The monitored variables are functions,
that map points in time to environmental quantities, i.e. values like temperature,
pressure or states of buttons. Now the relation IN between the domain of mon-
itored variables and the range of input variables describes the correspondence
between hardware registers and environment, that is, our domain. Analog, the
relation OUT describes a correspondence between output variables and controlled
variables, i.e. again between hardware registers and environment.

We can see that the connection between software and domain is an indirect one;
the hardware lies in between and provides another abstraction. Nevertheless, if
the software controls the hardware, it needs to have access to all those in- and
outputs that represent elements of the domain. But although the software is
bound to know some representations of the domain, software is no longer a direct
part of the domain and vice versa. Simply put: Software does not know what a
light is.

This insight might seem trivial, but it helps with the question of when is the
software correct with respect to the requirements for the system. A software
may not know, what a light is, but the developer of the software does. By his
design he chooses representations for elements inside a domain. Strictly speaking,
we cannot show that a software fulfills requirements from a domain because the
software does not directly influence the domain. But we can decide whether
the software representatives of domain elements behave exactly like requested by
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the system requirements or not. In order to do so, we have to make the relation
between elements of the domain and their representatives in the software explicit.

If we interpret requirements for a system as rules for the behavior of elements
in the domain, we can show that the representatives of those elements in the
software have the same behavior. In order to define what it means for a software
to be correct with respect to the requirements of the system, we need a notion
for the concepts “software”, “requirements” and “system”:

Definition 1. Let AP be a set of atomic propositions. A labeled state transition
graph is a triple G = (S, T, l), where:

• S is a set of states.

• T is the transition relation over S with T ⊆ S × S. T is total, i.e. ∀s ∈
S.∃s′ ∈ S.(s, s′) ∈ T .

• l : S → 2AP is the labeling function which labels all states with a set of
atomic propositions.

A labeled state transition graph describes a system, whereas requirements con-
strain the set of possible state transition graphs, i.e. requirements describe a
set of state transition graphs. Requirements also bring their own set of atomic
propositions that express conditions over the elements in the domain. But of
course, they normally allow other atomic propositions inside the system if it is
not explicitly forbidden. We say the labeled state transition graph of a sys-
tem is an element of the set of labeled state transition graphs described by the
requirements if the system fulfills its requirements. We also use the notion of
labeled state transition graphs to describe the software of the system, because
then we can give a definition for the correctness of software with respect to the
requirements of the system:

Definition 2. The labeled state transition graph G = (S, T, l) over the set of
atomic propositions AP is a software. Furthermore, GR is the set of labeled state
transition graphs representing the systems allowed by the requirements and AP ′ is
the set of atomic propositions of the requirements that are relevant to the software.

A software is correct with respect to the requirements for a system if there exists
a function f : AP ′ → AP such that G′ = (S, T, f−1 · l) and G′ ∈ GR.

As we earlier pointed out, domain requirements are ambiguous. But the am-
biguity of domain requirements is essential. If we talk about alarms, diodes or
buttons, we can imagine several things for each of those terms. The difference is
given by the context provided by a domain. An alarm from an anti-virus program
is entirely different from an alarm of a smoke detector, but only by mentioning
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the context we can distinguish between them. When we want to show, that a
system fulfills its requirements, we want to know, if it fulfills its requirements
inside its domain. To verify that, we need a precise description of the domain,
which allows us to distinguish between all the implicitly excluded meanings of
the terms used in describing the requirements. We would need the whole domain
knowledge in a formalized form. Because this is clearly impracticable, we have to
rely on the developer to assign the right meaning to certain parts of the software
by giving a relation between parts of the domain and parts of the software. Given
such a relation, we can show that each relation between parts of the domain that
expresses a requirement has a counterpart in the software, which relates parts
of the software in the same way. Therefore, if we want to verify that a software
satisfies our requirements, we will either need a relation from the terms of the
domain to the terms of the software, such that we can encode the meaning chosen
by the developer, or we need to explicitly state the domain knowledge in a way
the preferred verification method can understand.

Now that we know what we want to verify, we turn our attention toward the
methods we can use to verify it. Tools for program verification always need a
specification of the properties of the software in terms of the software. While
requirements for the system talk about the systems outside behaviour, those
tools can only see the inside, that is, the software. But given the function from
domain parts to software parts, we can encode requirements as properties of the
software. Then a tool can examine whether the relationship between software
representations of domain parts is the same as the relationship between domain
parts with each other.

The selection of an appropriate tool is an important choice for our undertaking.
The tool should be mature enough to be usable in an industrial setting, it should
be aimed at verifying programs, not only finding bugs, and it should require as
little expertise from its users as possible. Furthermore, the encoding of the rela-
tion between software representations of domain parts depends naturally on the
specification language used by the tool. Ideally it should support every property
expressible by the requirements which are relevant for the software.

Today there exists a wide variety of tool-supported formal methods to aid the
development of programs. In order to make an appropriate selection, we first
turned to various surveys of formal methods and their industrial appliance [3,15,
27–31]. The first distinction that we can make is between sound and unsound
tools: A sound tool guarantees that if it reports that there is no error, there is
none. But it may report false errors, due, for example, an overapproximation of
the possible program executions. An unsound tool, on the other hand, does not
guarantee that there are no errors left if it cannot find any.

In our understanding, the class of unsound tools also entails all representatives of
bounded model checking (BMC), a special class of the model checking technique
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introduced by Clarke and Emerson [32]. BMC does not explore the whole state
space of a program, but only to a certain path length, called the bound. Errors
which occur only on longer paths are therefore not detected. Examples for un-
sound tools, that can be used to analyze C programs, include the famous static
analyzer lint (developed 1979 by Bell Laboratories), CBMC [18], Saturn [33] and
EUREKA [34] as well as commercial tools like Coverity [20] or Klocwork [35].
Unsound tools allow the use of efficient heuristics to analyse programs and are
therefore typically much faster than sound tools. Nevertheless, they can never
prove the absence of bugs, and that is what we are interested in. Therefore we
have to discard all the unsound tools, although they provide very useful informa-
tion to developers.

We also do not consider formal methods that require extensive user interaction
like constructing a proof or a model manually. These tools may be appropriate
for experts in formal methods, but as we already mentioned, our target group
does not consist of experts. Examples include the interactive theorem provers
PVS [36] and Isabelle/HOL [37] as well as Bogor [38].

Furthermore, methods that aim at generating verified programs from specifica-
tions, models or requirements are equally unusable for us, as we want to ver-
ify already existing programs. An example for this class of methods is the B-
method [39].

The remaining tools are in principal feasible for our approach. Because commer-
cial tools require more resources from SMEs, we do not want to rely on them.
This excludes PolySpace [40], CodeSonar [41] and Astree [42].

This leaves us with SATABS [19], SLAM [16], Blast [43] and VCC [17]. In
principal, all those tools are usable for our purpose. We favor the VCC as we
already have some experience with it. VCC and its sources are freely available for
non-commercial use from [44]. VCC was build to verify the Microsoft Hyper-V
hypervisor [45] as part of the Verisoft XT project [46], in which our department
is involved. Essentially, a hypervisor is an additional abstraction layer between
operating systems and the hardware, which allows multiple operating systems to
run on the same hardware platform side by side. Because VCC has to handle
the complexity of a low-level program with considerable size (Hyper-V has ap-
proximately 100.000 LOC), we expect it to be usable for the programs from our
target group as well. Besides a high level of automation and scalability, VCC
also provides a tight integration in Microsoft Visual Studio [47], a commonly
used integrated development environment (IDE). This integration allows an easy
reporting of verification errors, comparable to the error messages provided by
compilers [48].

The input to VCC is C code extended with annotations, which consist of function
pre- and post-conditions, assertions, type invariants and specification code [17].
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Those annotations are similar to the annotations found in other tools that work
with annotated code, namely ESC/Java [49,50] for Java and Spec# [51] for C#.
The annotations are specified by new keywords and a mixture between C and
first-order logic (see Section 3.3.2 for details).

Let us recall our scenario from Chapter 1: We said our developer has a document
written by his boss that contains the system requirements. We already assumed
that the personnel in SMEs do not have the expert knowledge in modelling and
formal logics that is necessary to successfully employ formal methods. Therefore
we cannot assume that said document already contains a formal representation
of the requirements. But our tool needs a formal input, so we have to formalize
the requirements somewhere along the way to this input. The difficulty here
lies not necessarily in the formalization itself, but in the difference between the
expressiveness of requirements written in natural language and the properties a
tool like VCC can verify. First of all, we expect general requirement documents
to contain several requirements that have nothing to do with software, but rather
with e.g. the color of the casing of the embedded system. We are not concerned
with filtering such non-software requirements, as it is rather easy for a developer
to decide whether a requirement belongs to this class or not. Second, there
are requirements that do not talk about the behavior of the system but about
how this behavior should be implemented, e.g. scalability, usability and the like.
We call such requirements non-functional requirements and we cannot analyse
them either. Their fulfillment has to be checked separately. The remaining
requirements describe software-controlled behavior of the system. According to
the definitions of [52], we can further distinguish those remaining requirements
in the following classes:

• Safety requirements describe that “something bad must never happen”.
They describe states of the system that must never occur, like simultane-
ous green lights in a traffic light system controlling a crossroad. In general,
every violation of a safety requirement can be verified by giving a finite se-
quence of states that is permitted by the system and that contains a state
where the property does not hold.

• Liveness requirements describe that “something good has to happen even-
tually”. In contrast to safety requirements, they specify not the absence of
bad things, but the presence of good things. Conversely, they can only be
violated in infinite sequences of states because the good thing may happen
at any time.

• Bounded Response requirements provide time bounds to properties, that is
they state that something must occur (like liveness) or something may not
occur (like safety) in a certain time interval. For example, “At most 10
seconds after the button press the green light has to go on.” is a bounded
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response requirement. To verify bounded response requirements one needs
information about the worst-case execution time of a system, which in turn
depends heavily on the hardware and the environment [53]. Nevertheless,
due to the boundedness of time this property can again be falsified with a
finite sequence of states in which one state violates the property and it is
known that this sequence of states lies within the time bounds.

We are aware of the additional classes of requirements, like duration requirements
that specify that inside a given time interval a system has to or may not be inside
a state for a given time, or probabilistic properties that specify the probability
of being in a certain state, but because those classes belong again to entirely
different areas of research, namely hybrid systems and probabilistic model check-
ing, we do not discuss them any further. In fact, all of the previously described
tools including the VCC are not able to verify anything but safety properties of
software. But a preliminary analysis of an available real-world example project
suggests that the requirements are in large parts real-time or liveness properties.
Unfortunately, to the best of our knowledge there does not exist a tool that allows
the direct verification of C code against real-time properties.

We already said that we need to formalize the requirements. Because we as-
sumed that the personnel of SMEs are not trained in the use of formal logics,
we have to provide a method that allows them to formalize requirements any-
way. Fortunately there already exist numerous approaches to the formalization
of requirements that support non-expert users, e.g. structured natural language
and requirement pattern systems. Structured natural language approaches use a
subset of natural languages like English and provide a predefined semantic to this
subset. They also require a certain structuring of the requirement documents.
An example of this approach can be found in [54,55]. This class of formalization
is not as expressive as requirement pattern systems, as the current state of the
art does not provide a transformation in common formal logics like LTL, CTL or
TCTL, but instead defines a new, own formal language. Furthermore, there are
still practical problems as some ambiguities arise even inside the subset of the
language, which have to be handled manually.

Requirement pattern systems utilize recurrences in written requirements to define
abstract templates, that can be instantiated with atomic propositions. A tem-
plate normally contains natural language description of the situation where it can
be used along with examples and a mapping to one or more formal logics. A re-
quirement pattern system pools those templates and provides some ordering, e.g.
by the range of application, over the templates. Examples of such requirement
pattern systems can be found in [5, 56–58].

We believe that requirement pattern systems are better suited to help formalize
requirements, as they involve less changes in the general development process. To
apply a pattern system, one only needs the system and additional space in the
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requirements document or an additional document to write down the formaliza-
tion. In approaches using structured natural language one needs training in the
proper use of the subset of the language and one has to adhere to the strict struc-
turing of the document, which requires larger changes in the existing processes
in SMEs. Therefore we use requirement pattern systems instead of structured
natural language to formalize requirements.

We close this section with a short summary of the main findings of this prelimi-
nary analysis regarding the mandatory elements of the approach:

• Embedded systems are solutions to a problem in a certain domain.

• Requirements for embedded systems describe the desired behavior of the
embedded system in terms of elements of the domain.

• A software is correct with respect to the requirements for an embedded
system if there exists a mapping from elements of the domain to elements
of the software, such that the behavior of the software elements over time
is the same as the required behavior of domain elements over time.

• We want to use a program verification tool which is sound, not commercial,
does not require extensive knowledge in formal methods from the user and
can work directly on C code.

• We use VCC as program verifier because it is among the tools that match
our criteria and, as it is already used in our department, has the benefit of
requiring a shorter training period. Nevertheless, other tools could be used
in its place.

• Not all properties expressible in system requirements are verifiable with
suitable tools, because either the properties have nothing to do with soft-
ware or they express how a certain behavior should be implemented or the
tools require too much expert knowledge to be used by SMEs.

• Tools which can formally verify properties of C code require a formal spec-
ification, therefore we have to formalize the requirements.

• Users without expert knowledge in formal methods cannot formalize re-
quirements on their own, therefore we use requirement pattern systems to
provide the expert knowledge needed, since they are developed to overcome
this problem. We do not use structural natural language because it requires
more changes in the already existing development process in SMEs.
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3 Approach

This chapter describes our approach to the problem and is divided into three
sections:

• We begin by stating our definition of requirements, and how they can be
captured in a formal language with the help of requirement pattern systems
in Section 3.1. This also includes a short background of the formal languages
used and an equally short overview of the requirement pattern systems
presented in [5, 58].

• Section 3.2 defines which artifacts need to be created in our approach to
capture all necessary information for the transformation from formal re-
quirements to an input for a program verifier.

• In Section 3.3 we define the formal specification that together with the
program can be used as an input to a program verification tool. We also
give an overview over the annotations used by VCC and show a toy example
for the whole approach.

3.1 Requirements

We already described in Chapter 2 that we have two choices if we want to verify
that a software satisfies our requirements: Either we give a relation from elements
of the domain to elements of the software or we formalize the domain knowledge in
a way the preferred verification method can understand. In our approach, we opt
for the first alternative, because creating an explicit representation of a domain
requires additional resources, which are already sparse in SMEs. A translation
can be given comparatively easy, because we leave the huge amount of domain
knowledge where it belongs: In the heads of the developers. In the following,
we define some terms and concepts necessary to give a precise description of the
translation itself and the process to obtain it.
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3.1.1 Domain Requirements

A domain requirement is a constraint on a system in terms of the domain. The
constraint must be met by the implementation of the system. The domain
parametrizes the meaning of a domain requirement by providing the context
for the terms occurring in the requirement. A single domain requirement must
have the following properties:

• Cohesive: It addresses only one aspect of the system.

• Unambiguous : There is only one interpretation for the requirement.

• Atomic: It does not contain conjunctions.

• Prescriptive: It describes only aspects of a system which must be enforced,
not aspects which are enforced by laws of nature. In other words, a system
can fulfill the requirement or it cannot, it is not inherent to the environment
that the requirement will be fulfilled.

Furthermore, we require that the set of domain requirements is consistent, i.e.
there exists a system which fulfills all of the domain requirements.

We call domain requirements formal if they are written in a formal logic (like,
e.g. first-order logic). Analogical we call domain requirements written in natural
language informal, regardless of the degree of structuring.

In Chapter 2 we explained that we need to formalize the requirements somewhere
along the way to the program verifier and that it is beneficial to formalize re-
quirements as early as possible in the development cycle. We further explained,
why we want to use pattern systems in general and why we select the pattern
systems presented in [5, 58]. The next two sections give a short background of
the formal logics (Section 3.1.2) used by the selected requirement pattern system
(Section 3.1.3).

3.1.2 Background: The Temporal Logics CTL and TCTL

The following two sections give the definition of the branching time logics CTL
and TCTL according to [59] and [60] respectively. CTL and TCTL are used
by [5, 58] to specify their requirement pattern systems.

3.1.2.1 CTL

CTL Syntax: Let AP be a set of atomic propositions. The syntax of CTL
formulas is inductively defined as follows:
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φ := p | ¬φ | φ1 ∧ φ2 | EXφ1 | Eφ1Uφ2 | Aφ1Uφ2

where p ∈ AP and φ1, φ2 are CTL formulas.

CTL Semantics: The semantics of CTL is defined with respect to Kripke
structures. A Kripke structure M is a tuple M := 〈S, sinit, µ, E〉, where

• S is a finite set of states,

• sinit ∈ S is an initial state,

• µ : S → 2AP gives an assignment of truth values to atomic propositions in
each state and

• E is a binary relation over S giving the possible transitions.

A path is an infinite sequence of states (s0, s1, . . .) ∈ Sω such that 〈si, si+1〉 ∈ E
for all i ≥ 0.

Given a CTL-formula φ and a state s ∈ S, the satisfaction relation (M, s) |= φ
(meaning φ is true in M at s) is defined inductively as follows (because M is
fixed, we abbreviate (M, s) |= φ to s |= φ):

s |= p iff p ∈ µ(s).
s |= ¬φ iff s 6|= φ.
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2.
s |= EXφ iff s′ |= φ, for some state s′ such that 〈s, s′〉 ∈ E.
s |= Eφ1Uφ2 iff for some path (s0, s1, . . .) with s = s0, for some i ≥ 0,

si |= φ2 and sj |= φ1 for 0 ≤ j < i.
s |= Aφ1Uφ2 iff for all paths (s0, s1, . . .) with s = s0, for some i ≥ 0,

si |= φ2 and sj |= φ1 for 0 ≤ j < i.

The Kripke structure M satisfies φ iff (M, sinit) |= φ.

A CTL formula φ is called satisfiable iff there is a Kripke structure M such that
M |= φ.

Abbreviations: The CTL syntax is commonly extended by the operators EF ,
AF , EG, AG, EW and AW which are defined as follows: Let φ be a CTL-
formula, the constant false is equivalent to φ∧¬φ, the constant true is equivalent
to ¬false:
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EFφ ≡ E true Uφ
AFφ ≡ A true Uφ
EGφ ≡ ¬AF¬φ
AGφ ≡ ¬EF¬φ
Eφ1Wφ2 ≡ (Eφ1Uφ2) ∨ EG(φ1)
Aφ1Wφ2 ≡ (Aφ1Uφ2) ∨ AG(φ1)

3.1.2.2 TCTL

TCTL explicitly adds time to the syntax and semantics of CTL. The formulas of
TCTL are essentially CTL formulas extended with timing constraints and time
quantifiers. Furthermore, the semantics of TCTL are no longer defined with
respect to Kripke structures, but to a map from points in dense time to states.
Because TCTL operates on dense time, the X-operator becomes futile and is
dropped.

TCTL Syntax: Let AP be a set of atomic propositions, V be a set of variables
and Q be the set of rational constants.

The syntax of TCTL formulas φ is inductively defined as follows:

φ := p | (x+ c) ≤ (y + d) | ¬φ | φ1 ∧ φ2 | Eφ1Uφ2 | Aφ1Uφ2 | x.φ

for c, d ∈ Q, p ∈ AP and x, y ∈ V .

TCTL Semantics: Let t ∈ R+ be a point in time, S be a set of states and
µ : S → 2AP be a labeling function, which labels every state with atomic propo-
sitions. Then

• ρ : R+ → S is a map assigning points in time to a state and is called a
computation. ρ satisfies the following condition:

There exists an interval sequence I0I1I2 . . . such that whenever two time
values t and t′ belong to the same interval Ii, µ(ρ(t)) equals µ(ρ(t′)).

This condition ensures that the concatenation µ · ρ, which maps points
in time given by R+ to the atomic propositions given by 2AP , changes its
values at most at ω points.

• ρt is the prefix of ρ up to time t. It is a map from [0, t) to S obtained by
restricting the domain of ρ.
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• ρt is the suffix of ρ at time t. It is a computation defined by ρt(t′) = ρ(t+t′)
for every t′ ∈ R+.

If ρ′ is some map from [0, t) to S, then its concatenation with ρ, denoted by ρ′ ·ρ,
is defined by:

for t′ ∈ R+ : (ρ′ · ρ)(t′) =

{
ρ′(t′) if t′ < t

ρ(t′ − t) otherwise

A TCTL-structure is a tuple T = 〈S, sinit, µ, f〉, where

• S is a set of states,

• sinit ∈ S is an initial state,

• µ : S → 2AP is a labeling function which assigns to each state the set of
atomic propositions that are true in that state, and

• f is a collection of computations ρ over S satisfying the properties

– ∀ρ ∈ f, t ∈ R+ : ρt ∈ f and

– ∀ρ, ρ′ ∈ f, t ∈ R+ : ρ(t) = ρ′(0) =⇒ ρt · ρ′ ∈ f .

Given a TCTL-structure T , a state s ∈ S, an environment function ε : V →
R+ and a time value t ∈ R+, the satisfaction relation (T, s, t) |=ε φ is defined
inductively as follows (again, because T is fixed we abbreviate (T, s, t) |=ε φ with
(s, t) |=ε φ):

(s, t) |=ε p iff p ∈ µ(s).
(s, t) |=ε (x+ c) ≤ (y + d) iff ε(x) + c ≤ ε(y) + d.
(s, t) |=ε ¬φ iff (s, t) 6|=ε φ.
(s, t) |=ε φ1 ∧ φ2 iff (s, t) |=ε φ1 and (s, t) |=ε φ2.
(s, t) |=ε x.φ iff (s, t) |=[x 7→t]ε φ.
(s, t) |=ε Eφ1Uφ2 iff for some ρ ∈ f with ρ(0) = s, for some t′ ≥ 0,

(ρ(t′), t + t′) |=ε φ2 and (ρ(t′′), t + t′′) |=ε φ1 for
all 0 ≤ t′′ < t′.

(s, t) |=ε Aφ1Uφ2 iff for every ρ ∈ f with ρ(0) = s, for some t′ ≥ 0,
(ρ(t′), t + t′) |=ε φ2 and (ρ(t′′), t + t′′) |=ε φ1 for
all 0 ≤ t′′ < t′.

A TCTL structure T satisfies a TCTL formula φ, written T |= φ, iff
(T, sinit, 0) |=[V 7→0] φ. A TCTL formula φ is called satisfiable iff there is a TCTL-
structure T such that T |= φ.
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The environment function ε gives the valuation of all the free variables in φ. The
time value t gives the current time, and is used to bind the variable x while
evaluating (x.φ) as shown in the following example:

φ = x.E(y.y ≤ x+ 2 ∨ p)U(z.z ≤ x+ 10 ∧ q)

Applying the semantics gives:

(s, t) |=ε φ iff for some ρ ∈ f with ρ(0) = s, for some t′ ≥ 0,
(ρ(t′), t+ t′) |=[x 7→t]ε (z.z ≤ x+ 10∧ q and (ρ(t′′), t+ t′′) |=[x 7→t]ε (y.y ≤ x+ 2∧ p)

for all 0 ≤ t′′ < t′.

Unfolding ε and applying the semantics again gives:

(s, t) |= φ iff for some ρ ∈ f with ρ(0) = s, for some t′ ≥ 0, q ∈ µ(ρ(t′)) and
(t+ t′ ≤ t+ 10) and for all 0 ≤ t′′ < t′, either (t+ t′′ ≤ t+ 2) or p ∈ µ(ρ(t′′)).

Abbreviations: TCTL also defines – analogous to CTL – additional temporal
operators around the U -operator, namely EF , EG, AF , AG, EW and AW :

EFφ ≡ E true Uφ
AFφ ≡ A true Uφ
EGφ ≡ ¬AF¬φ
AGφ ≡ ¬EF¬φ
Eφ1Wφ2 ≡ (Eφ1Uφ2) ∨ EG(φ1)
Aφ1Wφ2 ≡ (Aφ1Uφ2) ∨ AG(φ1)

Furthermore, because the explicit quantification over points in time can be confus-
ing in larger formulas, TCTL defines the following abbreviations over the intervals
I and I ′:

Eφ1 I′UI φ2 ≡ x.E(y.(y ∈ I ′ + x→ φ1))U(z.(φ2 ∧ z ∈ I + x))
Aφ1 I′UI φ2 ≡ x.A(y.(y ∈ I ′ + x→ φ1))U(z.(φ2 ∧ z ∈ I + x))

This abbreviation carries over to any temporal operator based on the U -operator.

Extending even further, TCTL allows formulas of the form Eφ1U≈c φ2 and
Aφ1U≈c φ2 where ≈∈ {<,≤, >,≥} is a relational operator and c ∈ N+. In the
following, we give only the definition for Eφ1U≈c φ2, as Aφ1U≈c φ2 is defined ana-
logical:

Eφ1U<c φ2 ≡ Eφ1 [0,c)U[0,c) φ2

Eφ1U≤c φ2 ≡ Eφ1 [0,c]U[0,c] φ2

Eφ1U>c φ2 ≡ Eφ1 (c,+∞)U(c,+∞) φ2

Eφ1U≥c φ2 ≡ Eφ1 [c,+∞)U[c,+∞) φ2
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Again, this abbreviation carries over to any temporal operator based on the U -
operator.

Note that [60] also allowed = as relational operator, but [61] showed that this is
one of the two reasons for undecidability of the satisfiability problem of TCTL-
formula. Therefore Konrad et al. did not use this operator in [5], and hence we
do not give its definition here.

3.1.3 Background: Requirement Pattern Systems

A requirement pattern is an abstract description of a class of recurring require-
ments. The principal idea behind such classifications originated from the success
of design patterns [62] in object-oriented programming: Design patterns classify
different kinds of recurring programming problems and provide expert knowledge
in form of solutions to those problems. A design pattern describes scenarios, in
which it can be applied and explains the specific aspects of the problem in an
easy understandable way to a broad audience of developers.

Requirement patterns have the same objective: They also provide expert knowl-
edge, but for formulating requirements. The idea here is to give descriptions
of recurring system behaviors and let the user select the appropriate one. In
turn the user gets expressions in one or more formal logics to precisely describe
the desired behavior and is thus freed from the task of finding the right formal
expression.

A requirement pattern system is a structured collection of requirement patterns.
The main purpose of the system is to support the user in selecting the right pat-
tern for a given problem. It may provide a flow-chart with different questions or a
classification, which allows the browsing and/or filtering of the pattern collection.

We already described (see Chapter 2) that our requirements are captured with
the help of such a pattern system and that we use the system described by Konrad
et al. [5], which is an extension of [58] by Dwyer et al.

Such systems are not only helpful for the user, they also allow an easier and more
streamlined transformation from the formal domain requirements to the input of
the verification program. We explain this in more detail in Section 3.3. For now,
lets have a closer look at a requirement pattern.

Every pattern is defined with respect to some scope. A scope defines how the
pattern instantiation relates to system states. There are five different scopes:

• Globally means the requirement must be fulfilled under every circumstance.

• Before Q means the requirement must be fulfilled until Q holds in a system
state.
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• After Q means the requirement must be fulfilled forever after any system
state in which Q holds.

• Between Q and R means the requirement must be fulfilled in between any
two system states, from which Q holds in the first state and R holds in
the second state. In other words, if AG(Q) ∧ AG(¬R) holds, then the
requirement does not need to be met.

• After Q until R means the requirement must be fulfilled after any system
state in which Q holds, until a system state in which R holds. Therefore, if
AG(Q∧¬R) holds, then the requirement has to be met in all states except
the first.
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• Pattern Name and Classification
Bounded Recurrence: Periodic Real-time Specification Pattern

• Structured English Specification
scope “, it is always the case that” P “ holds at least every ” c “ time
unit(s).”

• Pattern Intent
This pattern describes the periodic satisfaction of a propositional formula.
Intuitively, it captures the property that in every c time unit(s), the propo-
sition P has to hold at least once. The proposition P holding more often
than every c time units or holding continuously is considered a correct be-
havior in this pattern.

• Real-time Temporal Logic Mappings

TCTL:



Globally : AG(AF≤c P )

Before R : A(((F≤c (P ∨R)) ∨AG(¬R))WR)

After Q : AG(Q→ AG(AF≤c P ))

Between Q and R : AG((Q ∧ ¬R)→ A(((AF≤c (P ∨R)) ∨AG(¬R))WR))

After Q until R : AG((Q ∧ ¬R)→ A((AF≤c (P ∨R))WR))

• Examples and Known Uses
This pattern is commonly used in embedded systems, as these systems
commonly perform periodic tasks. For example, a watchdog has to be-
come active at least every c time unit(s) and verify that certain system
constraints are not violated. Additionally, embedded systems often have
to perform specific services periodically, such as sending a heart beat (a
message denoting that the embedded system is functioning correctly) to
other embedded systems using a communication device, e.g., a controller
area network (CAN) bus.

• Relationships
The untimed version of the bounded recurrence property, expressed as
2(3P )) in LTL, can be found in several publications (such as [63]). It
is commonly used to specify the absence of non-progress cycles in a system.

Figure 3.1: Bounded Recurrence Requirement Pattern [5].

Now consider the structuring of the bounded recurrence pattern shown in Fig-
ure 3.1:

• Pattern Name and Classification shows the name and the classification
according to the pattern system. The classification aids the user in selecting
the appropriate pattern, as it groups different system behaviors. Figure 3.2
and 3.3 show this classification.
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• Structured English Specification is a representation of the requirement in
structured English. Table 3.3 shows this structure for all requirement pat-
terns provided by Konrad et al.

• Pattern Intent is a prose description of the system behavior the pattern
captures.

• Real-time Temporal Logic Mappings contains the representations in different
formal logics (we only show TCTL, but Konrad et al. provides mappings
for other logics as well). They contain free atomic propositions (in the
example P , R, and Q) that have to be given by the user.

• Examples and Known Uses provides concrete examples of system behaviors
where this pattern could be successfully applied.

• Relationships contains notes to literature and , if applicable, the relation-
ship to other patterns in the same system.

After a user finds a suitable pattern through reviewing the pattern system, he
can now write down the adequate formula by looking up the real-time temporal
logic mapping and instantiating the given formula with the necessary atomic
propositions.

Principally, for our problem the main benefit of requirement pattern systems is,
that they enable a non-expert user to formalize requirements. In which formal
language the pattern system maps, is in contrast subordinate, as it is sufficient
that the formalism has precisely defined semantics. Of course this could change
if we decided to perform analysis on the requirements itself, i.e. if we wanted to
check them for consistency (e.g. by a satisfiability check of the conjunction of
formal requirements). For now, it is only important that the formal logic can be
translated to specifications the verification method can understand.
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Name Description CTL Formula

Absence P is false. AG(¬P )

Existence P becomes true. AF (P )

Bounded Exis-
tence

Transitions to P -states
occur at most 2 times.

¬EF (¬P ∧ EX(P ∧ EF (¬P ∧ EX(P ∧
EF (¬P ∧ EX(P ))))))

Universality P is true. AG(P )

Precedence S precedes P . A(¬P W S)

Response S responds to P . AG(P → AF (S))

Precedence
Chain 1-2

P precedes S,T . ¬E(¬P U (S ∧ ¬P ∧ EX(EF (T ))))

Precedence
Chain 2-1

S,T precedes P . ¬E(¬S U P ) ∧ ¬E(¬P U (S ∧ ¬P ∧
EX(E(¬T U(P ∧ ¬T )))))

Response Chain
1-2

S,T responds to P . AG(P → AF (S ∧AX(AF (T ))))

Response Chain
2-1

P responds to S,T . ¬EF (S ∧ EX(EF (T ∧ EG(¬P ))))

Constrained
Chain Patterns

S,T without Z responds
to P .

AG(P → AF (S ∧ ¬Z ∧AX(A(¬Z U T ))))

Table 3.1: Requirement patterns for scope globally by Dwyer et al. [58]

Name Description TCTL Formula

Minimum Dura-
tion

If P is true, it remains
true for at least c time
units.

AG(P ∨A(¬P W AG≤c(P )))

Maximum Dura-
tion

If P is true, it is true for
at most c time units.

AG(P ∨A(¬P W (P ∧AF≤c(¬P ))))

Bounded Recur-
rence

P holds at least once in
every interval c time units
long.

AG(AF≤c(P ))

Bounded Re-
sponse

If P holds, then S holds at
least once after at most c
time units.

AG(P → AF≤c(S))

Bounded Invari-
ance

If P holds, then S holds
from that moment on for
at least c time units.

AG(P → AG≤c(S))

Table 3.2: Requirement patterns for scope globally by Konrad et al. [5]

We already noted that what can be checked and what not depends on the selected
program verifier. VCC and the other tools we considered cannot check real-time
properties, therefore all patterns in Table 3.2, which rely on quantitative real-
time bounds, and their respective counterparts in the other scopes cannot be
checked with our approach. For the patterns shown in Table 3.1 it is not clear:
The absence- and universality pattern with scope globally are verifiable, but the
others have to be examined more thoroughly before we can give a definite answer.
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Because such an examination is out of scope for this work, we concentrate on the
absence- and universality pattern.

Qualitative

Occurence Order

Universality

Absence

Existence Response
Response
Chain 1-2

Response
Chain 2-1

Bounded
Existence

Precedence
Precedence
Chain 1-2

Precedence
Chain 2-1

Constrained
Chain 2-1

Pattern

Category

Type

Figure 3.2: Requirement pattern classification by Dwyer et al. [58].

Real-time

Duration

Minimum
Duration

Maximum
Duration

Periodic

Bounded
Recurrence

Real-time
order

Bounded
Response

Bounded
Invariance

Pattern

Category

Type

Figure 3.3: Additional classifications by Konrad et al. [5].
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Start property ::= scope “,” specification “.”

Scope scope ::= “Globally” | “Before ” R | “After ” Q | “Between ” Q “ and ” R |
“After ” Q “ until ” R

General specification ::= qualitativeType | realtimeType

Quali
-tative

qualitativeType ::= occurenceCategory | orderCategory
occurrenceCategory ::= absencePattern | universalityPattern | existencePattern | boundedEx-

istencePattern
absencePattern ::= “it is never the case that ” P “ holds”
universalityPattern ::= “it is always the case that ” P “holds”
existencePattern ::= P “ eventualy holds”
boundedExistencePattern ::= “transitions to states in which ” P “holds occur at most twice”
orderCategory ::= “it is always the case that if ” P “holds” (precedencePattern |

precedenceChainPattern1-2 | precedenceChainPattern2-1 | respon-
sePattern | responseChainPattern1-2 | responceChainPattern2-1 |
constrainedChainPattern1-2)

precedencePattern ::= “, then ” S “ previously held”
precedenceChainPattern1-2 ::= “ and is succeeded by ” S “, then ” T “ previously held”
precedenceChainPattern2-1 ::= “, then ” S “previously held and was preceded by ” T
responsePattern ::= “, then” S “ eventually holds”
responseChainPattern1-2 ::= “, then” S “ eventually holds and is succeeded by ” T
responseChainPattern2-1 ::= “ and is succeeded by ” S “, then ” T “ eventually holds after ” S
constrainedChainPattern1-2 ::= “ then ” S “ eventually holds and is succeeded by ” T “, where ” Z “

does not hold between ” S “ and ” T

Real
-time

realtimeType ::= “it is always the case that ” (durationCategory | periodicCategory |
realtimeOrderCategory)

durationCategory ::= “once ” P “becomes satisfied, it holds for ” (minDurationPattern |
maxDurationPattern)

minDurationPattern ::= “at least ” c “ time unit(s)”
maxDurationPattern ::= “less than ” c “ time unit(s)”
periodicCategory ::= P “ holds ” boundedRecurrencePattern
boundedRecurrencePattern ::= “at least every ” c “time unit(s)”
realtimeOrderCategory ::= “if ” P “ holds, then ” S “ holds ” (boundedResponsePattern |

boundedInvariancePattern)
boundedResponsePattern ::= “after at most ” c “ time unit(s)”
boundedInvariancePattern ::= “for at least ” c “ time unit(s)”

Table 3.3: Structured English grammar for the requirement pattern system by
Konrad et al. [5]

3.1.4 Signature of Formal Requirements

This section explains how we construct one of the sets used for the explicit map-
ping between elements of the domain and their counterparts in the software.
First, consider the following informal domain requirements:

R1: If the sensor measures a temperature above 50◦C, an alarm has to be
sent within 50ms.

Assume a user formalizes the requirements by using the appropriate patterns
from the requirement pattern system described in Section 3.1.3. This yields the
following formal domain requirements expressed as TCTL formulas:

F1 : AG((temperature above 50◦C→ AF≤50ms(alarm sent)))1

1Bounded response pattern with scope globally.
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We can see that in F1 some informal remains are left; namely “temperature above
50◦C” and “alarm sent”. We call such remains domain phenomena. We can
now define the signature of the component requirements by collecting all domain
phenomena from the set of formal component requirements and declare them
atomic propositions. However, we also allow a further refinement of the domain
phenomena by introducing additional symbols:

• A predicate symbol for “above”, for example > (x, y).

• Function symbols for “50◦C” and “temperature”, for example C(50) and
Tempr.

If we replace the domain phenomena in F1 with the new symbols, we get the
following formula F2:

F2 : AG(> (Tempr, C(50))→ AF≤50ms(alarm sent)))

With the formula F2 we get the signature SigF2
shown in Table 3.4. In general,

we allow such state formulas instead of atomic propositions. A state formula is a
propositional formula constructed from logic operators ∧, ∨, →, ¬ and predicate
and function symbols. State formulas may be constructed by the user to support,
e.g. the automatic inference of dependencies between atomic propositions in the
requirements, but they are not necessary.

As far as TCTL is concerned, every state formula behaves exactly like an atomic
proposition; it can assume either false or true for every state s ∈ S. The

Symbol Preliminary interpretation

> (x, y) “x is above y”
C(50) “50◦C”
Tempr “temperature”
alarm sent “alarm sent”

Table 3.4: Signature SigF2
of formula F2

signature of the formal domain requirements provides us with a set of symbols
that we can use to define the mapping between the domain on one side and
software and hardware on the other side. Because we do not know yet, how the
soft- and hardware side looks, the interpretation in Table 3.4 is preliminary: The
appropriate semantics has to be given by the combination of hard- and software.
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3.2 Connecting Software and the Real World

3.2.1 The Interface between Requirements and Software

Our next step is the creation of a relation between domain phenomena and pro-
gram fragments. We call this relation Interface between Requirements and Soft-
ware, IRS. As we restricted ourselves to C programs (see Section 1.2), our program
fragments are C fragments.

Definition 3. Let P be a C program and τ be a valid type with respect to P . A
program fragment fP is defined as follows:

fp :=



v : τ if v is a declared variable in P of type τ.
m :: a1 : τ1 . . . an : τn → τ if m is a declared function in P and

a1 : τ1 . . . an : τn are parametrizing vari-
ables for n ≥ 0 and τ is the type of the
return value of m.

exp :: τ if exp is a valid expression of type τ in P.

Additionally, the set FP contains all program fragments fp in P .

The relation IRS has to be created manually by the responsible developer, but as
he already has to be familiar with the domain phenomena to be able to develop the
software, this should pose no difficulty. If something is manipulated or observed
by the software, it is expressible as fragment of the program code, i.e. there exist
program fragments for every domain phenomenon. Those fragments can be found
at the interface between software and hardware. A developer can sequentially go
through the list of domain phenomena (provided by the signature of the formal
domain requirements SigR) and select the appropriate program fragment for each
domain phenomenon. The sequential processing further reduces the complexity
for the developer. Our relation IRS is similar to the relations IN and OUT of the
four variable model (see Chapter 2): It also captures the correspondence between
the environment (called domain by us) and the software. But while the four
variable model introduced abstract variables, we directly use program fragments
for our relation.

Because it is later beneficial to already have a distinction between input and
output (see Section 3.3.1 why), we also want to have a classification of program
fragments in input, output and auxiliary fragments. The classification has to be
given manually by the user and is defined as the set Cl := {IN,OUT,AUX}
where the classification is given according to the following rules:

• A variable or function is classified as IN if it is directly mapped to the
underlying abstraction layer, i.e. the hardware, via direct memory mapping
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or interrupt vectors, that serves as input to the software. An input to the
software may change its value non-deterministically and must not be written
to by the software.

• A variable or function is classified as OUT if it is directly mapped to the
hardware that serves as output of the software. An output must not be
read by the software.

• A program fragment that cannot be classified as IN or OUT is classified
as AUX.

Symbols
from SigF2

Program fragments
from FP

Signature or type Classi-
fication
Cl

> (x, y) > > :: char -> char -> bool AUX

C(50) convertValue(50) 50 : int AUX
convertValue :: int -> char AUX

Tempr k k : char IN

Alarm sent snd_buf[0] == 2 snd_buf : char[] OUT
&& snd_buf[1] == 0 CTS : bit OUT
&& snd_buf[2] == 2

&& snd_buf[3] == 4

&& CTS == 1

Table 3.5: The interface between requirements and software is a relation between
symbols from the signature of the formal domain requirements and program frag-
ments.

For our example component requirement F2, the relation IRS could look like
shown in Table 3.5. We said earlier that the symbols come from the signature
of the formal domain requirements. But where do the program fragments come
from?

If we already had a list of available inputs and outputs to begin with, we could
choose appropriate program fragments by either choosing variables or functions
directly from this list or formulating expressions over them. The next section
describes how such a list can be obtained.

3.2.2 Software Description

A software description classifies memory-mapped variables and interrupt handler
functions of a program as inputs and/or outputs. It has to be created manually by
the developer of the software and is essentially a one-sided interface description:
It describes the interface between software and hardware from the software’s
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point of view. We expect that this description can be easily given either during
the actual development of the software as well as afterwards; the examples of
real-world software available to us already defined their inputs and outputs in
separate header files, so that they are readily available. Even if this is not the
case, developers of the software need to know this interface and should be able
to provide the necessary information.

Names NP Signature SigP Addresses
AP

Classi-
fication
Cl

k a : char 0xFF00 IN
intervall_timer intervall_timer :: -> void 0x14 IN

. . .
snd_buf[0] snd_buf[0] : char 0xFF02 OUT
snd_buf[1] snd_buf[1] : char 0xFF04 OUT
snd_buf[2] snd_buf[2] : char 0xFF06 OUT
snd_buf[3] snd_buf[3] : char 0xFF08 OUT
CTS CTS :: bit 0xFF29 OUT

Table 3.6: An example of a software description.

Table 3.6 shows an example of a software description. It gives the name of
a variable or function and its type or signature, its memory address and its
classification per row. A developer can create such a description easily by looking
up the declarations of the memory-mapped variables and interrupt functions. We
define a software description as follows:

Definition 4. Let P be a C program. DSW ⊆ {NP × SigP ×AP ∪ {−} ×Cl} is
a software description, where

• NP is the set of names of variables and functions of P .

• SigP is the set of variable types and function signatures of P .

• AP is the set of explicit memory addresses and interrupt vectors used in P .
{−} is used for instances where there is no hardware counterpart, i.e. for
auxiliary variables or functions.

• Cl = {IN,OUT,AUX}.

With the software description, we can now define the relation IRS as follows:

Definition 5. Let P be a C program and R be a set of formal domain require-
ments. IRS ⊆ SigR × FP is a relation between domain phenomena and program
fragments, where
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• SigR is the signature of R.

• FP is the set of program fragments of P .

Now lets recall our informal domain requirement from the beginning of Sec-
tion 3.1.4:

R1: If the sensor measures a temperature above 50◦C, an alarm has to be sent
within 50ms.

If we have a software description and the IRS we can now say that the domain
phenomenon “temperature” from R1 corresponds to the software input variable k

of type char at memory address 0xFF73. With the memory address we can now
take the next step by describing the other side of the interface between hardware
and software.

3.2.3 Hardware Description

The hardware defines the available inputs and outputs to our software. But a
hardware port is also a connection between the hardware and the domain. With
a list of all available hardware ports we can map domain phenomena to them and
together with the relation ISH we can ensure, that the software is connected to
the right hardware ports for the right domain phenomena.

Because in typical embedded system developments, the hardware is provided by
a third-party manufacturer, we can rely on an already existing documentation in
form of comprehensive specifications. Usually, large vendors provide an exhaus-
tive documentation of their micro-controllers, which includes tables listing all
input and output ports as well as interrupt addresses. We are particularly inter-
ested in the mapping between hardware ports or interrupts and register addresses
or interrupt vectors, and we call such a mapping a hardware description.

Definition 6. The relation DHW ⊆ NHW×AHW is a hardware description where

• NHW is the set of names of hardware ports and interrupts.

• AHW is the set of memory addresses of the hardware.
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Address Special Function Register (SFR)
Name

Symbol . . .

FF00H Port 0 P0 . . .

FF02H Port 2 P2 . . .

FF04H Port 4 P4 . . .

FF14H
A/D conversion result register 0 ADCR0 . . .

FF15H

. . . . . . . . . . . .

Table 3.7: A fragment of the special function register list from the user manual
of an 8-bit micro-controller [64].

Table 3.7 shows an excerpt of the special function register list from the user man-
ual [64] of an 8-bit micro-controller. The columns Address and SFR Name provide
the mapping between memory addresses or interrupt vectors and an hardware
port. Because the software has to reference variables to this memory addresses
to use the hardware inputs and outputs, we can now precisely define the interface
between hardware and software, both in terms of hardware ports and interrupts
or variables and function names. The interface between hardware and software
is defined as follows:

Definition 7. Let DSW be a software description and DHW a hardware descrip-
tion. The relation ISH ⊆ DSW × DHW is the interface between hardware and
software and

(a, b) ∈ ISH iff πAP
(a) = πAHW

(b).

3.2.4 The Interface between Requirements and Hardware

So far we have described the relation IRS from domain phenomena to program
fragments and the relation ISH from software to hardware. Now it is easy to define
a third relation between domain phenomena and hardware called the Interface
between Requirements and Hardware:

Definition 8. Let SigR be the signature of the formal domain requirements R
and DHW be a hardware description and (a, i) ∈ IRS.
The relation IRH ⊆ SigR ×DHW is an interface between requirements and hard-
ware. IRH is constructed as follows:
If i has the form

• v : τ , then (a, b) ∈ IRH if ∃(i′, j′) ∈ πNP ,NHW
(ISH).i′ = v ∧ j′ = πNHW

(b)

• m :: a1 : τ1 . . . an : τn → τ then
∃(i′, j′) ∈ πNP ,NHW

(ISH).i′ = m ∧ j′ = πNHW
(b)
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• exp : τ then ∀v : τ,m :: a1 : τ1 . . . an : τn → τ ∈ exp.
((∃(i′, j′) ∈ πNP ,NHW

(ISH).(i′ = v∨ i′ = m)∧j′ = πNHW
(b))→ (a, b) ∈ IRH)

Informally, IRH relates domain phenomena to hardware names through the occur-
rences of variables or functions in the program fragments of IRS. If the variables
or functions are classified as IN or OUT , we can look up the hardware counter-
part in the relation ISH .

IRH

IRS
ISH

DSW DHW

SigR FP NP SigP AP Cl AHW NHW

> (x, y) > > > :: char -> char -> bool − AUX
C(50) convertValue(50) 50 50 : int − AUX

convertValue convertValue :: int -> char − AUX
Tempr k k k : char 0xFF00 IN 0xFF00 Port 0

Alarm sent snd_buf[0] == 2 snd_buf[0] snd_buf[0] : char 0xFF02 OUT 0xFF02 Port 2
&& snd_buf[1] == 0 snd_buf[1] snd_buf[1] : char 0xFF04 OUT 0xFF04 Port 4
&& snd_buf[2] == 2 snd_buf[2] snd_buf[2] : char 0xFF06 OUT 0xFF06 Port 6
&& snd_buf[3] == 4 snd_buf[3] snd_buf[3] : char 0xFF08 OUT 0xFF08 Port 8

&& CTS == 1 CTS CTS : bit 0xFF29 OUT 0xFF29 Port mode register 9

Table 3.8: The relations IRS, ISH and IRH together.

We can use this relation to validate if the software is correctly “wired” to the
hardware. Table 3.8 shows the relations IRS, ISH and IRH together in one view.
As we will see in the next section, the relation IRS already provides us with enough
information to verify if the software is correct with respect to the formal domain
requirements. But the additional relations ISH and IRH allow someone familiar
with the hardware and the requirements to decide, if the domain phenomena
correspond to the correct hardware ports. Errors in the IRS for example if a
domain phenomena is mapped to the wrong part of the software, are hard to
find without having a second source of validation. Moreover, those errors can
only be found by someone who is familiar with the software. In SMEs this could
mean, that the same person that made the error has to find it. We know from
experiences in software testing [65], that this is not a good idea; developers are
biased towards their software and have a higher probability of overlooking their
own errors [66].

The relation IRH can be used to find errors in the relation IRS. Such an error
could be, for example, that an input domain phenomena is connected to a variable
that is no input and has always a fixed value. If the variable is coincidentally
initialized with a value that satisfies the original requirement, we see a positive
result from the program verifier, but the specification derived from the domain
requirements is wrong. Even more, in certain scenarios it could even be beneficial
for someone to insert wrong mappings in the IRS for example to finish the job
faster. Because IRH relates hardware and domain requirements, we can validate
the correctness of the IRS by checking, if IRH actually relates the right domain
phenomena to the right hardware ports. Because IRH is constructed from the
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other relations IRS and ISH , any error made in those relations is carried over to
IRH . The benefit here is, that one does not need to be familiar with the software
to check this relation, it is sufficient to know the hardware. This enables, for
example, the hardware developer to review the work of his colleagues.

3.3 Program Verification

3.3.1 Software Specification

After obtaining all the necessary connections between domain phenomena and
software, we can express the formal domain requirements in terms of the soft-
ware. We take every domain requirement from the set of domain requirements
and replace the occurring domain phenomena with the program fragments given
through the relation IRS. Let us recall the domain requirement from Section 3.1.4
in which we already replaced some of the domain phenomena with state formulas:

F2 : AG(> (Tempr, C(50))→ AF≤50ms(alarm sent)))

If we look up the IRS in Table 3.5 and substitute the corresponding program
fragment for every symbol, we get:

SWS2 : AG(k > convertValue(50)→ AF≤50ms(snd buf[0] == 2

&& snd buf[1] == 0 && snd buf[2] == 2

&& snd buf[3] == 4 && CTS == 1))

The substitution has to be done for every domain requirement in the set of domain
requirements. We call the resulting set the software specification SpecSW .

The resulting formulas now contain only state formulas over predicate and func-
tion symbols, which are elements of the software description. Those elements of
the software description also contain a classification in IN , OUT and AUX. This
classification now carries over to the new formulas: If every element in the for-
mula is classified as IN , the formula does not describe a specification, but rather
an assumption about the environment of the system. We call such formulas en-
vironmental assumptions. A program verifier cannot show that an environmental
assumption is valid, but it can use the assumption in the proof of the remaining
elements in SpecSW .

If a program verifier accepts TCTL-formula as input, we are finished at this
point and can run the verifier on the program P together with the set SpecSW .
But unfortunately, TCTL is not the specification language of choice for program
verifiers.
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In principal, which tool we use to verify the program does not matter as long
as it matches our criteria (see Chapter 2). For the VCC, we need to transform
TCTL or CTL formula to annotations of the program. Before we can think about
translating the formulas to those annotations, we have to take a look at the VCC
and its annotation-language.

3.3.2 Program Verifier

VCC provides a syntax for the specification of type invariants and function con-
tracts with pre- and post-conditions [17]. It further allows to define specification
code, which can be used to capture information not directly available in the code,
e.g. the history of a variable.

Function contracts are defined through the following keywords:

• requires states which condition has to hold if the method is called.

• ensures states which condition has to hold if the method returns.

• maintains is the combination of requires and ensures in one condition.

• writes defines what parts of the program state can be modified by the
method.

Type invariants are stated with the invariant keyword and are checked whenever
the object is wrapped (with the wrap keyword) or unwrapped (with unwrap).
Figure 3.4 shows a simple program with a type invariant: The struct point has
two fields of type int, namely x and y. We define an invariant over those fields
with the keyword invariant inside the structs definition. The invariant states
that x and y have to be larger or equal to 0 and less or equal to 1000. The
function funA takes a reference to a struct of type Point, A, and tries to write
in one of its fields. Because it requires that A is wrapped, it can assume that the
invariant holds at function entry. VCC now ensures in every call to funA that the
type invariant for Point holds. In Figure 3.4(a) we violate the type invariant on
purpose and VCC reports the violation as expected. We can use type invariants
to express environmental assumptions over input variables.
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#include ” vcc . h”

struct Point {
int x ;
int y ;
invariant (x>=0 && y>=0

&& y<=1000 && x<=1000)
} ;

void funA ( struct Point∗ A)
writes (A)
maintains (wrapped(A) )
{

unwrap(A) ;
A−>y = 1001 ;
wrap(A) ;

}

(a) Invariant(y<=1000) of Point fails on
wrap.

#include ” vcc . h”

struct Point {
int x ;
int y ;
invariant (x>=0 && y>=0

&& y<=1000 && x<=1000)
} ;

void funA ( struct Point∗ A)
writes (A)
maintains (wrapped(A) )
{

unwrap(A) ;
A−>y = 1000 ;
wrap(A) ;

}

(b) Verification succeeded.

Figure 3.4: Type invariants with VCC.

Whether we specify it or not, VCC verifies that the program does not violate
memory safety properties. In contrast to modern object-oriented languages like
Java or C#, C is not type-safe, i.e. objects are a chunk of memory at an ad-
dress and a type defines the length for this chunk. The VCC memory model
addresses the resulting problems like aliasing or disjointness of objects, but re-
quires in turn the explicit annotation of every possible write of a function [67].
Therefore, before we can verify if the software is correct with respect to the do-
main requirements, we have to annotate the program with the correct writes

clauses. For structs and unions we also need the maintains(wrapped(struct))

and wrap and unwrap statements before and after every write. This leads to a
considerable increase in size of the actual program. Figure 3.5 shows an example
program without annotations, Figure 3.6 shows the same program after adding
all the necessary annotations. In this example, the size in SLOC was increased
through the annotations by a factor of 1.66. The overhead through annotations
is further discussed in Section 6.1.

In function main() in Figure 3.6 we can see a couple of other things:

• The function requires program_entry_point(), which states that this is
the entry point of the program and all global variables and structures are
mutable at this point.
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• The function is also allowed to write to the whole heap, which is specified
with write(set_universe()).

• The while-loop in function main has to be annotated with loop-invariants
that state which changes to the program state have been made during the
execution of the loop. VCC loop invariants have to hold at the loop entry
and the loop exit, but not in between.

#include ” vcc . h”

struct Input s {
volat i le int x ;
volat i le int y ;

} ;

struct Outputs {
int x ;
int y ;

} ;

struct Input s Input ;
struct Outputs Output ;

void SignalAlarm (){
Output . x=1;

}

void ResetAlarm (){
Output . x=0;

}

void main ( ){
Input . x = 0 ;
Input . y = 0 ;
Output . x = 0 ;
Output . y = 0 ;

while (1){
i f ( Input . x >=100){

SignalAlarm ( ) ;
}
i f ( Input . y >0){

ResetAlarm ( ) ;
}

}
}

Figure 3.5: An example program without annotations. Verification with VCC
will fail because it cannot be proven that the structs are writable.
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#include ” vcc . h”

struct Input s {
volat i le int x ;
volat i le int y ;

} ;

struct Outputs {
int x ;
int y ;

} ;

struct Input s Input ;
struct Outputs Output ;

void SignalAlarm ( )
writes(&Output )
maintains (wrapped(&Output ) )
{

unwrap(&Output ) ;
Output . x=1;
wrap(&Output ) ;

}

void ResetAlarm ( )
writes(&Output )
maintains (wrapped(&Output ) ){

unwrap(&Output ) ;
Output . x=0;
wrap(&Output ) ;

}

void main ( )
writes ( s e t u n i v e r s e ( ) )
requires ( program entry po int ( ) ){

Input . x = 0 ;
Input . y = 0 ;
Output . x = 0 ;
Output . y = 0 ;

wrap(&Output ) ;
wrap(&Input ) ;

while (1 )
invariant (wrapped(&Input ) )
invariant (wrapped(&Output ) ) {

unwrap(&Input ) ;
i f ( Input . x >=100){

SignalAlarm ( ) ;
}
i f ( Input . y >0){

ResetAlarm ( ) ;
}
wrap(&Input ) ;

}
}

Figure 3.6: The example program from Figure 3.5 with the necessary annotations.

Our example program does not show another important type of annotations, the
assume() and assert() statements. Their semantics is straight-forward:

• assume(P) states that P can be assumed to be true. VCC can then use P

from that point on in the correctness-proof for the program.

• assert(P) states that P must be true at this program location. If P is not
true, VCC will report that the assert-statement is violated and that the
program could not be verified.

Now that we know the annotation language of VCC to some extend, we can start
to encode the software specification in this language.
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3.3.3 Machine-Level Specification

To verify a C program with the VCC we have to annotate the program code,
such that the annotation corresponds to the software specification, i.e. we need
a specification in the specification language provided by the program verifier.

Definition 9. Let PV be a program verification tool, SpecSW be the set of soft-
ware specifications and P be a program. A machine-level specification (MLS)
MLSP

PV is a specification for P with the following characteristics:

• MLSP
PV is without further processing a valid input to the program verifier

PV , i.e. MLSP
PV must be error-free with respect to the syntax and seman-

tics of the specification language defined by PV .

• If the program verifier PV reports, that P together with MLSP
PV is correct

and the relation IRS is correct, then the program is correct with respect to
the domain requirements expressed through the set of software specifications
SpecSW .

We can now create such an MLS from the software-specification by creating a
transformer for the formal logic in which the software-specification is written, in
our example TCTL and CTL. Because we used requirement pattern systems to
formalize our domain requirements, we can utilize the subset of the formal logic
defined by the pattern system. We just have to define a transformer for each
pattern. Such a transformer amounts to an observer for the program, i.e. speci-
fication code which observes the behavior of the software at the necessary points
and switches in a designated state if the observed behavior is violating the spec-
ified property. Examples of observer-based approaches to formal verification of
programs can be found in [68–71]. Because the construction of such observers for
the whole requirement pattern system is out of scope for this work, we annotate
the code manually.

The small example program from Figure 3.6 could be a implementation of a very
simple embedded system: It has two inputs (Input.x and Input.y) and two
outputs (Output.x and Output.y). The software sets one of those outputs to 1
whenever the value of the input x is greater or equal to 100, and to 0 when this
is not the case.

Consider the following informal domain requirement:

R1: The acoustic alarm signal may only be disabled by a user pressing the
disable-button.

We formalize the requirement with the universality pattern from Table 3.1:
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F1 : AG(acoustic alarm signal disabled→ user pressed disable-button)

Then we extract a software description from our sample program, which is rather
easy because there are only four variables. Since the program is not mapped to
any memory address, we simply omit them:

Names NP Signature SigP Addresses AP Classification Cl

Output.x Output.x : int − OUT
Output.y Output.y : int − OUT
Input.x Input.x : int − IN
Input.y Input.y : int − IN

The relation between domain phenomena and software is also rather easy; we
imagine the button is memory-mapped to Input.y and the acoustic alarm to
Output.x:

Symbols from SigF1 Program fragments from FP

acoustic alarm signal disabled Output.x == 0

user pressed disable button Input.y > 0

With this relation we get the following software specification:

SWS1 : AG(Output.x == 0→ Input.y > 0)

Because the formula contains input as well as output program fragments, we know
that this not an environmental assumption but a valid software specification. Now
we want to check if the program fulfills the specification or not. For the univer-
sality pattern, we can write an assert(P) statement at every program point that
writes to one of the output (OUT ) or auxiliary (AUX) program fragments used
in the formula. In this case, P is Output.x == 0→ Input.y > 0. Because VCC
cannot infer pre- and post-conditions necessary for the correctness-proof of some
functions, we further have to insert them if VCC fails to verify single functions
in which we added assert-statements. For example, VCC failed to verify the
correctness of the function ResetAlarm(). If we add the antecedence of the im-
plication in our assert-statement as precondition, it succeeds. The annotated
program is shown in Figure 3.7.

We can perform the verification task incrementally and thus supply the needed
pre- and post-conditions. This ensures, that functions which do not actively
change the program state such that a property holds but rather rely on changes
in other functions, have the necessary preconditions. Conversely, if the function
changes the program state such that the satisfaction of an assert-statement is
ensured or violated, we have to insert the asserted predicate as post-condition.
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If the verifier reports for (a) the program entry point or (b) a function where we
cannot add more pre- and post-conditions, we found a valid error.

#include ” vcc . h”

struct Input s {
volat i le int x ;
volat i le int y ;

} ;

struct Outputs {
int x ;
int y ;

} ;

struct Input s Input ;
struct Outputs Output ;

void SignalAlarm ( )
writes(&Output )
maintains (wrapped(&Output ) ){

unwrap(&Output ) ;
Output . x=1;

assert ( ( Output . x == 0)

==> ( Input . y > 0 ) ) ;
wrap(&Output ) ;

}

void ResetAlarm ( )
writes(&Output )

requires ( Input . y > 0)
maintains (wrapped(&Output ) ){

unwrap(&Output ) ;
Output . x=0;

assert ( ( Output . x == 0)

==> ( Input . y > 0 ) ) ;
wrap(&Output ) ;

}

void main ( )
writes ( s e t u n i v e r s e ( ) )
requires ( program entry po int ( ) ){

Input . x = 0 ;
Input . y = 0 ;
Output . x = 0 ;

assert ( ( Output . x == 0)

==> ( Input . y > 0 ) ) ;
Output . y = 0 ;

wrap(&Output ) ;
wrap(&Input ) ;

while (1 )
invariant (wrapped(&Input ) )
invariant (wrapped(&Output ) )
{

unwrap(&Input ) ;
i f ( Input . x >=100){

SignalAlarm ( ) ;
}
i f ( Input . y >0)
{

ResetAlarm ( ) ;
}
wrap(&Input ) ;

}
}

Figure 3.7: The annotated example program. The inserted annotations are high-
lighted.

Now we can run the VCC to verify if the software is correct with respect to the
domain requirements. But VCC reports, that the assert-statement in function
main did not verify. Why is that? At this point, there are two choices: Either
the program or the specification is incorrect.
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If we inspect the program closer, we see that the assertion cannot hold at this
program location because it is right after the initialization of the program; and,
of course, when we start the system, the acoustic alarm is disabled and no user
pressed the disable-button. While we wrote the requirements we thought about a
running system and forgot, that there are special circumstances when the system
is started the first time. To fix this, we can change the domain requirement and
explicitly encode the environment:

R′1: The acoustic alarm signal may only be disabled by a user pressing the
disable-button or when the system initializes.

We now have to redo the steps by providing a new formal domain requirement,
which contains new domain phenomena and in turn needs an extended software
description:

F ′1 : AG(acoustic alarm signal disabled → (user pressed disable-button ∨
system initializes))

For the domain phenomena system initializes we have to introduce an auxiliary
variable init : int that tracks where the system initializes. We add the tuple
(system initializes, init == 1) to the IRS and get a new software specification:

SWS ′1 : AG(Output.x == 0→ (Input.y > 0 ∨ init == 1))

Furthermore, the program has to be augmented by the additional code to ob-
serve the system initialization; for this purpose VCC provides the macros spec()
and speconly(). spec() is used to declare specification variables or functions,
while speconly() is used as guard for code fragments other than declarations.
Figure 3.8 shows the modified program; the modifications are highlighted. If we
run the VCC on this program, the verification succeeds.
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#include ” vcc . h”

struct Input s {
volat i le int x ;
volat i le int y ;

} ;

struct Outputs {
int x ;
int y ;

} ;

struct Input s Input ;
struct Outputs Output ;

spec ( int i n i t ; )

void SignalAlarm ( )
writes(&Output )
maintains (wrapped(&Output ) ){

unwrap(&Output ) ;
Output . x=1;

assert ( ( Output . x == 0)

==> ( ( Input . y > 0) | | i n i t == 1 ) ) ;
wrap(&Output ) ;

}

void ResetAlarm ( )
writes(&Output )

requires ( ( Input . x >=100 | | i n i t == 1))
maintains (wrapped(&Output ) ){

unwrap(&Output ) ;
Output . x=0;

assert ( ( Output . x == 0)

==> ( ( Input . y > 0) | | i n i t == 1 ) ) ;
wrap(&Output ) ;

}

void main ( )
writes ( s e t u n i v e r s e ( ) )
requires ( program entry po int ( ) ){

specon ly ( i n i t = 1 ; )
Input . x = 0 ;
Input . y = 0 ;
Output . x = 0 ;

assert ( ( Output . x == 0)

==> ( ( Input . y > 0) | | i n i t == 1 ) ) ;
Output . y = 0 ;

specon ly ( i n i t = 0 ; )

wrap(&Output ) ;
wrap(&Input ) ;

while (1 )
invariant (wrapped(&Input ) )
invariant (wrapped(&Output ) )
{

unwrap(&Input ) ;
i f ( Input . x >=100){

SignalAlarm ( ) ;
}
i f ( Input . y >0)
{

ResetAlarm ( ) ;
}
wrap(&Input ) ;

}
}

Figure 3.8: The modified example program verifies successfully. The modifica-
tions are highlighted.
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4 Case Study

This chapter provides a case-study of our approach with the goal of determining
if it is applicable in real-world scenarios and what issues can arise during its
application.

The chapter is structured as follows:

• Section 4.1 describes the setting in which the case-study was conducted,
the source of our real-world example and some limitations resulting from
this source.

• In Section 4.2 we discuss how informal domain requirements were structured
and obtained. We also give an example of an informal domain requirement,
which we use in the following for our case-study.

• The Section 4.3 explains how we used the requirement pattern systems to
formalize the domain requirements and reports, which patterns have been
used.

• In Section 4.4 we describe how we created the software description and how
we made some observations regarding hardware and compiler characteris-
tics.

• Section 4.5 and 4.6 are rather short; the first provides the relation between
domain requirements and software and the second shows the resulting soft-
ware specification.

• In Section 4.7 we explain in detail how we prepared the example source code
such that it could be verified with VCC. We also explain what problems we
had during this process and why we had to limit our expectations.

• The chapter ends with Section 4.8 in which we explain how the MLS was
created. The section also shows the annotated part of the program neces-
sary for our example and gives the results of the verification with VCC.
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4.1 Setting

The case study uses the central unit of a radio-based fire alarm system as real-
world example. The artifacts for the case-study come from a cooperation be-
tween the Department of Software Engineering of the University Freiburg and
the company Security Care GmbH (SeCa) [72]. The cooperation receives funding
from the ZIM program [73] of the German Ministry of Economy and Technology
(BMWi) [74]. SeCa’s main business areas are the development of radio-based fire
alarm systems and contract development of high-frequency radio based embedded
systems.

The goal of the cooperation between SeCa and our department is the development
of a verified radio protocol which will be used in a new fire alarm system. To
accomplish this goal, the department was given access to all available artifacts of
the company, including the source code and the requirement documents of the
previous system. All provided artifacts are covered by a non-disclosure agreement
that prevents the accurate reproduction of those artifacts.

The previous system, called cc100, is a radio-based fire alarm system which con-
sists of a central unit, multiple sensors and input/output devices as well as re-
peaters, all interconnected via high-frequency radio. For this case-study, we use
the central unit, called F.BZ 100. The requirements we are about to see are
partly from the company itself, partly from the European norm for fire detec-
tion and fire alarm systems [75, 76]. Because the European norm is protected
under copyrights, we do not reproduce the original wording of the norm in this
case-study, but rather some of the derived requirements concerning the behavior
the central unit. We also used some of the requirements developed for the new
system, as most of them are similar to the old ones, but more precise since we
were able to discuss them extensively with the respective stakeholders.

4.2 Obtaining Domain Requirements

After analyzing the provided requirement documents and the EN 54 documents
it soon became clear, that the precision necessary to formalize the requirements
was not achieved in the documents itself. Furthermore, many of the terms used
in the documents were unfamiliar to us, so we needed to (a) build a more struc-
tured variant of the documents, containing all necessary information and (b) seek
explanations for the unclear notions we found during our preliminary analysis.

First we designed a structure to capture the informal domain requirements. The
structure is shown in Figure 4.1. You can see from left to right and from top to
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bottom the following fields1:

• 4.1 Beispiel (ID: T02): The title of the requirement (Beispiel) and the
position in the document (4.1).

• ID: The unique identification number (ID) for the requirement. A unique
ID is necessary to identify the requirements regardless of their ordering in
different views of the document.

• Kategorie: The category captures, if the requirement is an environmental
assumption, a non-functional requirement describing how a certain function
should be implemented or a functional requirement, which describes what
functionality should be implemented.

• Priorität: The priority of the requirement. This field was necessary to
decide what importance the requirement had for the company; if the re-
quirement conflicted with another, we could alter or drop the requirement
with the lower priority.

• Status: The status of a requirement describes the stability it has already
reached; when a requirement was first captured, it was assigned the status
draft. After it entered the review process, the status changed to discussion.
After the review was completed and every change was incorporated, the
status changed to stable. The status verified is used to indicate that we can
provide evidence that the system fulfills the requirement.

• Version: The version field automatically tracks changes to the requirement
via the revision number of the file containing the requirement. It also shows
who changed the requirement last and when. The revisions were tracked
with the version control system Subversion [77].

• Beschreibung: The description contains the natural language description
of this requirement.

• Prüfung: This field describes, which tests have to be performed to show
that the system fulfills this requirement. SeCa wants to obtain a certi-
fication of compliance with the EN-54 norm from an accredited testing
institute, therefore all requirements originating from that norm have to be
tested independently by this institute. Furthermore, SeCa does not want
to rely on the formal verification of the system alone, partly because it is
not clear if the necessary level of dependability can be achieved, partly be-
cause tests of the system show other properties like usability as well, which
cannot be shown by formal verification alone.

1The documents created in this cooperation are mainly in German. The following list there-
fore uses the German terms found in Figure 4.1; a translation is given by the first emphasized
word in the description.
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• Konflikte: The conflicts field lists all requirements that conflict with the
current requirement and describe the conflict in detail.

• Formalisierung: The formalization field contains – if applicable – the
formal domain requirement.

• Kommentare: The comments field contains unanswered questions or re-
marks for that requirement. It was mainly used to capture questions regard-
ing certain domain-specific terms between the meetings with the company
representatives.

• Quellen: The source field contains the source of the requirement, that
is, from which page in which normative document comes this requirement,
which stakeholder formulated the requirement, etc.

• Abgeleitet: The derived -field contains links to all requirements derived
from the current one.

• Übergeordnet: The superordinate-field contains links to all requirements
the current one is derived from.

• Anwendungsfälle: The use-case field contains links to the use-cases in
which the requirements occur.
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SeCa C3 Funkprotokoll

4 Anforderungen

4.1 Beispiel(ID: T02)

ID Kategorie Priorität Status Version
T02 funktional, nichtfunk-

tional, Umgebungsei-
genschaft

Skala von
1=unwich-
tig bis
5=sehr
wichtig

Entwurf, Diskussion,
Stabil, Abgeschlossen,
Verifiziert/Validiert

Revision 6717 vom 22.02.2010
um 10:03 durch dietsch.

Beschreibung

Die eigentliche Beschreibung der Anforderung.

Prüfung

Beschreibung eines oder mehrerer Prüfkriterien, die entscheiden, ob die Anforderung erfüllt ist oder nicht.

Grund

Aus welchem Grund gibt es diese Anforderung, was ist das Ziel, das mit ihrer Hilfe erreicht werden soll.

Konflikte

Mit welchen anderen Anforderungen ist diese unvereinbar? Diese Konflikte müssen vor der Realisierung
aufgelöst werden.

Formalisierung

Hier findet sich die Formalisierung dieser Anforderung.

Kommentare

Hier können Kommentare oder Anmerkungen zu dieser Anforderung notiert werden.

Quellen Abgeleitet Übergeordnet Anwendungsfälle
Aus welcher Quelle stammt
die Anforderung (Perso-
nen, Normen, Abteilungen,
etc.)?

Welche Anforde-
rungen sind von
dieser Anforderung
abgeleitet?

Von welcher Anforde-
rung ist diese Anfor-
derung abgeleitet?

Welche Anwendungs-
fälle sind von die-
ser Anforderung be-
troffen?

Rev: 6765 Confidential! Do not circulate outside scope according to NDA-agreements!
DO NOT COPY!

9/178

Figure 4.1: The document structure used to capture a domain requirement.
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After the structure was established, we initially captured 20 system level require-
ments and our questions and remarks for them. We also captured 8 environmental
assumptions. Except for the environmental assumptions, all requirements were
unclear to us. In this early phase, our confusion emerged from the lack of familiar-
ity with the domain; we therefore had to meet several times with representatives
of the company to clarify and discuss our understanding of the requirements.
During those meetings it became clear, that nearly all of the requirements de-
pend on assumptions about the environment or the system state that are not or
not sufficiently enough stated by the original source. Although the larger part of
those assumptions were obvious to the stakeholders of the company, the formal
versions of the original requirements allowed us to easily give counterexamples
where the requirements were violated. This lead to the insight, that additional
information like “the system has to be up and running” or “only if there is no
system failure” were readily available to all participating parties – except us:
We viewed the requirements from the view of verification engineers, that is, we
wanted to prove that every possible execution of the system satisfies the require-
ments. The stakeholders viewed the requirements from a testing and design view;
they implicitly assumed the missing information. It took overall six meetings or
30 hours and additionally a number of phone calls to clarify the requirements up
to a point where we had incorporated all environmental assumptions we could
think of. In this process, we also identified 2 new system requirements and 1 new
environmental assumption.

Through this case study we consider one requirement, which is derived from three
of the captured system requirements:

R1: The central unit may be only in the state battery low if the battery is
low.

R1 is one of the informal domain requirements for the central unit that we could
extract from the system requirements. In total, only one of the system require-
ments was not relevant for the central unit. For 4 system requirements it remains
unclear how they affect the individual components of the system.

From the remaining 17 system requirements and 9 environmental assumptions
we could derive 29 domain requirements and 10 environmental assumptions that
concern the central unit. Among the 29 domain requirements where 4, that
had only relevance for the hardware of the central unit and 2 non-functional
requirements. That leaves us with 23 domain requirements and 10 environmental
assumptions.
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4.3 From Informal Domain Requirements to

Formal Domain Requirements

After we had captured the informal domain requirements and the environmental
assumptions concerning the central unit, we tried to apply the pattern system
described in Section 3.1.3 to it. All environmental assumptions could be for-
malized using the universality pattern (see Table 3.1). In the formalization of
the informal domain requirements we used 6 instances of the response pattern, 4
instances of the universality pattern, 1 instance of the absence pattern (for those
three patterns see Table 3.1), 10 instances of the bounded response pattern and
1 instance of the minimum duration pattern (for the remaining two patterns see
Table 3.2).

We already noted in Chapter 2 and 3.1.3, that tools which match our criteria
cannot verify real-time properties. Furthermore, for almost all of the other pat-
terns we could not answer the question whether it is possible to translate them
to a MLS for the VCC to our satisfaction. Therefore we did not consider the
17 formal domain requirements formalized with the patterns response, bounded
response and minimum duration for this case study. The environmental assump-
tions as well as the 5 formal domain requirements that were formalized using the
universality and the absence pattern were considered, although we show only one
of them, namely the example requirement R1 from the previous section.

In order to formalize this requirement, we assumed the role of a non-expert user
and tried to look-up the pattern with the aids provided by the pattern systems.
First we had to decide which type (see Figure 3.2 and 3.3) our requirement
had: As R1 does not contain any explicit time constraint, we concluded that
the type could not be Real-Time and thus had to be Qualitative. With this
type, we had two choices between the categories Occurrence and Order. As
the requirement does not talk about the order of elements but rather about the
simultaneous occurrence of them, we selected the Occurrence category. Then,
the question was which of the four remaining patterns should be used and which
scope should be selected. The patterns Existence and Bounded Existence talk
about something which has to happen eventually and something which has to
happen eventually under certain circumstances. Both are not appropriate for
this domain requirement, as it states that something has to hold all the time. As
the requirement formulates something positive, we are left with the Universality
pattern. Finally, the scope of the pattern has to be Globally, as it has to be
fulfilled under every circumstance. With this selection, we formalized the domain
requirement as follows:

F1: AG(central unit is in the state battery low→ the battery is low)
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Symbol Preliminary interpretation

central unit is in the state battery low “central unit is in the state bat-
tery low”

the battery is low “the battery is low”

Table 4.1: Signature SigF1
of formula F1

The signature of the formal domain requirement followed directly and is shown
in Table 4.1.

4.4 Obtaining a Software Description

After the domain requirements were formalized, we turned our attention towards
the source code of the F.BZ 100. As explained earlier, the requirements were
mainly elicited for the successor system of cc100, but naturally the design and
implementation phases for this system were not completed at that point. Because
the new system was not complete, we decided to carry out the case study on
already existing code, although we already knew that this system would not
fulfill them. But as our goal was not to prove the software of F.BZ 100 right but
to test our approach, this was not an issue.

Our next step was the creation of a software description. The first observation
we made was, that all inputs and outputs to the software were already neatly
organized in two dedicated header-files. This made the extraction of the software
description very easy, as we just had to understand the different declarations in
the two header-files. This lead to the second observation: The compiler used for
the F.BZ 100 (IAR 78000 C-Compiler [78]) provides special keywords to bind
variables to hardware ports, namely the keywords sfr and sfrp as well as some
other language extensions. This should not be the only interesting observation
about the source code and the compiler, but we continue the discussion of this
aspect in Section 4.7.

In Table 4.2 we see the part of the software description that is necessary to
transport the formal domain requirement to an MLS.

Names NP Signature SigP Addresses AP Classification Cl

ADCR ADCR : sfrp 0xFF14 IN
bald_low_batt bald_low_batt : bool − AUX

Table 4.2: The partial software description for the F.BZ 100 source code.

While we were determining whether a variable is an input or an output, we
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came across another interesting property of the source code: The underlying
hardware of the F.BZ 100 (a NEC µPD78F9418AGC-8BT [79]) provides several
shift-registers in the PISO (parallel in, serial out) and SIPO (serial in, parallel
out) variant. In general, shift registers come in three flavors: The already men-
tioned PISO and SIPO as well as the SISO (serial-in, serial-out) variants. SISO
shift-registers work like queues with fixed length: One can write one bit of data
to the beginning of a SISO shift-register, and the register shifts the last bit out
(so, its lost). For the software, this amounts to:

1. Write a bit to the shift-register.

2. Set the data advance bit of the shift-register so it knows it has been written
to.

3. Repeat until all the data you wanted to write is inside the shift-register.

Luckily, the PISO and SIPO variants used in the F.BZ 100 are friendlier: They
are used to access the radio transmit and receive functions: Whenever bits have
to be sent via radio, one has to write to an output PISO shift register, whenever
bits are received they can be read from an input shift register in SIPO mode.
The hardware takes care of sending or receiving the serial data stream, while the
software can read the content of the stream as whole block. Therefore this is
no trouble for us, as we can write or read the complete data at once from the
register. But if a SISO register had been used, we would have had to introduce
specification code to observe that a certain value is written to the register, as the
value of the register depends on past operations that are not observable anymore
in the current state of the software. Our approach did not foresee such problems
and so far we cannot think of a way to handle such non-observables except the
manual annotation with specification code. We will come back to this issue in
Section 6.1, but for now we continue with the creation of the relation between
domain requirements and software.

4.5 Creating the IRS

Our next step was the creation of the relation between domain requirements and
software. We already knew that we had to rely on the knowledge of the software
developers to find this relation. We therefore asked in one of the cooperation
meetings the responsible developer if he could show us, which parts of the F.BZ
100 software are responsible for the domain phenomena in our domain require-
ments. Although the development of the software dates back around one year,
he was instantly able to pin-point the necessary program fragments and gave us
the part of the relation shown in Table 4.3.
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Symbols from SigF1 Program fragments from FP

central unit is in the state battery low bald_low_batt == 1

the battery is low ADCR < 158

Table 4.3: The part of IRS that is required for the running example.

4.6 Generating a Software Specification

As we have already seen in Section 3.3.1, the creation of the software specification
is rather easy. We just substitute every domain phenomena in the formal domain
requirements with the corresponding program fragment from the IRS. Therefore,
the software specification for our running example is:

SWS1: AG(bald low batt == 1→ ADCR < 158)

4.7 Preparing the Code

After we created the software description, we could begin with the actual veri-
fication task. We already mentioned in Section 4.4 that the source-code for the
F.BZ 100 contained special compiler-specific keywords and constructs and that it
was therefore necessary to change the code so that the VCC could compile it. We
also mentioned in Section 3.3.2 that in order to verify if the software is correct
with respect to the domain requirements, we would have to make annotations to
indicate, which parts of the program state would change during the execution of
the single functions. The source code for the F.BZ 100 had originally 6153 lines
of code, the main-file, in which the whole implementation was stored, had 4639
lines of code and 98 functions.

The preparation of the code had to be conducted in two steps: Our first goal was
to compile the program with VCC, the second goal was to sufficiently annotate
the program, such that VCC could report any violation of the memory-safety
properties.

In order to complete our first goal, we had to remove all the compiler-specific code
while preserving the program semantics. Fortunately, SeCa had already done
some of this work, because the company itself ran the program in a simulation
environment to allow unit-tests and facilitate the debugging process. Therefore
we could simply add the line #define UNIT_TEST at the beginning of the main
file and got rid of most of the compiler-specific extensions. Examples of those
extensions are shown in Figure 4.2. Furthermore, we had to make the following
changes:
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#ifndef UNIT TEST
i n t e r r u p t [ INTWTI vect ] void i n t e r v a l l t i m e r ( void )

#else
void i n t e r v a l l t i m e r ( void )
#endif

(a)

#ifndef UNIT TEST
#pragma memory=dataseg (LCD DATA)
#endif

#ifndef UNIT TEST
#pragma memory=default
#endif

(b)

#ifndef UNIT TEST
#include ” in78000 . h”
#include ” io789418 . h”
#else
#include ” f cu100 fake . h”
#endif

(c)

#define b i t bool

(d)

Figure 4.2: Examples for compiler-specific keywords and constructs: (a) shows
the usage of the interrupt keyword to bind a function to an interrupt vector and
(b) some compiler-specific pragmas. In (c) one can see that for the simulation
environment fake variables instead of hardware bindings had to be defined and
(d) shows the bool-type that is used for efficiently packed bit-variables. All those
examples were unknown to VCC.

• Since VCC uses a stricter type-system than the IAR C-Compiler, we had to
introduce additional casts whenever two types did not match exactly, e.g.
from unsigned int to int.

• VCC did not like postfix operators in array indices. Statements of the form
x=a[b++]; had to be replaced by two statements: x=a[b];b++.

• VCC also did not like a postifx decrement on a bitfield variable. Operations
of the form x--; on an unsigned char x:4; were replaced with operations
of the form x=x-1;.

• VCC overrides the reserved C keyword register to declare hybrid variables
that exist in specification code as well as in production code. The F.BZ 100
source code used this keyword at two locations to tell the IAR C-Compiler
that those variables should be assigned to registers and not to the heap.
We had to remove the keyword, but this should not have an impact on the
verification results.

• A compiler-bug in VCC [80] posed a great difficulty: The initialization of
a global struct variable with non-const fields crashed VCC. As the F.BZ
100 source code uses those several times, we had to do a lot of rewriting to
cope with this compiler bug. An instance of this problem and our solution
is shown in Figure 4.3.
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typedef struct e ep rom de fau l t s {
void ∗A;
void ∗B;
unsigned char C;
unsigned int D;

} e ep rom de fau l t t ;

const e ep rom de fau l t t eeprom de fau l t s [ ] =
{{ u , v , w, x } , { . . . } , . . . } ;

(a)

const void∗ eeprom defau l t s A [ ] = {u , . . . } ;
const void∗ eeprom defau l t s B [ ] = {v , . . . } ;
const unsigned char eeprom defau l t s C [ ] = {w, . . . } ;
const unsigned int eeprom defau l t s D [ ] = {x , . . . } ;

(b)

Figure 4.3: Due to a compiler bug in VCC we had to change several global struct
variables: (a) shows an original instance of the declaration and initialization of a
global struct array, (b) shows the modification we had to perform: We removed
the struct array and replaced it with four arrays for each field in the original
struct. Furthermore, every access to the original struct array had to be replaced
with an access to one of the new array.

While we could perform those changes to the code rather fast (it took around two
weeks to modify the whole code), the second goal posed a greater problem: We
wanted to annotate the whole program such that VCC could prove that the code
does not violate memory-safety properties (e.g. index out-of-bounds, null-pointer
dereferencing, overflows). In order to do that, we had to annotate writes clauses
and function pre- and post-conditions to every function.

The F.BZ 100 code contains 425 declared variables, of which 14 are arrays and
8 are non-primitives, e.g. structs or unions, and 98 functions. One problem
here was the selection of the correct ownership macros and/or functions (the
VCC website lists 18 ownership macros/functions and 6 additional ones for ar-
rays [44]). Because VCC is build for concurrent programs, it needs to proof that
during a function call no external process can modify global variables written in
the function, i.e. that global variables are thread-local. Therefore we had not
only to annotate which variables are written in a function (recursively) but also,
which of them are thread local. because different types of variables need different
ownership annotations, we had a lot of trial-and-error work at hand.

For primitives, the annotations were easy enough (writes(&primitive_name)
often did the trick), but for arrays and arrays of structs this was not the case.
VCC ran constantly into issues while trying to prove that structs or arrays where
thread-local or even typed. For example, the F.BZ 100 source code uses unions
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to facilitate access to bit-fields. The unions are not disjoint, but rather pro-
vide different views on the same data. VCC required the introduction of the
backing_member keyword to internally “flatten” the union [81]. Without the
keyword, VCC was not able to proof that the members of the union typed (see
Figure 4.4 for an example). Similar, we had to give on multiple occasions loop
invariants to allow VCC to recognize that certain arrays were indeed typed. A
typical example of a completely annotated part of the software is shown in Fig-
ure 4.5.

union example {
struct {

unsigned char A: 1 ;
unsigned char B: 1 ;
unsigned char C: 1 ;
unsigned char D: 1 ;
unsigned char E : 1 ;
unsigned char F : 1 ;
unsigned char G: 1 ;
unsigned char H: 1 ;

} b i t s ;
struct {

unsigned char X: 4 ;
unsigned char Y: 4 ;

} b i t s s v i e w ;
unsigned char byte ;

} ;

(a) Original source code.

union example {
struct {

unsigned char A: 1 ;
unsigned char B: 1 ;
unsigned char C: 1 ;
unsigned char D: 1 ;
unsigned char E : 1 ;
unsigned char F : 1 ;
unsigned char G: 1 ;
unsigned char H: 1 ;

} b i t s ;

backing member struct {
unsigned char X: 4 ;
unsigned char Y: 4 ;

} b i t s s v i e w ;

backing member unsigned char byte ;
} ;

(b) Modification with the backing member

keyword.

Figure 4.4: The backing member keyword tells VCC, that the union is not disjoint
but rather provides different views on the same data.
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void e r r o r be e p ( void )
maintains ( t h r e a d l o c a l (& s i o r x b u f ) &&

mutable(& zw bu f t ln . s p l i t . a larmbere i ch ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e1 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e2 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e3 ) &&
mutable(& zw bu f t ln . s p l i t . s sb . byte ) &&
mutable(& zw bu f t ln . s p l i t . r s s i ) )

writes(&timer 10ms , &RUN, &b i t t l n , &buf f uebergabe ,
&zw bu f t ln x t ra , &RTS, &MK0, &MK1,
&zw bu f t ln . s p l i t . a larmbere ich , &r e l a i s . b i t s
&zw bu f t ln . s p l i t . adresse1 ,
&zw bu f t ln . s p l i t . adresse2 ,
&zw bu f t ln . s p l i t . adresse3 ,
&zw bu f t ln . s p l i t . s sb . byte ,
&zw bu f t ln . s p l i t . r s s i )

{
unsigned char i ;

for ( i =1; i <=3; i++)
invariant (
t h r e a d l o c a l (& s i o r x b u f ) &&
mutable(& zw bu f t ln . s p l i t . a larmbere i ch ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e1 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e2 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e3 ) &&
mutable(& zw bu f t ln . s p l i t . s sb . byte ) &&
mutable(& zw bu f t ln . s p l i t . r s s i ) )
{

r e l a i s . b i t s . hupe = 1 ;

w a i t f o r ( 1 0 ) ;

r e l a i s . b i t s . hupe = 0 ;

w a i t f o r ( 1 0 ) ;
}

}

(a)

void w a i t f o r ( const unsigned char cTime )
maintains ( t h r e a d l o c a l (& s i o r x b u f ) &&

mutable(& zw bu f t ln . s p l i t . a larmbere i ch ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e1 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e2 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e3 ) &&
mutable(& zw bu f t ln . s p l i t . s sb . byte ) &&
mutable(& zw bu f t ln . s p l i t . r s s i ) )

writes(&timer 10ms , &RUN, &b i t t l n , &buf f uebergabe ,
&zw bu f t ln x t ra , &RTS, &MK0, &MK1,
&zw bu f t ln . s p l i t . a larmbere ich ,
&zw bu f t ln . s p l i t . adresse1 ,
&zw bu f t ln . s p l i t . adresse2 ,
&zw bu f t ln . s p l i t . adresse3 ,
&zw bu f t ln . s p l i t . s sb . byte ,

&zw bu f t ln . s p l i t . r s s i )
{

timer 10ms=cTime ;

while ( timer 10ms >0)
invariant ( t h r e a d l o c a l (& s i o r x b u f ) &&

mutable(& zw bu f t ln . s p l i t . a larmbere i ch ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e1 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e2 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e3 ) &&
mutable(& zw bu f t ln . s p l i t . s sb . byte ) &&
mutable(& zw bu f t ln . s p l i t . r s s i ) )

{
vCheckRcvBuf ( ) ;

RUN=1;
}

}

(b)

void vCheckRcvBuf ( void )
writes(& b i t t l n , &buf f uebergabe , &zw bu f t ln x t ra , &RTS,

&MK0, &MK1, &zw bu f t ln . s p l i t . a larmbere ich ,
&zw bu f t ln . s p l i t . adresse1 ,
&zw bu f t ln . s p l i t . adresse2 ,
&zw bu f t ln . s p l i t . adresse3 ,
&zw bu f t ln . s p l i t . s sb . byte ,
&zw bu f t ln . s p l i t . r s s i )

maintains ( t h r e a d l o c a l (& s i o r x b u f ) &&
mutable(& zw bu f t ln . s p l i t . a larmbere i ch ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e1 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e2 ) &&
mutable(& zw bu f t ln . s p l i t . adre s s e3 ) &&
mutable(& zw bu f t ln . s p l i t . s sb . byte ) &&
mutable(& zw bu f t ln . s p l i t . r s s i ) )

{
i f ( bu f f uebergabe==1 && b i t t l n==0 )

{
zw bu f t ln . s p l i t . a larmbere i ch = 0 ;

zw bu f t ln . s p l i t . adre s s e1 = s i o r x b u f [ 0 ] ;

zw bu f t ln . s p l i t . adre s s e2 = s i o r x b u f [ 1 ] ;

zw bu f t ln . s p l i t . adre s s e3 = s i o r x b u f [ 2 ] ;

zw bu f t ln . s p l i t . s sb . byte = s i o r x b u f [ 3 ] ;

zw bu f t ln . s p l i t . r s s i = s i o r x b u f [ 4 ] ;

z w b u f t l n x t r a = s i o r x b u f [ 5 ] ;

b i t t l n =1;

bu f f uebergabe =0;

RTS = 1 ;

MK0 &= ˜(MK0 INTR PROT) ;

MK1 &= ˜(MK1 INTR PROT) ;
}

}

(c)

Figure 4.5: A typical example for a fully annotated part of the program. The highlighted lines

represent the original program without annotations. VCC took 30,22s to verify the memory-

safety of the three functions on an Intel Core2Duo T9300 2,5Ghz with 4GB RAM.
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The main problem with annotations was not that we had a rather complex trial-
and-error process at hand, but that VCC took very long for certain functions.
Especially the main-function of the program (2148 lines of code) took more than
five hours to verify, only to notice, that some array was not thread-local.

Another great issue was, that VCC does not report unreachable code per default,
and that it was very easy to produce unreachable code if one uses the wrong anno-
tations. One prominent example of this problem is shown in Figure 4.6: Up to this
point we expressed that an array is required to be thread-local in a function with
the annotation requires(mutable(as_array( <array_name>,<array_size>))).
But in some larger functions, VCC completed the verification unexpectedly fast,
so we inserted guaranteed errors to the function, namely assert(false) state-
ments, to find out if VCC actually verified the whole function. This was indeed
not the case. VCC decided that after the error assign, everything was unreachable
and therefore the function had to be correct. We then constructed a minimal ex-
ample of this behavior and reported it to the VCC community via their Codeplex
website [44], because we thought this had to be an error in VCC. But after some
discussions, it turned out that our annotation was wrong. The correct annotation
in this case is requires(is_mutable_array(<array_name>,<array_size>)).
We further found out, that the problem of unreachable code is not unknown
to the VCC community and that there is the command-line flag smoke to iter-
atively insert an assert(false) statement at every program point in order to
find such unreachable code. But of course, this flag leads to a considerable drop
in performance: The previous example from Figure 4.5 took with the smoke flag
72,76s to verify, which is more than two times more for a very small program.
Furthermore, even with the smoke flag VCC could only that there is some un-
reachable code, not at which program locations. In order to find such code, one
has still to manually insert assert(false) statements in every branch of the
control flow. For large methods with (a) confusing control flow and (b) long
VCC runtimes, this proved to be a main obstacle.

In summary, we underestimated the amount of work necessary to prepare the
F.BZ 100 source code such that we could try our approach for all domain re-
quirements. Inside the available time-frame, we were not able to annotate the
whole program, let alone successful verify it. Therefore we selected a domain
requirement for which only a part of the program is relevant and verified this
part of the program.
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#include <vcc . h>

unsigned char X,A;
unsigned char thearray [ 6 ] ;

void fun ( void )
writes(&X)
requires ( mutable ( a s a r r ay ( thearray , 6 ) ) )
requires ( mutable(&A) )
requires ( (A>=0 && A<=5))
{

unsigned char c ;
c=thearray [A ] ;

}

(a)

#include <vcc . h>

unsigned char X,A;
unsigned char thearray [ 6 ] ;

void fun ( void )
writes(&X)
requires ( mutable ( a s a r r ay ( thearray , 6 ) ) )
requires ( mutable(&A) )
requires ( (A>=0 && A<=5))
{

unsigned char c ;
c=thearray [A ] ;

assert ( f a l s e ) ;
}

(b)

#include <vcc . h>

unsigned char X,A;
unsigned char thearray [ 6 ] ;

void fun ( void )
writes(&X)

// r e q u i r e s ( mutable ( a s a r r a y ( thearray , 6 ) ) )

requires ( i s mutab l e a r r ay ( thearray , 6 ) )
requires ( mutable(&A) )
requires ( (A>=0 && A<=5))
{

unsigned char c ;
c=thearray [A ] ;
assert ( f a l s e ) ;

}

(c)

Figure 4.6: Unreachable code not reported is per default: The function in (a)
verifies successful. One could think that everything is fine, but if we add an
assert(false) statement after the array assignment (see (b)), it still verifies
successful. Only if we change the annotation for the array as shown in (c), the
verification fails as expected.

4.8 Generating an MLS from the Software Spec-

ification

After we had prepared the relevant part of the program such that VCC could show
the memory-safety properties, we generated an MLS as described in Section 3.3.3
for our running example. Recall the software specification from Section 4.6:

SWS1: AG(bald low batt == 1→ ADCR < 158)
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As we mentioned in the previous section, we selected this domain requirement
because we were able to completely annotate the part of the program which is
responsible for it and because the part of the program is sufficiently small to
show it in this work. In Section 3.3.3 we said that for the universality pat-
tern it is sufficient to annotate every write to an output or auxiliary variable
in the program fragments used in the software specification with an assert(P)

statement, where P is the state formula used in the universality pattern. For
our software specification, bald_low_batt is the only occurring auxiliary vari-
able. Therefore, we had to find every write to bald_low_batt in the program
and annotate it with assert((bald_low_batt == 1) ==> (ADCR < 158)). The
variable bald_low_batt occurs only at 6 points in the program, one being the
declaration, three being reads from it and two being writes to it. All writes take
place in the function test_batt, where we annotated the assert statements.

The function test_batt calls only one other function, namely ad_convert. This
function does not call any other functions, but rather accesses hardware ports
to read the current battery voltage. The actual annotation was straight forward
and is shown in Figure 4.7. VCC was run with the flags time, stats and smoke

and took 25,91s to verify both functions successfully. The system running VCC
was the same as in Figure 4.5.

The astute reader may have noticed that there is a slight discrepancy between
the software description and the functions shown in Figure 4.7: The types for
ADCR and bald_low_batt do not match. This is due to the unit test environment
constructed by SeCa. Because the compiler used in this environment does not rec-
ognize the types bool and sfrp, they were changed to int and unsigned char,
respectively. We added the volatile keyword to simulate non-deterministic val-
ues in ADCR, as VCC assumes that volatile variables may change during every
atomic instruction of the program code [17].
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#define min va l ba t t 158
volat i le unsigned char ADCR;
int ba ld l ow bat t ;
// r e s t o f the d e c l a r a t i o n s omit ted

void t e s t b a t t ( void )
writes(&TESTBATT,& ba ld low batt ,

&f eh l e r no t s t rom ,&ADCS,&ADIF,
&ADS,&MK0,&MK1,&ADCR)

{
unsigned int k ;

TESTBATT = 1 ;
k = ad convert ( ch 1 ) ;
TESTBATT = 0 ;

i f ( k < min va l ba t t )
{

ba ld l ow bat t = 1 ;

assert ( ( ba ld l ow bat t == 1)

==> (ADCR < 1 5 8 ) ;
f e h l e r n o t s t r o m = 0 ;

i f ( k < l e e r v a l b a t t ){
f e h l e r n o t s t r o m = 1 ;

}
}
else
{

f e h l e r n o t s t r o m = 0 ;
ba ld l ow bat t = 0 ;

}
}

(a)

unsigned int ad convert (unsigned char kanal )
writes(&ADIF,&ADS,&ADCS,&MK0,&MK1,&ADCR)

ensures ( r e s u l t==ADCR)
{

unsigned char ucMK0 Bak , ucMK1 Bak ;

ADIF = 0 ;
ADS = kanal ;
ADCS = 1 ;

ucMK0 Bak = MK0;
MK0 |= MK0 INTR PROT;
ucMK1 Bak = MK1;
MK1 |= MK1 INTR PROT;

ADIF = 0 ;
ADCS = 0 ;

MK0 = ucMK0 Bak ;
MK1 = ucMK1 Bak ;

return ADCR;
}

(b)

Figure 4.7: The functions (a) test batt and (b) ad convert are responsible for
measuring the battery. The highlighted lines are the annotations necessary to
show, that the program is correct with respect to the domain requirements.
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5 Related Work

The use of formal methods in software development processes is a constantly
recurring theme of research in software engineering. We can distinguish sev-
eral larger classes of concerns here: First, there are large methodologies like
the B-Method [82], the Vienna Development Method (VDM) [83] or the RAISE
method [84]. They all center around the idea that the rigorous application of for-
mal methods in the software development process is beneficial, and they all use
different flavors of formal languages to express common artifacts of this process,
like requirements, design and specification. Furthermore, they provide extensive
tool support for the different artifacts and development phases, be it to check
requirements and specification for consistency or to check if a model of the sys-
tem fulfills the requirements. They also rely heavily on refinement, that is, the
development starts by formulating high level requirements in a formal language
and continues with the stepwise refinement of those. Every iteration adds details
to the formal representation and is then again checked for consistency. The pro-
cess is repeated until the formal representation is detailed enough to allow a code
generator to generate executable code.

Besides those large methodologies there exist some tools and frameworks that
follow the same stepwise-refinement paradigm [85]: SCADE [86] generates C or
ADA code from the high-level language LUSTRE [87], STATEMATE [88] does
the same but for statechart specifications, and [89] generates C++ from RSML.
Although very different in their implementation, all those tools and methods have
a constructive, model-driven approach in common: They generate executable
code from some high-level language and they all require the user to learn complex
specification languages that are entirely different from common programming
languages like C. In contrast to our work, they construct programs and therefore
they do not provide support for analysing existing ones.

Notably, the RAISE method provides a new approach to software engineering as
a whole, namely domain engineering [90–92]. In domain engineering, one tries
to formalize the important parts of the domain to define the bridge between
domain and software automatically. Like our approach, it is concerned with the
relation between domain phenomena and software representations, but instead of
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relying on the implicit domain knowledge of the developer, it demands an explicit
formalization of this knowledge. This, again, requires much effort and training
from the user, but promises great benefits through the automatic detection of
errors in the transition from the domain to the software. A recent example for
the application of domain engineering can be found in [93].

The connection between domain requirements and software specifications is ap-
parently a one-way road: Although there exists a lot of literature on this topic
in the field of program synthesis and model-driven development, the creation of
specifications from requirements for already existing programs is somewhat ne-
glected. As far as we know, there is currently only one approach concerned with
this step, which is described by Seater et al. in [94]. Their approach describes an
iterative process to obtain a specification in terms of the to-be-specified software
from informal domain requirements represented as problem frames [95]. How-
ever, they currently lack some aspects which are — in our opinion — necessary
to support the developer from the beginning: First, they still require a consid-
erable amount of modelling experience, because they need to invent so-called
breadcrumbs to bridge the gaps between domain requirements and the specifica-
tion. A breadcrumb is an artificially inserted formulae that provides a connection
between phenomena observable in the domain and phenomena observable by the
software. While their function is the same as the function of our relation relation
IRS, they have to be invented and can be everything as long as it is expressible
in Alloy. There is currently no help provided in obtaining those breadcrumbs,
regardless if it would be very easy (e.g. just stating that an element from the
domain is equal to an element of the software) or very complicated (e.g. intro-
ducing additional variables and formulating properties for them). Second, they
do not show a source program or an input to a verification method and third,
their formal domain requirements as well as their specifications are written in
Alloy [96], which is a logical modelling language. It is neither clear nor easily
deducible whether there exists an easy method to map an Alloy specification to
a C program.
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6 Discussion

6.1 Conclusions

We have shown that under the assumptions from Section 1.2 and for a small
subset of the used requirement patterns, our approach is in principal feasible.

However, during our case-study we also discovered some remaining problems:

• The NEC C-Compiler used for the F.BZ 100 software provided extensions
to the programming language that were unknown to VCC. As result, we
had to modify the original code to be able to use VCC. Although we took
great care in preserving the original semantics of the program, it remains
questionable, whether the C semantics used by VCC are equivalent to the
semantics used in the NEC C-Compiler, and therefore the integral valid-
ity of the verification results may be disputed. Furthermore, compilers
may have subtle errors that can lead to failure of verified code. For exam-
ple, modern, optimizing compilers can reorder instructions to improve the
performance of the program. Although the compiler should preserve the se-
mantics of the source language, the algorithms used for this reordering are
very complex and their implementation may be erroneous, which in turn
can lead to erroneous machine code. Similar to compilers, microprocessors
can reorder instructions (out-of-order execution) to improve performance.
In both cases, the results of the verification on the C code level may not
be portable to the hardware level anymore. In other words: Although the
correctness of the software has been proven, the system could behave un-
expected and may even contain errors.

This problem is not a new one, but the full extent of it just unfolds with the
growing application of program verifiers in industrial settings. A notable
contribution to this issue can be found in [97]:

You can’t check code you can’t parse. Checking code deeply
requires understanding the code’s semantics. The most basic re-
quirement is that you parse it. Parsing is considered a solved

64/76



6.1. CONCLUSIONS CHAPTER 6. DISCUSSION

problem. Unfortunately, this view is naive, rooted in the widely
believed myth that programming languages exist.

The C language does not exist; [. . . ] While a language may exist
as an abstract idea, and even have a pile of paper (a standard)
purporting to define it, a standard is not a compiler. What lan-
guage do people write code in? The character strings accepted
by their compiler. Further, they equate compilation with certifi-
cation. A file their compiler does not reject has been certified as
“C code” no matter how blatantly illegal its contents may be to a
language scholar. Fed this illegal not-C code, a tool’s C front-end
will reject it. This problem is the tool’s problem.

As there will always be a large variety of different compilers, it may not be
possible or necessary for researchers to develop tools for all of them. This
does not lower the benefits of formal methods in general, but it shows that
other quality-assuring methods like testing of the system are still necessary
and important.

• We have seen that domain requirements for low-level software may deal
with phenomena that are not directly observable in the software itself. Our
discussion of shift-registers in Section 4.4 explained, that under certain
circumstances the observable behavior of a system depends on a sequence
of instructions by the software, which can not be traced back to a single
program state, but only to a sequence of states. Furthermore, writes to a
SISO shift-register may be performed in a loop, where in every iteration
one bit is written and the data advance flag is set. As program verification
tools have to abstract loops with invariants, the effects of those writes
on the system behavior remain invisible to the tool. A solution may be
the introduction of specification functions that record the complete shift-
register during the execution of the loop, but this again requires expertise
from the user. As we do not know which other hardware features may lead
to unobservable behavior, we currently cannot give a generic solution to
this problem.

• The annotation language used by VCC is very complex. Often it was not
clear, which annotation had to be used to express changes of the program
state. Even worse, wrong annotations easily led to unreachable code, which
had to be detected manually by inserting assert(false) statements at
every branch of the control flow of a method. In addition, the overhead for
the memory-safety annotations of VCC is very high: For the part of the
F.BZ 100 source-code shown in Figure 4.5 alone, the increase in size due to
this annotations is by factor 2.42.

Both observations, the error-proneness of the annotation process and the
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great manual effort, constitute high obstacles for non-expert users. It may
be conceivable to automatically infer the annotations necessary to express
the changes to the program state by means of dataflow-analysis, but up to
now this problem remains unsolved.

As we already noted in Section 4.7, we underestimated the amount of work nec-
essary to prepare the whole F.BZ 100 source code. Unfortunately, we also could
not evaluate the effectiveness of the proposed validation mechanism for the map-
ping between domain phenomena and program fragments: At the time of our
case-study, the hardware developer responsible for the F.BZ 100 hardware had
left the company, and we did not have the necessary knowledge of the hardware
to conclusively perform the validation ourselves.

Nevertheless we were able to complete our approach for the example shown in
Chapter 4. The core idea, the bridging between domain and software world,
worked as expected. We gave a definition for the question of when is a software
correct with respect to the requirements for the system in Chapter 2 and with this
definition, we could show that our proposed bridging is useful as well as necessary
for the creation of an MLS. In addition, we identified many challenges that have
to be faced by developers in SMEs when concerned with program verification.
The question of what kinds of requirements are verifiable on the software alone
was answered in Chapter 2: While today the tool support for safety requirements
is in principal sufficient, for the other classes it is not. The obstacles in form of
required expertise are still too high to be tackled by non-expert users.

6.2 Future Work

In this work, the presented relations between domain phenomena and program
fragments, as well as the software description and the formalized requirements
were manually obtained and archived. This work was most of the time mechani-
cal, but could be supported by tools:

• The formalization of informal domain requirements could take place in a
tool that contains the various patterns and allows a user to choose between
them. The user could then enter the state formulas in the appropriate
pattern, which would allow the automatic creation of the signature of the
formal domain requirements. Furthermore, changes of the requirements
over time could be recorded with the help of, for example, existing version-
control systems.

• The list of domain phenomena captured with the aforementioned tool could
be read by another tool, which is integrated into a common IDE like Visual
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Studio. Then the tool could provide the responsible developer with a list of
domain phenomena, which could be related with program fragments marked
by the user. This would allow the easy creation of the relation IRS. The
relation IRS could then be tracked over the evolution of the program, and
the developer could be prompted to decide, if changes to the program code
or to the requirements break the relation or not. Furthermore, the relation
of single variables to hardware ports could be inferred automatically by
parsing the abstract syntax tree of the program and extracting the declared
hardware addresses, thus automatically creating the relation IRH . This
would also allow the implicit construction of a software description. In
addition, the extracted hardware addresses could be presented together
with the state formulas in a side-by-side view to a hardware developer for
validation. The hardware developer then would have to relate state formulas
to hardware ports, and the tool could validate if the resulting relation IRH

corresponds to the relation IRS between domain phenomena and program
fragments.

Another important direction for future work is the automatic inference of an-
notations, that express which global variables a function reads or writes during
execution. This would reduce the annotation overhead and the possibility for
errors in the specification considerably.

As we already mentioned in the previous section, the nature of non-observable
phenomena has to be examined more thoroughly, as we suspect that our shift-
register example is not the only instance of this class of phenomena.

Last but not least the automatic annotation of the software specification through
observer automatons has to be implemented, and its feasibility for the other
patterns in the requirement pattern system has to be evaluated.
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Météor: A successful application of b in a large project. In Jeannette M.
Wing, Jim Woodcock, and Jim Davies, editors, World Congress on Formal

68/76



Methods, volume 1708 of Lecture Notes in Computer Science, pages 369–387.
Springer, 1999.

[10] Frédéric Badeau and Arnaud Amelot. Using b as a high level programming
language in an industrial project: Roissy val. In Helen Treharne, Steve
King, Martin C. Henson, and Steve A. Schneider, editors, ZB, volume 3455
of Lecture Notes in Computer Science, pages 334–354. Springer, 2005.

[11] Klaas Wijbrans, Franc Buve, Robin Rijkers, and Wouter Geurts. Software
engineering with formal methods: Experiences with the development of a
storm surge barrier control system. In Jorge Cuéllar, T. S. E. Maibaum, and
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need of research. In Václav Hlavác, Keith G. Jeffery, and Jiŕı Wiedermann,
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