
Quasi-equal Clock Reduction:
Eliminating Assumptions on Networks

Christian Herrera1 and Bernd Westphal

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany

Abstract. Quasi-equal clock reduction for networks of timed automata
replaces clocks in equivalence classes by representative clocks. An exist-
ing approach which reduces quasi-equal clocks and does not constrain
the support of properties of networks, yields significant reductions of the
overall verification time of properties. However, this approach requires
strong assumptions on networks in order to soundly apply the reduc-
tion of clocks. In this work we propose a transformation which does not
require assumptions on networks, and does not constrain the support
of properties of networks. We demonstrate that the cost of verifying
properties is much lower in transformed networks than in their original
counterparts with quasi-equal clocks.

1 Introduction

Real-time systems can be modelled and verified using networks of timed au-
tomata [1]. Often the local timing behaviour and synchronisation activity of
distributed components in a network are modelled by (local) clocks. If the val-
uations of those clocks only differ in points in time in which those clocks are
reset, then we call them quasi-equal clocks [2]. Quasi-equality of clocks induces
equivalence classes in networks of timed automata.

In systems using quasi-equal clocks, those clocks are often reset one by one at
a given point in time. For instance, in TDMA [3] protocols, automata interleave
when they reset quasi-equal clocks at the end of each communication phase. This
interleaving induces sets of reachable intermediate configurations. These sets
grow exponentially in the number of quasi-equal clocks in equivalence classes.
Model checking tools like Uppaal [4] explore those configurations when a property
being verified queries them. However, this exploration may also increase the
memory consumption and verification time for properties which do not query
those intermediate configurations.

In [5] a technique that reduces the number of quasi-equal clocks is presented.
This technique can yield savings in the overall memory consumption and verifica-
tion time of properties in transformed networks for two reasons. The first reason
is that by using only the representative clock of each equivalence class, we reduce
the size of the Difference Bound Matrices (DBMs) that Uppaal uses to repre-
sent zones [6]. The size of a DBM is determined by the size of the set of clocks

1 CONACYT (Mexico) and DAAD (Germany) sponsor the work of the first author.

2 Christian Herrera, Bernd Westphal

in a given system. A more compact DBM can be more efficiently represented,
stored and accessed in memory. The second reason is that Uppaal explores less
configurations when checking a property, since we eliminate intermediate config-
urations if and only if those configurations are reachable by taking edges which
exclusively reset quasi-equal clocks.

In order to soundly reduce quasi-equal clocks, strong assumptions are re-
quired for networks in [5]. One of those assumptions states that there must be
a delay greater than zero time units in the origin location of an edge resetting a
quasi-equal clock. In networks which model the Foundation Fieldbus Data Link
Layer protocol (FDLL) [7], there are edges resetting quasi-equal clocks which can
be taken at any time, even without delaying at the origin locations of those edges.
Hence we cannot transform those networks by using the technique from [5].

In this work we revisit the quasi-equal clock reduction approach, and we
present an approach that does not require assumptions on networks with quasi-
equal clocks. We now enforce a strong distinction of edges that reset quasi-equal
clocks. Namely, edges which exclusively reset one quasi-equal clock, have no
synchronisation with other edges, and are taken after a delay greater than zero
time units, are called simple edges. All other edges resetting quasi-equal clocks
are called complex edges. In general our approach allows us to yield savings
related to having a more compact DBM in memory. Furthermore, for simple
edges we also provide savings related to eliminating intermediate configurations.

As in [5] we delegate the reset of representative clocks to newly added reset-
ter automata. Now automata with transformed simple or complex edges indicate
resetters when to execute that reset which is part of a mechanism that, reduces
the number of configurations reachable by taking transformed simple edges, and
preserves all configurations reachable by taking transformed complex edges. Sim-
ilar to [5], for those configurations that we eliminate, properties are restated in
terms of an existing dedicated location in each resetter which encodes all the
information about those configurations.

In this work we extend the applicability of the quasi-equal clock reduction
approach by eliminating the assumptions on networks presented in [5]. Now we
can transform any network with sets of quasi-equal clocks. Our new approach
allows us to include three new case studies FB [7], TA [8] and PG [9], which
cannot be transformed by the technique from [5]. In general, the cost of veri-
fying properties is much lower in networks transformed with our new approach
than in their original counterparts with quasi-equal clocks. Furthermore, our
new approach allows us to prove in a much simpler and more elegant way that
transformed networks are weakly bisimilar to their original counterparts. We
show that properties wrt. an original network are fully reflected in the trans-
formed network, i.e. the transformed network satisfies a transformed property if
and only if the original network satisfies the original property. We evaluate our
approach on nine real world examples, three of them new.

Related Work. The methods in [10, 11] detect and reduce equal and active
clocks by using static analysis over single timed automata and networks of timed
automata, respectively. Two clocks are equal in a location if both are reset by

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 3

the same incoming edge, so just one clock for each set of equal clocks is necessary
to determine the future behavior of the system. A clock is active at a certain
location if this clock appears in the invariant of that location, or in the guard of
an outgoing edge of such a location, or another active clock takes its value when
taking an outgoing edge. Non-active clocks play no role in the future evolution
of the system and therefore can be eliminated. Our benchmarks use at most one
clock per component which is always active, hence the equal and active approach
is not applicable on them.

The work in [12, 13] uses observers, i.e. single components encoding proper-
ties of a system, to reduce clocks in systems. For each location of the observer,
the technique can deactivate clocks if they do not play a role in the future evo-
lution of this observer. Processing our benchmarks in order to encode properties
as per the observers approach may be more expensive than our method (one
observer per property), and may not guarantee the preservation of information
from intermediate configurations as required for our benchmark [14].

In sequential timed automata [15], one set of quasi-equal clocks is syntacti-
cally declared. Those quasi-equal clocks are implicitly reduced by applying the
sequential composition operator. The approach in [16] detects quasi-equal clocks
in networks of timed automata. Interestingly, the authors demonstrate the fea-
sibility of their approach in benchmarks that we also use in this paper.

2 Preliminaries

Following the presentation in [17], we here recall the following definitions.

Let X be a set of clocks. The set Φ(X) of simple clock constraints over X
is defined by the grammar ϕ ::= x ∼ c | x − y ∼ c | ϕ1 ∧ ϕ2 where x, y ∈
X , c ∈ Q≥0, and ∼ ∈ {<,≤,≥, >}. Let Φ(V) be a set of integer constraints
over variables V. The set Φ(X ,V) of constraints comprises Φ(X), Φ(V), and
conjunctions of clock and integer constraints. We use clocks(ϕ) and vars(ϕ)
to respectively denote the set of clocks and variables occurring in a constraint
ϕ. We assume the canonical satisfaction relation “|=” between valuations ν :
X ∪ V → Time ∪ Z and constraints, with Time = R≥0. A timed automaton
A is a tuple (L,B,X,V, I, E, `ini), which consists of a finite set of locations
L, where `ini ∈ L is the initial location, a finite set B of actions comprising
the internal action τ , finite sets X and V of clocks and variables, a mapping
I : L → Φ(X), that assigns to each location a clock constraint, and a set of
edges E ⊆ L×B×Φ(X ,V)×R(X ,V)×L. An edge e = (`, α, ϕ, ~r, `′) ∈ E from
location ` to `′ involves an action α ∈ B, a guard ϕ ∈ Φ(X ,V), and a reset vector
~r ∈ R(X ,V). A reset vector is a finite, possibly empty sequence of clock resets
x := 0, x ∈ X , and assignments v := ψint , where v ∈ V and ψint is an integer
expression over V. We use Lu, Lc ⊆ L to denote the set of urgent and committed
locations in L, respectively. We write X (A), `ini(A), etc., to denote the set of
clocks, the initial location, etc., of A and; clocks(~r) and vars(~r) to denote the
sets of clocks and variables occurring in ~r, respectively.

4 Christian Herrera, Bernd Westphal

A network N (of timed automata) consists of a finite set A1, . . . ,AN of timed

automata with pairwise disjoint sets of clocks and sets Br ,Bb ,Bu ⊆
⋃N
i=1B(Ai)

of rendez-vous, broadcast and urgent channels, respectively. We write A ∈ N if
and only if A ∈ {A1, . . . ,AN}.

The operational semantics of the network N is the labelled transition system
T (N) = (Conf (N),Time∪{τ}, { λ−→| λ ∈ Time∪{τ}}, Cini). The set of configura-
tions Conf (N) consists of pairs of location vectors 〈`1, . . . , `N 〉 from ×Ni=1L(Ai)
and valuations of

⋃
1≤i≤N X (Ai)∪V(Ai) which satisfy the constraint

∧N
i=1 I(`i).

We write `s,i, 1 ≤ i ≤ N , to denote the location which automaton Ai assumes in

configuration s = 〈~̀s, νs〉 and νs,i to denote νs|V(Ai)∪X (Ai). Between two config-
urations s, s′ ∈ Conf (N) there can be four kinds of transitions. There is a delay

transition 〈~̀s, νs〉
t−→ 〈~̀s, νs + t〉 if for all t′ ∈ [0, t] and for all 1 ≤ i 6= j ≤ N ,

νs + t′ |=
∧N
k=1 Ik(`s,k) (where νs + t′ denotes the valuation obtained from νs by

time shift t′), and (1) `s,i /∈ Lu ∪Lc, and (2) νs+ t′ 6|= ϕ(e), e ∈ E(A), such that
α(e) = b!, b ∈ Bu ∩Bb and `s,i = `(e); and (3) νs + t′ 6|= ϕ(ei)∧ϕ(ej), with ei ∈
E(Ai) and ej ∈ E(Aj), such that α(ei) = u!, α(ej) = u?, u ∈ Bu(N) ∩ Br (N),

`s,i = `(ei) and `s,j = `(ej). There is a local transition 〈~̀s, νs〉
τ−→ 〈~̀s′ , νs′〉 if there

is an edge (`s,i, τ, ϕ, ~r, `s′,i) ∈ E(Ai), 1 ≤ i ≤ N , such that ~̀s′ = ~̀
s[`s,i := `s′,i],

νs |= ϕ, νs′ = νs[~r], and νs′ |= Ii(`s′,i), and if `s,k ∈ Lc for some 1 ≤ k ≤
N then `s,i ∈ Lc. There is a synchronization transition 〈~̀s, νs〉

τ−→ 〈~̀s′ , νs′〉
if there are 1 ≤ i 6= j ≤ N , and edges (`s,i, b!, ϕi, ~ri, `s′,i) ∈ E(Ai) and

(`s,j , b?, ϕj , ~rj , `s′,j) ∈ E(Aj) such that ~̀
s′ = ~̀

s[`s,i := `s′,i][`s,j := `s′,j],
νs |= ϕi ∧ ϕj , νs′ = νs[~ri][~rj], and νs′ |= Ii(`s′,i) ∧ Ij(`s′,j), and if `s,k ∈ Lc

for some 1 ≤ k ≤ N then `s,i ∈ Lc or `s,j ∈ Lc . Let b ∈ B be a broad-
cast channel and 1 ≤ i0 ≤ N such that (`s,i0 , b!, ϕi0 , ~ri0 , `s′,i0) ∈ E(Ai0).
Let 1 ≤ i1, . . . , ik ≤ N , k ≥ 0, be those indices different from i0 such that
there is an edge (`s,ij , b?, ϕij , ~rij , `s′,ij) ∈ E(Aij). There is a broadcast transi-

tion 〈~̀s, νs〉
τ−→ 〈~̀s′ , νs′〉 in T (N) if ~̀s′ = ~̀

s[`s,i0 := `s′,i0] · · · [`s,ik := `s′,ik],

νs |=
∧k
j=0 ϕij , νs′ = νs[~ri0] · · · [~rik], and νs′ |=

∧k
j=0 Iij (`s′,ij), and if `s,k̂ ∈ L

c

for some k̂, k̄ ∈ {i0, i1, . . . , ik} then `s,k̄ ∈ Lc. Cini = {〈~̀ini, νini〉} ∩ Conf (N),

where ~̀ini = 〈`ini,1, . . . , `ini,N 〉, νini(x) = 0 for each x ∈ X (Ai), and 1 ≤ i ≤ N .

A finite or infinite sequence σ = s0
λ1−→ s1

λ2−→ s2 · · · of configurations is called
transition sequence (starting in s0 ∈ Cini) of N . Sequence σ is called computation
of N if and only if it is finite and s0 ∈ Cini . We denote the set of all computations
of N by Π(N). A configuration s is called reachable (in T (N)) if and only if
there exists a computation σ ∈ Π(N) such that s occurs in σ.

The set of basic formulae over N is given by the grammar β ::= ` | ϕ
where ` ∈ L(Ai), 1 ≤ i ≤ n, and ϕ ∈ Φ(X ,V). Basic formula β is satisfied by
configuration s ∈ Conf (N) if and only if `s,i = `, or νs |= ϕ, respectively. A
reachability query over N is ∃♦CF where CF is a configuration formula over
N , i.e. any logical connector of basic formulae. We use β(CF) to denote the set
of basic formulae in CF . N satisfies ∃♦CF , denoted by N |= ∃♦CF , if and only
if there is a configuration s reachable in T (N) s.t. s |= CF .

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 5

We recall from [2] the following definitions. Given a network N with clocks
X , two clocks x, y ∈ X are called quasi-equal, denoted by x ' y, if and only
if for all computation paths of N , the valuations of x and y are equal, or the

valuation of one of them is equal to 0, i.e. if ∀ s0
λ1−→ s1

λ2−→ s2 · · · ∈ Π(N) ∀ i ∈
N0 •νsi |= (x = 0∨y = 0∨x = y). In the following, we use ECN to denote the set
{Y ∈ X/' | 1 < |Y |} of equivalence classes of quasi-equal clocks of N with at
least two elements. For each Y ∈ X/', we assume a designated representative
denoted by rep(Y). For x ∈ Y , we use rep(x) to denote rep(Y). An edge e of a
timed automaton A in network N is called resetting edge if and only if e resets
a clock, i.e. if ∃ e = (`, α, ϕ, ~r, `′) ∈ E(A) • clocks(~r) 6= ∅. A location ` (`′) is
called reset (successor) location wrt. Y ∈ ECN in N if and only if there is a
resetting edge in E(N) from (to) ` (`′). A configuration s ∈ Conf (N) is called
stable wrt. Y ∈ ECN if and only if all clocks in Y have the same value in s, i.e. if
∀x ∈ Y • νs(x) = νs(rep(x)). We use SCYN to denote the set of all configurations
that are stable wrt. Y . A configuration not in SCYN is called unstable wrt. Y .

3 Reducing Clocks in Networks of Timed Automata

Consider the following motivating example of the network N1 depicted in Fig-
ure 1. Network N1 consists of automata A1 and A2 with respective clocks x
and y, rendez-vous channel c, and global variable a. Note that after delaying ten
time units at their respective initial locations, automata A1 and A2 interleave
by taking their simple edges which exclusively reset their respective clocks. This
interleaving induces intermediate configurations where clocks x and y differ on
their valuations. Automata A1 and A2 after a delay of five time units at locations
`1 and `5 interleave once again by taking their complex edges which reset their
respective clocks together with updates of the variable a. Note that automata
A1 and A2 can reset once again their respective clocks and transit simultane-
ously to their respective locations `3 and `7 at any time, even without delaying
at locations `2 and `6. Since the valuations of clocks x and y only differ at the
point in time when they are reset, therefore they are quasi-equal clocks.

Note that network N1 cannot be transformed by the approach from [5], since
by that approach: (a) the outgoing edges of locations `2 and `6 do not fulfill the
syntactical pattern of an edge resetting quasi-equal clocks, i.e. there are no clock
constraints that guard those edges, and the origin locations of those edges have
no invariants; and (b) there must be a delay greater than zero time units at the
origin location of any edge resetting a quasi-equal clock.

In this paper we present an approach which: (1) does not require that a
network with quasi-equal clocks fulfill certain syntactical assumptions; (2) does
not require any delay before resetting quasi-equal clocks; (3) does not restrict the
point in time at which quasi-equal clocks are reset; (4) eliminates configurations
reachable by taking simple edges, e.g. configurations reachable by taking the
simple edges of locations `0 and `4 and, (5) preserves configurations reachable
by taking complex edges, e.g. configurations reachable by taking the complex
edges of locations `1 and `5.

6 Christian Herrera, Bernd Westphal

`0 `1 `2

`3

A1:

x ≤ 10 x ≤ 5

`4 `5 `6

`7

A2:

y ≤ 10 y ≤ 5

x ≥ 10

x := 0

x ≥ 5

x := 0,
a := 1

c!x := 0

y ≥ 10

y := 0

y ≥ 5

y := 0,
a := 3

c?y := 0

Fig. 1. Network N1 with quasi-equal clocks x and y.

In the following we introduce two definitions that allow us to classify edges
that reset quasi-equal clocks into simple and complex edges. Intuitively, an edge
resetting quasi-equal clocks is called simple if that edge resets exclusively one
clock, does not synchronise with other edges and time must pass before taking
that edge, otherwise is called complex.

Definition 1 (Pre-delayed edge). An edge e = (`, α, ϕ, ~r, `′) ∈ E(N) is
called pre-delayed if and only if time must pass in ` before e is taken, i.e. if
Π(N) = Π(Z(N)), where Z is a transformation that adds a fresh clock x in N ,
and for each edge incoming to `, a reset x := 0, and to the guard ϕ the condition
x > 0. We use DEN to denote the set of pre-delayed edges of N .

There are sufficient syntactic criteria for an edge e = (`1, α1, ϕ1, ~r1, `2) being
pre-delayed. For instance, if (`0, α0, ϕ0, ~r0, `1) is the only incoming edge to `1
and if ϕ0 = (x ≥ C) and ϕ1 = (x ≥ D) and C < D, then e is pre-delayed. It is
also delayed if (`0, α0, ϕ0, ~r0, `1) is the only incoming edge to `1, ~r0 is resetting
x, and ϕ1 = (x > 0).

Both patterns occur, e.g., in the FS case-study (cf. Section 5). There, the
reset location is entered via an edge following the former pattern, and the edges
originating at the reset successor location follow the latter pattern. Thus reset-
ting edges are pre-delayed in FS.

Definition 2 (Simple and Complex (Resetting) Edges). Let edge
e = (`, α, ϕ, ~r, `′) be an edge which resets at least one quasi-equal clock, i.e.
clocks(~r)∩Y 6= ∅ for some Y ∈ ECN . Edge e is called simple edge if and only if

– it is of the form (`, τ, x ≥ c, 〈x := 0〉, `′) for some local clock x ∈ X (A),
– the invariant of ` is x ≤ c,
– it is pre-delayed, i.e. e ∈ DEN ,
– it is the only outgoing edge of `, i.e. ∀ e1 = (`1, α1, ϕ1, ~r1, `

′
1) ∈ E(A) •

`1 = ` =⇒ e = e1, and it is the only incoming edge into `′, i.e. ∀ e1 =
(`1, α1, ϕ1, ~r1, `

′
1) ∈ E(A) • `′1 = `′ =⇒ e = e1.

Otherwise, e is called complex edge. We use SEY (A) to denote the set of simple
edges of A using a clock from Y ∈ ECN . We use CEY (A) to denote the set of
those complex edges which reset at least one clock from Y ∈ ECN .

To avoid really special corner cases in the following we assume that time is not
stopped at origin and destination locations of simple edges. We use RESY (N)

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 7

to denote the set of automata in N which have simple or complex resetting
edges wrt. Y ∈ ECN , i.e. RESY (N) = {A ∈ N | SEY (A) ∪ CEY (A) 6= ∅}. For
simplicity we could classify each edge resetting a clock x ∈ Y , with Y ∈ ECN , as
complex. However, with the above definition we distinguish complex edges from
simple ones, and we provide a transformation for networks where interleavings of
complex edges are preserved, while interleavings of simple edges are eliminated.

3.1 Algorithm for Transformation of Networks

In the following we present our transformation algorithm. It takes two inputs, a
network N and a set of equivalence classes of quasi-equal clocks ECN (which can
be obtained by [16]), and outputs a transformed network N ′ which from each
Y ∈ ECN uses only the representative clock rep(Y) and reflects the truth-value
of all queries on N .

Recall that we distinguish stable and unstable configurations per equivalence
class Y . In stable configurations, all clocks from Y have the same value, thus in
particular the same value as the representative rep(Y). In unstable configura-
tions, some clocks from Y have been reset and some not yet, so each clock from
Y either has the value 0 or the same value as rep(Y). We use a fresh boolean
token tx for each quasi-equal clock x to encode clock values in unstable configu-
rations. Configurations in N ′ where token tx is true encode configurations of N
where x = rep(x) holds, while the token being false encodes that x has already
been reset at the current point in time and thus has value 0. Function Γ (cf.
Definition 3) transforms guards and conditions based on this encoding.

Definition 3 (Function Γ). Let N be a network. Let Y,W ∈ ECN be sets of
quasi-equal clocks of N , x ∈ Y and y ∈W clocks, and z a non-quasi-equal clock.
Let tx, ty /∈ V(N) be boolean variables. Given a clock constraint ϕclk , we define:

Γ0(ϕclk) :=

((rep(x) ∼ c ∧ tx) ∨ (0 ∼ c ∧ ¬tx)) , if ϕclk = x ∼ c,(
(rep(x)− rep(y) ∼ c ∧ tx ∧ ty) , if ϕclk = x− y ∼ c,
∨ (0− rep(y) ∼ c ∧ ¬tx ∧ ty)

∨ (rep(x)− 0 ∼ c ∧ tx ∧ ¬ty)

∨ (0 ∼ c ∧ ¬tx ∧ ¬ty)
)(

(rep(x)− z ∼ c ∧ tx) , if ϕclk = x− z ∼ c,
∨ (0− z ∼ c ∧ ¬tx)

)
Γ0(ϕ1) ∧ Γ0(ϕ2) , if ϕclk = ϕ1 ∧ ϕ2.

We obtain the transformation Γ by setting Γ (ϕclk ∧ ψint) := Γ0(ϕclk) ∧ ψint .

Following [5], we add to transformed networks a resetter automaton RY to
whom we delegate the reset of clock rep(Y). Resetter RY has the location `nstRY

which, as in [5], encodes unstable configurations wrt. Y . In contrast to [5], where
the time points for resets were encoded in the resetters, our new approach lets
the transformed automata indicate RY when to reset the clock rep(Y) using the
following two mechanisms (cf. Figure 2):

8 Christian Herrera, Bernd Westphal

1. Rendez-vous channel resetY . This mechanism is used if at least one trans-
formed automaton assumes the origin location of a simple edge. The origin
locations of simple edges obtain self-loops which can synchronise with RY
on resetY exactly at those points in time in which the simple edge would be
taken in the original network. Since multiple automata may have an edge
synchronising on resetY enabled, there is a slight verification time overhead,
but all edges induce the exact same follow-up configuration where only RY
changes its location. The location which RY reaches by the synchronisation
on resetY is the first of a chain of locations. The edges along the chain ba-
sically simulate a broadcast to all transformed automata which assume the
origin location of a simple edge (as indicated by the flag sAY) using the rendez-
vous channels rY . The synchronisation on rY involves the transformed simple
edge if and only if would be enabled in N . Thereby, N ′ realises exactly one
fixed sequence of simple edges as opposed to the full interleaving of simple
edges possible in N . To avoid costly and unnecessary interleavings between
these “pseudo-broadcasts”, all intermediate locations are committed.

Note that a better option could be the use of a single broadcast channel on
which automata assuming an origin location of a simple edge would be able
to send and listen, and on which the corresponding RY would listen. Then,
all interleavings of simple edges wrt. Y possible in N would be simulated
by only one transition in N ′. Unfortunately, the version of Uppaal used in
our experiments does not allow clock constraints on edges with inputs on
broadcast channels, which is necessary since being at the origin location of
a simple edge does not imply that that edge is enabled.

2. Urgent broadcast channel uY . For the case that no transformed simple edge
is ready to indicate the reset time, the RY also (indirectly) observes whether
complex edges are taken. If the first transformed complex edge is taken at
reset time, then the sum of tokens will decrease. The resetter RY uses the
urgent broadcast channel uY in order to transit to `nstRY

as soon as the
sum of tokens is below |Y |. By transiting to the urgent location `nstRY , we
ensure that no time elapses unless a configuration corresponding to stability
wrt. Y is reached, i.e. until all tokens wrt. Y are 0.

In order to avoid interleavings between resetters and, e.g., complex edges wrt.
other equivalence classes which may be unstable at the same point in time, a re-
setter RY only transits back to `iniRY (and resets the representative rep(Y) and
the tokens), if all other equivalence classes are stable as expressed by condition
blk(ECN) in the guard.

Note that simple edges are taken independently from all other edges, this
allows us to take all transformed simple edges in N ′ before the first transformed
complex one, which in turn allows us to support all queries which ask for con-
figurations where some complex edges and none, only some, or all simple edges
have been taken. Our choice for this order restricts broadcast synchronisation
on edges where the receiver resets clocks from a given equivalence class, and the
sender does not reset clocks from that class. To avoid unnecessarily interleav-
ings, we enforce this order using go(~r) in guards of transformed complex edges

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 9

` `′
A:

I(`)

` `′
K(A):

Γ (I(`))

(a) Pattern of a simple edge

wrt. Y in automaton A.

(b) Pattern of the simple edge of A
transformed in K(A).

ϕ

x1 := 0〈. . . 〉 〈. . . , sAY := 1〉

resetY ! Γ (ϕ)

rAY ? ¬Γ (ϕ)

rAY ? Γ (ϕ)

tx1
:= 0, [sAY := 0]

`iniRY nstc1 `unstRY
nstcn. . .

RY :

(c) Pattern of resetter RY .

vnstY := 1

uY ! tx1 + · · ·+ txn 6= |Y |

resetY ?

r
A1
Y ! s

A1
Y

¬sA1
Y

r
An−1
Y ! s

An−1
Y

¬s
An−1
Y

vnstY := 1

rAn
Y ! sAn

Y

¬sAn
Y

vnstY := 1

tx1
+ · · ·+ txn = 0 ∧ blk(ECN)

Yrep := 0, tx1
:= 1, . . . , txn := 1, vnstY := 0

Fig. 2. Patterns used to transform a given network N with ECN . In figures (a), (b) and
(c) we consider the following quasi-equal clocks Y = {x1, . . . , xn}, Y ∈ ECN . Urgent
and committed locations are denoted with the superscript u and c in the name of those
locations, respectively. We use Yrep as representative clock of Y , and blk(ECN) :=∧

W∈ECN \{Y }(
∑

w∈W tw = 0 ∨
∑

w∈W tw = |W |).

wrt. Y . The condition go(~r) refers to the sum of all variables sAY as indicator of
whether there are transformed simple edges wrt. Y which must be taken before
transformed complex edges wrt. Y or, each of those transformed simple ones has
been already taken, thus variable vnstY holds value true.

Formally, the transformation algorithm K works with two given inputs, a
network N and the set ECN of equivalence classes of quasi-equal clocks. The
output of K is the transformed network N ′ = {K(A1, ECN), . . . ,K(An, ECN)}∪
{RY | Y ∈ ECN } where K(A, ECN) = (L(A), B′,X ′,V ′, I ′, Ec ∪ Es ∪ En, `′ini).

– B′ = B(A) ∪ {resetY , r
A
Y | A ∈ RESY (N)}, i.e. the rendez-vous channels

resetY and rAY are added for each equivalence class affected by A,

– X ′ = (X (A)\Y)∪{rep(Y)}, i.e. all quasi-equal clocks but the representative
are removed,

– V ′ = V(A)∪{tx | x ∈ Y, Y ∈ ECN }∪{sAY | A ∈ RESY (N)}, i.e. one boolean
(reset-)token for each quasi-equal clock is added (initial value is one), and a
boolean simple-edge indicator sAY (initial value is one iff the initial location
of A is a reset location of a simple edge wrt. Y).

– I ′ = {` 7→ Γ (I(`)) | ` ∈ L(A)}, i.e. invariants are transformed with Γ to
consider the representative and the reset-token of quasi-equal clocks,

10 Christian Herrera, Bernd Westphal

`0 `1 `2

`3

A′1:

(Yrep ≤ 10 ∧ tx)

∨(0 ≤ 10 ∧ ¬tx)

(Yrep ≤ 5 ∧ tx)

∨(0 ≤ 5 ∧ ¬tx)

(Yrep ≥ 10 ∧ tx)∨
(0 ≥ 10 ∧ ¬tx)

((Yrep ≥ 5 ∧ tx)∨
(0 ≥ 5 ∧ ¬tx)) ∧ go(~r)r

A1
Y ?

go(~r)

tx := 0, s
A1
Y := 0

resetY ! (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx)

r
A1
Y ? ¬((Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx))

tx := 0, a := 1

c!

tx := 0

`4 `5 `6

`7

A′2:

(Yrep ≤ 10 ∧ ty)

∨(0 ≤ 10 ∧ ¬ty)

(Yrep ≤ 5 ∧ ty)

∨(0 ≤ 5 ∧ ¬ty)

(Yrep ≥ 10 ∧ ty)

∨(0 ≥ 10 ∧ ¬ty) r
A2
Y ?

((Yrep ≥ 5 ∧ ty)∨
(0 ≥ 5 ∧ ¬ty)) ∧ go(~r)

go(~r)

resetY ! (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx)

r
A2
Y ? ¬((Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx))

ty := 0, s
A2
Y := 0 ty := 0, a := 3

c?

ty := 0

`iniRY nstc1 nstc2 `unstRY

RY :

vnstY := 1

uY ! tx + ty 6= |Y |

resetY ?

¬sA1
Y

r
A1
Y ! s

A1
Y

vnstY := 1

r
A2
Y ! s

A2
Y

¬sA2
Y

vnstY := 1

tx + ty = 0 ∧ blk(ECN)

Yrep := 0, tx := 1, ty := 1, vnstY := 0

Fig. 3. Transformed network N ′
1 = K(N1, ECN).

– Complex and non-resetting edges are transformed as follows, and the re-
sulting edges contained in Ec and En, respectively. Guards are also trans-
formed using Γ and, for complex edges, extended by the blocking condi-
tion go(~r) :=

∧
Y ∈ECN ,clocks(~r)∩Y 6=∅

∑
A∈N s

A
Y = 0 ∨ vnstY . which ensures

that simple edges are pushed first. Reset vectors are transformed to consider
reset-tokens instead of the original clock, and extended by r1 as book-keeping
for the simple-edge indicator, where r1(`′) is the update sAY := 1 if `′ is the
origin location of a simple resetting edge, and ε otherwise.

Ec = {
(
`, α, Γ (ϕ) ∧ go(~r), ~r[y := 0/ty := 0 | y ∈ Y, Y ∈ ECN]; r1(`′), `′) |

(`, α, ϕ, ~r, `′) ∈ E(A) \ SEY (A)},

The transformation of simple edges and the construction of the resetter RY
for equivalence class Y is depicted in Figure 2. Transformed simple edges
contained in Es.

Example 1. Applying K to network N1 from Figure 1 yields network N ′1 (cf.
Figure 3). Similar to the algorithm in [5], only the representative clock of each

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 11

equivalence class remains, in our example we use the fresh clock Yrep as repre-
sentative of Y which is reset by resetter RY . Note that each guard and invariant
in automata A′1 and A′2 is transformed by Γ into a disjunction of clauses. For
instance, the guard x ≥ 10 of automaton A1 in N1, is transformed in N ′1 into the
encoding (Yrep ≥ 10 ∧ tx) ∨ (0 ≥ 10 ∧ ¬tx). Then the clause (Yrep ≥ 10 ∧ tx) is
effective in configurations in N ′ where tx is true (encoding that clock x has the
same value as Yrep), while the clause (0 ≥ 10∧¬tx) is effective in configurations
where tx is false (encoding that x has already been reset and thus has value 0).

Note that in N ′1 the pair of transformed complex edges from locations `1
and `5 preserve their original interleavings. Furthermore, the other pair of trans-
formed complex edges, from locations `2 and `6, are taken simultaneously even
without delaying at their origin locations.

3.2 Transformation of Properties

Definition 4 (Function Ω). Let N be a network with a set ECN . Let Ai,
with 1 ≤ i ≤ n, be the i-th automaton of N . Let x ∈ Y be a clock. Let N ′ =
K(N , ECN). Let β be a basic formula over N . Let `nstRY

be the unique urgent
location of resetter RY . We define the function Ω as follows where E? = E(A)\
SEY (A): Ω0(β) =

(`′ ∧ ˜̀
i) ∨ ` , if β = `, (`, α, ϕ, 〈x := 0〉, `′) ∈ SEY (Ai).

(`′ ∧ ¬˜̀
i) , if β = `′, (`, α, ϕ, 〈x := 0〉, `′) ∈ SEY (Ai).

`0 , if β = `0(`′0), (`0, α0, ϕ0, ~r0, `
′
0) ∈ E?.

Γ0(ϕclk)[tx/(tx ∨ x̃)] ∧ ϕint , if β = ϕclk ∧ ϕint .

Ω(CF) = ∃ ˜̀
1, .., ˜̀

m ∃ x̃1, .., x̃k •Ω0(CF) ∧
(˜̀
i =⇒

∨
(`,α,ϕ,~r,`′)∈SEY (Ai)

`′ ∧ `nstRY) ∧ (x̃j =⇒
∨

(`,α,ϕ,〈xj :=0〉,`′)∈SEY (Aj)

`′ ∧ ˜̀
j)

By structural induction Ω0 transforms configuration formulas CF .

Function Ω syntactically transforms properties over a network N with a
set of equivalence classes of quasi-equal clocks ECN into properties over N ′ =
K(N , ECN). Function Ω treats queries for origin and destination locations of
simple edges special, and outputs an equivalent property which can be verified
in N ′. For instance, consider the simple edge e = (`0, τ, (x ≥ 10), 〈x := 0〉, `1) of
automaton A1 of network N1. The query ∃♦φ, where φ : `0, is transformed after
some simplifications into Ω(φ) : ∃ ˜̀∈ {0, 1}•((`1∧ ˜̀)∨`0)∧(˜̀ =⇒ (`1∧`nstRY

)).
The logical variable ˜̀ in the transformed query enforces consistent unstable
configurations where the location `0 can be assumed.

The origin location `0 of e can be assumed in N in different configurations:
either the reset time is not yet reached, or the reset time is reached but A1 has
not reset its clock x yet, while other automata in RESY (N) may have reset
their clocks already. In N ′, all edges resulting from simple edges are taken in
a fixed sequence by rendez-vous synchronisations, so each origin location is left

12 Christian Herrera, Bernd Westphal

` `′

`′uO`uO

KO(A):

I(`) I(`′)
α,ϕ,~r

` `′A:

I(`) I(`′)

returnY ? returnY ?

α,ϕ′, ~r

α, ϕ, ~r

Fig. 4. Transformation pattern of algorithm KO over network N ′ = K(N , ECN), where
ϕ′ = ϕ ∧

∧
Y ∈ECN

∑
x∈Y ∩X (A) tx > 0. Algorithm KO takes each edge of network N ′

(excluding edges of resetters), cf. left-hand side and transforms it according to the
right-hand side. The edge originally linking locations ` and `′ is redirected to `′uO if and
only if ∃Y ∈ ECN ∃x ∈ Y • tx ∈ vars(~r). In addition, in each resetter RY , an output
action on broadcast channel returnY is added to the edge from `nstRY to `iniRY .

one by one. Because the resetter finally moves to `nstRY after synchronising
with automata A′1 and A′2, a configuration of N ′ which assumes location `nstRY

represents all similar unstable configurations of N where all simple edges are
in their origin or destination location. Therefore, from Ω(φ), the clause `0 is
effective in configurations of N ′ which represent those in N where the reset time
is not yet reached; while the clause (`1 ∧ ˜̀) is effective in configurations of N ′
which represent those in N where the reset time is reached but A1 has not reset
its clock x yet, while other automata in RESY (N) may have reset their clocks
already. The latter configurations in N , enforced by the logical variable ˜̀, are
assumed in N ′, in particular, when resetter RY is located at location `nstRY

and automaton A′1 at location `1.

4 Weak Bisimulation

In order to prove our approach correct we establish a weak bisimulation relation
between a network N with a set of equivalence classes of quasi-equal clocks ECN ,
and its respective transformed network N ′ = K(N , ECN).

Recall that configurations induced when each clock x from Y ∈ ECN is reset
in network N , are summarised in N ′ in configurations where the `nstRY -location
is assumed, in particular, when the values of variables sAY and tx reflect these
resets. Hence with the valuations from those variables we unfold information
summarised in these configurations from N ′.

Lemma 1. Any network N with equivalence classes of quasi-equal clocks ECN ,
is weakly bisimilar to N ′ = K(N , ECN), i.e. there is a weak bisimulation relation
S ⊆ Conf (N)× Conf (N ′) such that

1. ∀ s ∈ Cini(N) ∃ r ∈ Cini(N) • (s, r) ∈ S and ∀ r ∈ Cini(N ′) ∃ s ∈ Cini(N) •
(s, r) ∈ S.

2. For all config. formulae CF over N , ∀ (s, r) ∈ S • s |= CF =⇒ r |= Ω(CF)
and ∀ r ∈↓2 S • r |= Ω(CF) =⇒ ∃ s ∈ Conf (N) • (s, r) ∈ S ∧ s |= CF .

3. For all (s, r) ∈ S,

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 13

(a) if s
λ−→ s′ and

i. λ = d > 0, then there exists a sequence of transitions r
τ−→∗ r′ λ−→ r′′,

with (s′, r′′) ∈ S,
ii. transition is justified by some edges (non-resetting, simple or complex

edge wrt. Y ∈ ECN). Then there exist r
τ−→∗ r′ λ−→ r′′

τ−→∗ r′′′, with
(s′, r′′′) ∈ S.

(b) if r
λ−→ r′ then there exists s′, such that s

λ1−→ s′, with (s′, r′) ∈ S.

Where r
τ−→∗ r′ denotes zero or more successive τ -transitions from configuration

r to configuration r′.

Proof. (Sketch) For each Y ∈ ECN the weak bisimulation relation S which
relates pairs of configurations (s, r) ∈ Conf (N) × Conf (N ′), is based in the
following four aspects: (A1) the values of variables and non-quasi-equal clocks.
(A2) configurations where both networks assume the same locations, and the
value of each clock x ∈ Y in N coincides with the value of that clock assumed
by rep(x) and token tx in N ′. (A2) also considers configurations where simple
edges in N are enabled, and their corresponding transformed simple edges in
N ′ have been taken. (A3) stable configurations wrt. Y in N and configurations
in N ′ where either no transformed resetting edge wrt. Y has been taken, or all
transformed resetting edges wrt. Y have been taken. (A4) consistent values for
variables sAY and vnstY .

During stability phases there is a strong bisimulation (one-to-one) between
the networks N and N ′. Only during unstability phases there is a weak bisimu-
lation (one-to-many) from N to N ′. For instance, the reset of a simple edge in
N is simulated in N ′ with multiple steps. Artificial steps in N ′ such as resetY -
synchronization, uY -output and return to `iniRY

in RY are simulated in N by a
zero delay transition. Steps where N ′ takes transformed complex o simple edges
are simulated in N by one step taking the corresponding resetting edge.

Theorem 1. Let N be a network with a set ECN . Let CF be a configuration
formula over N . Then K(N , ECN) |= ∃♦Ω(CF) ⇐⇒ N |= ∃♦CF .

Proof. Use Lemma 1 and induction over the length of paths to show that CF
holds in N if and only if Ω(CF) holds in K(N , ECN). ut

For performance purposes we have transformed our benchmarks with algo-
rithmKO which takes the output of algorithmK and applies the changes depicted
in Figure 4. Algorithm KO together with functions devirQE and ΩO allow us to
state in Lemma 2 a strong bisimulation relation between the networks N ′ and
NO which are output by algorithms K and KO, respectively.

Lemma 2. Given networks: N with a set ECN , N ′ = K(N , ECN) and NO =
KO(N ′). Then N ′ is strongly bisimilar to NO with devirQE (r) = r[`O/` | `O ∈
L(NO)], and N ′ |= ∃♦Ω(CF) ⇐⇒ NO |= ∃♦ΩO(CF), where ΩO is defined by
replacing in Ω every occurrence of a location `′, (`, α, ϕ, ~r, `′) ∈ SEY , Y ∈ ECN ,
by `′O.

14 Christian Herrera, Bernd Westphal

Network C kStates M t(s) Network C kStates M t(s)

EP-21 21 3,145.7 507.6 444.8 FS-8 14 5,084.3 160.8 1,007.1
EP-21K 1 3,145.7 525.7 89.8 FS-8K 5 1,892.7 78.0 80.3
EP-22 22 6,291.5 1,027.2 1,032.0 FS-10 16 17,474,6 518.6 4,734.0
EP-22K 1 6,291.5 1,060.5 193.8 FS-10K 5 2,152.1 83.7 97.7
EP-23 23 – – – FS-11 17 – – –
EP-23K 1 12,582.9 2,146.9 427.3 FS-126K 5 28,510.8 905.6 3,963.3

TT-5 6 436.9 57.9 5.9 CD-14 29 7,078.1 591.7 1,388.0
TT-5K 1 327.1 79.5 4.5 CD-14K 15 1,327.3 142.0 179.1
TT-6 7 2,986.0 116.5 36.9 CD-15 31 8,945.7 1,186.9 1,785.7
TT-6K 1 1,916.6 467.1 30.2 CD-15K 16 6,062.6 529.6 978.9
TT-7 8 16,839.9 612.9 235.3 CD-16 33 – – –
TT-7K 1 11,054.9 2,527.7 198.2 CD-16K 17 17,892.1 1,954.9 3,703.0

LS-6 17 145.1 21.6 4.3 CR-6 6 264.5 20.3 2.8
LS-6K 3 151.2 23.0 2.2 CR-6K 1 67.7 12.3 0.8
LS-7 19 553.3 74.6 22.2 CR-7 7 7,223.7 497.5 132.8
LS-7K 3 554.7 81.0 10.1 CR-7K 1 1,300.6 165.2 20.9
LS-9 23 8,897.6 1,285.2 524.9 CR-8 8 – – –
LS-9K 3 9,008.2 1,450.8 224.1 CR-8K 1 2,569.7 359.0 52.4

FB-12 14 24.6 6.6 30.9 TA-2 7 42.1 6.3 0.3
FB-12K 3 24.6 6.1 0.4 TA-2K 2 40.1 6.1 0.3
FB-15 17 2,920.3 36.5 3,894.4 TA-3 8 921.5 97.5 10.6
FB-15K 3 196.6 31.7 4.8 TA-3K 2 917.4 59.5 9.7
FB-16 18 – – – TA-4 9 33,547.6 1,827.8 630.0
FB-21K 3 12,582.9 2,138.4 647.5 TA-4K 2 31,397.2 1,405.7 412.7

PG-10 13 85.0 4.6 367.9
PG-10K 3 160.8 7.1 1.5
PG-12 15 389.1 9.6 9,560.9 Experimental environment: Intel i3,
PG-12K 3 737.3 21.1 8.5 2.3 GHz, 3 GB, Ubuntu 11.04,
PG-13 16 – – – verifyta 4.1.3.4577 / default options.
PG-18K 3 65,273.9 1,732.4 1,165.3

Table 1. Row X-N(K) gives the figures for case study X with N components (and
K applied). ‘C’ gives the number of clocks in the model, ‘kStates’ the number of 103

visited states, ‘M’ memory usage in MB, and ‘t(s)’ verification time in seconds. sAsEt
transformed each of our benchmarks in at most 5 seconds.

5 Experimental Results

We applied our approach to nine industrial case studies using sAsEt [16], our
implementation of algorithms K and KO with integrated detection of equivalence
classes of quasi-equal clocks and, simple and complex edges. Six case studies
FS [18], CR [19], CD [20], EP [14], TT [21] and LS [22] appear in [5]. The
interested reader can obtain from [5] more details of those case studies. The
elimination of assumptions on networks allowed us to include three new case
studies that [5] cannot transform: FB [7], TA [8] and PG [9]. We verified queries
as proposed by the respective authors of each case study. Our motivating case

Quasi-equal Clock Reduction: Eliminating Assumptions on Networks 15

study is inspired by the network from [7] which models the Foundation Fieldbus
Data Link Layer protocol (FDLL). The network consists of N sensors and one
master. Each of them with complex edges which are taken simultaneously by
synchronising on a given broadcast channel at the command of the master. Both
sender and receiver reset quasi-equal clocks of the same equivalence class. The
point in time in which quasi-equal clocks are reset by those complex edges, is
neither unique nor explicit in the syntax of those edges. Moreover, those complex
edges can be taken even without delaying at their origin locations. Case study [8]
is an implementation of a TDMA protocol. Case study [9] is an implementation of
the Pragmatic General Multicast (PGM), which is a reliable multicast transport
protocol for applications that require multicast data delivery from a single source
to multiple receivers.

Table 1 gives figures for the verification of queries in instances of the original
and the transformed model (denoted by the suffix K in the name). The rows
without results indicate the smallest instances for which we did not obtain results
within 24 hours. For all examples we achieved significant savings in verification
time, sometimes of factor n. However, the verification time in transformed mod-
els is less meaningful in benchmarks TA and TT. The quasi-equal clocks in the
TA and TT models are reset by complex edges, so all interleaving of resets in
the original model are preserved in the transformed network, together with the
artificial transitions that our transformation introduces. This can explain that
our savings in these models are related to a more efficient DBM-management.
Still, the verification of the transformed models of TA and TT including trans-
formation time is faster than verification of the original ones.

The biggest savings in terms of verification time are obtained in the trans-
formed models FS, CD, and CR. In these models we have simple edges whose
interleaving is reduced to a fixed sequence. Regarding memory consumption, we
observe the biggest savings again in the mentioned models for the reasons al-
ready explained. Note that the verification of the transformed models EP, LS,
PG takes slightly more memory than the verification of the original counter-
parts. We argue that this is due to all resetting edges being complex in these
three networks. Thus, our transformation preserves the full interleaving of clock
resets and the whole set of unstable locations whose size is exponential in the
number of participating automata, and it adds the transitions to and from lo-
cation `nstRY

. Furthermore, we add extra variables in those networks, namely,
boolean tokens for each quasi-equal clock whose management contributes in the
overall memory consumption. The shown reduction of the verification time is
due to a smaller size of the DBMs that Uppaal uses to represent zones [6] and
whose size grows quadratically in the number of clocks.

Our new technique transforms any network with quasi-equal clocks. It reduces
the verification time of properties in transformed networks, and represents all
clocks from an equivalence class by one representative. This technique can reduce
those configurations induced by automata that reset quasi-equal clocks one by
one. Furthermore, our technique supports all properties reflected by original
networks. We plan to implement our new approach in hybrid automata.

16 Christian Herrera, Bernd Westphal

References

1. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
2. C. Herrera, B. Westphal, et al. Reducing quasi-equal clocks in networks of timed

automata. In FORMATS, volume 7595 of LNCS, pages 155–170. Springer, 2012.
3. T.S. Rappaport. Wireless communications, volume 2. Prentice Hall, 2002.
4. G. Behrmann, A. David, and K. Larsen. A tutorial on Uppaal. In SFM, volume

3185 of LNCS, pages 200–236. Springer, 2004.
5. C. Herrera, B. Westphal, and A. Podelski. Quasi-Equal Clock Reduction: More Net-

works, More Queries. In TACAS, volume 8413 of LNCS, pages 295–309. Springer,
2014.

6. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In
ACPN, volume 3098 of LNCS, pages 87–124. Springer, 2003.

7. N. Petalidis. Verification of a fieldbus scheduling protocol using timed automata.
CI, 28(5):655–672, 2009.

8. K. Godary. Validation temporelle de réseaux embarqués critiques et fiables pour
l 'automobile. PhD thesis, Institut National des Sciences Appliquées de Lyon,
France, 2004.

9. B. Bérard, P. Bouyer, and A. Petit. Analysing the PGM Protocol with UPPAAL.
IJPR, 42(14):2773–2791, 2004.

10. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In RTSS, pages 73–81. IEEE, 1996.

11. C. Daws et al. Model checking of real-time reachability properties using abstrac-
tions. In TACAS, volume 1384 of LNCS, pages 313–329. Springer, 1998.

12. V. Braberman, D. Garbervetsky, N. Kicillof, D. Monteverde, et al. Speeding up
model checking of timed-models by combining scenario specialization and live com-
ponent analysis. In FORMATS, volume 5813 of LNCS, pages 58–72. Springer, 2009.

13. V. Braberman et al. Improving the verification of timed systems using influence
information. In TACAS, volume 2280 of LNCS, pages 21–36. Springer, 2002.

14. S. Limal, S. Potier, B. Denis, and J. Lesage. Formal verification of redundant
media extension of ethernet powerlink. In ETFA, pages 1045–1052. IEEE, 2007.

15. M. Muñiz, B. Westphal, and A. Podelski. Timed automata with disjoint activity.
In FORMATS, volume 7595 of LNCS, pages 188–203. Springer, 2012.

16. M. Muñiz, B. Westphal, and A. Podelski. Detecting quasi-equal clocks in timed
automata. In FORMATS, pages 198–212. Springer, 2013.

17. E.-R. Olderog and H. Dierks. Real-time systems - formal specification and auto-
matic verification. Cambridge University Press, 2008.

18. D. Dietsch, S. Feo-Arenis, et al. Disambiguation of industrial standards through
formalization and graphical languages. In RE, pages 265–270. IEEE, 2011.

19. S. Gobriel, S. Khattab, D. Mossé, et al. RideSharing: Fault tolerant aggregation in
sensor networks using corrective actions. In SECON, pages 595–604. IEEE, 2006.

20. H. Jensen, K. Larsen, and A. Skou. Modelling and analysis of a collision avoidance
protocol using SPIN and Uppaal. In 2nd SPIN Workshop, 1996.

21. W. Steiner and W. Elmenreich. Automatic recovery of the TTP/A sensor/actuator
network. In WISES, pages 25–37. Vienna University of Technology, 2003.

22. P. Kordy, R. Langerak, et al. Re-verification of a lip synchronization protocol using
robust reachability. In FMA, volume 20 of EPTCS, pages 49–62, 2009.

