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Abstract. [Context and motivation] Requirements defects are no-
toriously costly. Analysing the defect data in a completed project may
help to improve practice in follow up projects. [Question/Problem]
The problem is to analyse the different kinds of requirements defects
that may occur during the lifetime of an industrial project, and, for each
kind of requirement defect, the respective number of occurrences and
the cost incurred. [Principal ideas/results] In this paper, we present a
post hoc analysis for an automotive project at Bosch. We have analysed
588 requirements defects reported during the elapsed project lifetime
of 4.5 years. The analysis is based on a specific classification scheme
for requirements defects which takes its eight attributes (incorrect, in-
complete, etc.) from the IEEE 830 standard and refines them further
by distinguishing nine possible defect sources (relating to parameters,
wording, timing, etc.). The analysis yields that a large chunk of the
requirements defects (61%) stems from incorrectness or incompleteness.
The requirements defects that are the most costly to fix are incomplete-
ness and inconsistency. [Contribution] The insights gained from the
analysis of the defects data allow us to review several design decisions
for the requirements engineering process and to suggest new ones (such
as to incorporate the classification of the requirements defects into the
requirements review and into the defect reporting).

1 Introduction

Requirements defects are notoriously costly. In order to derive effective measures
that help avoid common requirements defects, we need to know more about
requirements defects as they occur during the lifetime of an industrial project.
Typical questions are: What are the different kinds of requirements defects that
occur? Which kind occurs relatively often? Which kind of requirements defect is
relatively costly to fix?

In this paper, we present a post hoc analysis for an automotive project at
Bosch. We have analysed the requirements defects reported during the elapsed
project lifetime of 4.5 years.

The project in question is the development of a commercial DC-to-DC con-
verter for a mild hybrid vehicle. The project had a runtime of approximately



five years. During this runtime, six hardware samples were produced, together
with 25 software versions with a total of 2500 changes (these changes include
both, defect fixes and additional functionalities). The project has more than
10.000 requirements, including customer, system, software, hardware, mechanic
and test requirements. The analysis presented in this paper is based on the 588
defects in system requirements (the set of system requirements changed during
the runtime of the project; its size at the end of the project is around 2000). The
development process in the project followed the V-model. A review was done
after every development step. The review of the system requirements was done
by the engineers in the respective domain, in the presence of a system tester (as
a walkthrough or as an inspection, depending on the complexity of the change
of requirements). The project team consisted of about 50 team members. The
work of at least 30 out of the 50 team members depended directly on the system
requirements (to develop the hardware, software, mechanic or derive test cases).
Out of the 50, five team members were responsible for system requirements.

In the analysis, we have used a classification scheme which is based on the
IEEE 830 standard and which we have further refined with the classification of
the defective part of a requirement. Our results demonstrate the applicability
of the defect classification scheme, and the insight into common requirements
defects in the project, we gained thereof. The analysis yields that a large chunk
of the requirements defects (61%) relate to either incorrectness or incompleteness.
The most costly requirements defects (most costly to fix) are incompleteness and
inconsistency. In the remainder of the paper, we will present the analysis and its
results based on the classification, as well as the conclusions we have drawn for
improving the practice in follow up projects.

The paper is organised as follows. Section 2 describes the general approach
followed by the analysis. Section 3 presents the results of the analysis. Section 4
presents the lessons learned and the conclusions we have drawn for improving
the practice in follow up projects. Section 5 discusses potential threats to validity.
Section 6 gives an overview of related work and puts the concepts used in this
paper into a larger context. Section 7 presents concluding remarks.

2 The General Setup of the Analysis

2.1 Goals and Questions

The analysis is part of a larger research effort to investigate how the requirements
engineering process can be changed in order to improve the quality of the system
requirements specification. The idea is to exploit the wealth of information which
is accumulated in the defect reports gathered during the lifetime of an industrial
project. Concretely, we take the already mentioned DC-to-DC project at Bosch.
Over the whole period of 4.5 years of the project lifetime, the requirements defects
were documented in 588 defect reports. The defect reports were used to fix the
defects.

The first step to extract information from this rather large number of defect
reports is to choose a classification of the requirements defects. We base our



classification on the IEEE 830 standard which lists attributes that determine the
quality of requirements specifications in software projects. It is widely agreed that
the attributes according to the IEEE 830 standard are useful to define the quality
of a requirements specification because generally, the defect of a requirement
results from a violation of one of the attributes. Thus we can classify the defect
according to the attribute that is violated, whether the requirement is incorrect,
ambiguous, incomplete, inconsistent, not ranked, not verifiable, not modifiable, or
not traceable. Here the requirements defect may be named after the violation of
the attribute that results directly or indirectly in the requirements defect (for
example, not traceable is not a requirements defect per se but may result in one).

We will use the classification of the requirements defects according to the
violation of the attributes of requirements in the IEEE 830 standard for the
analysis. In particular we will analyse the following questions.

1. What classes of requirements defects occur most often? We analyse
the requirements defects in these classes for common features that could help
us to detect these requirements defects or even prevent them.
With regards to the requirements engineering process, a good strategy may
be to concentrate on requirements defects in these classes before others.

2. What classes of requirements defects occur least often? Require-
ments defects in these classes may fall into one of two cases, depending
on whether they occur more rarely or whether they are just detected more
rarely. We need to consider both cases and either find the reason why the
DC-to-DC project does not suffer from those requirements defects, or improve
the detection of those requirements defects.
With regards to the requirements engineering process, the obvious consequence
of the knowledge of the absence of requirements defects in one class is to
re-allocate the corresponding effort to the detection of defects in other classes.

3. What classes of requirements defects are most costly to fix? The
number of defects per class is not sufficient per se; we furthermore need to
take into account that the amount of time needed to fix a requirements defect
can vary considerably, especially if detected in a later development phase.
With regards to the requirements engineering process, the most costly defect
classes call for more involved detection and prevention methods.

4. What classes of requirements defects are least costly to fix? The
later in the development phases the requirements defects in those classes are
detected, the higher becomes the risk that they induces new defects.
With regards to the requirements engineering process, the obvious consequence
of the knowledge of such classes is thus to invest the comparatively little cost
to fix the defects to prevent them from becoming costly later.

2.2 Collecting the Data of the Analysis

The 588 requirement defect reports that were issued over the lifetime of the DC-to-
DC project stem from two different sources, namely the requirements specification
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Fig. 1. The two data sets used for the analysis: data set 1 contains the requirements
defects that were detected in the requirements review phase, data set 2 contains the
requirements defects that were detected in later development phases. The dotted arrows
depict the flow of defect reports.

reviews (data set 1) and the fault reporting system for later development phases
of the project (data set 2); see Figure 1.

The 509 requirements defect reports in data set 1 (i.e., those detected dur-
ing the requirements reviews) each contain a rather brief explanation of the
requirements defect and a proposed solution for its removal.

The 79 requirements defect reports in data set 2 (i.e., those detected in later
development phases) contain detailed information on the defect, the development
phase the defect has been injected in, the development phase the defect has been
detected in, and the time effort (in man-hours) it took to fix the defect and its
ramifications.

2.3 Performing the Analysis

The classification of the defect reports was conducted by two employees of the
DC-to-DC project, each of them being responsible for one of the two data sets.
The workload between the two employees was even. In fact, due to the free
structure of the reports in data set 2, the analysis of a defect in a report in data
set 2 was relatively involved and time consuming.

We spent considerable effort to ensure the objectivity of the classification of
the requirements defects. Fortunately, a requirements engineer who had been
employed in the DC-to-DC project from the very beginning, was constantly
available for questions about hard cases. We have analysed the stability of the
classification (stability meaning that the results of the classification are not
dependent on the person who performs the analysis), using 16 randomly selected
samples of the defect reports from both data sets. With 75% agreement (Cohen’s



Kappa of κ = .57, p < .001, n = 16), we obtain that the result of the classification
is moderately stable, in the terminology of [2].

During the course of the analysis, we found that the classification based on
IEEE 830 (as described in Section 2.1 was too coarse to yield informative results
with regard to our first research question. We have refined the classification
further, based on nine possible defect sources, where we use defect source to refer
to the specific part of a requirement which is the cause of the requirements defect.
We list the nine defect sources below.

parameter The defect lies in a parameter (for example, the value of the param-
eter is written directly in the text, or parameter has a wrong value, or the
parameter has the wrong unit).

variant The defect lies in the elements that are used to document or manage
variants or versions (for example, the marker to indicate that a requirement
is valid only for one version, is missing).

wording The requirement is not written compliant to formulations, template
phrases or the desired precision of requirements that were agreed upon in
the project (for example, usage of words like ’would’ or ’should’).

timing The defect is in a specified timing parameter (for example, timing is not
correct or even possible).

state machine The defect is related to the state machine that is modelling the
system behaviour (for example, the guard of a state change is missing).

calculation The defect is related to a calculation or comparison (for exam-
ple, wrong sign, wrong comparison, use of wrong variable or function in a
calculation).

figure The defect is in a figure or related to a figure (for example, the depicted
process is labelled with wrong numbers).

organisation The structure of the requirements document is flawed (for exam-
ple, missing/wrong links to resources, misplaced/duplicated requirements).

functionality The requirements defect is related directly to a description of a
functionality and none of the eight other defect sources applies (meaning, the
requirement has a defect that cannot be fixed by removing one of the other
defect sources).

The above list of defect sources is based on the ideas behind the defect
classification schemes described by Chillarege et al.[1]. The defect sources are
mutually orthogonal (no requirements defect can be assigned to two defect
sources). The defect sources cover as many requirements defects as possible with
only few classes. We have been able to successfully apply the above classification
scheme for requirements defects in the DC-to-DC project; the investigation
whether the classification scheme is generally applicable (for requirements defects
in other projects) goes beyond the scope of this work.

3 Results of the Analysis

The results of the classification of the 588 requirements defects in data sets
1 and 2 are presented in Tables 1 and 2. Table 1 refers to the classification
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data set 1 175 41 135 22 29 72 35 509

data set 2 30 7 19 9 1 3 10 79

Σ 205 48 154 31 1 29 75 45 588

Table 1. The result of the first step of the analysis which uses the classification based
on the IEEE 830 standard.

of the requirement defects based on the IEEE 830 standard (as described in
Section 2.1), and Table 2 to its refinement based on the defect source (as
described in Section 2.3). Whereas the classification based on the IEEE 830
standard covers 100% of of the 588 requirements defects in data sets 1 and 2, the
refined classification covers only 67% (395 out of 588). The remaining third of
requirements defects cannot be assigned to one of the nine defect sources used
for the refined classification.

Next we use the classification in order to analyse the four questions which we
have formulated in Section 2.1.

What classes of requirements defects occur most often?

Table 1 shows that 61% of the requirements defects (359 of 588) belong to two
out of the eight possible classes, namely incorrect and incomplete. In order to
analyse the requirements defects in more depth, we will use the classification
according to the defect source; see Table 2.

parameter As in programming, parameters are used to abstract away from
concrete values. Concrete values used in requirements are not written di-
rectly into the requirement; instead, they are referenced by a parameter.
The concrete value of the parameter is defined in a specific data base. For
example, the variants of the DC-to-DC converter get defined only through
the assignment of variant-specific values to the set of parameters (except for
special cases; see below).
Out of the 86 requirements defects whose defect source can be assigned to
parameter, 18 fall into the class incomplete (16 in data set 1 and 2 in data set
2). Here, simply the assignment of concrete values to parameters in the data
base had been forgotten. Another 33 out of those 86 requirements defects
fall into the class incorrect (26 in data set 1 and 7 in data set 2). We note
that 7 cases out of the 33 (which happen to be among the 26 that belong
to data set 1) share a pattern. That is, the parameters had been assigned
tentatively (to some seemingly plausible value) before the information on the
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parameter 26 1 16 1 8 22 74 7 2 2 1 12

variant 13 4 34 3 1 4 59 6 6

wording 35 12 9 2 14 13 85

timing 4 4 8 2 2 4

state machine 15 1 3 2 21 5 7 2 14

calculation 15 15 7 7

figure 6 1 9 2 1 1 20

organisation 7 3 9 1 7 8 35 1 1 1 2 5

functionality 11 4 1 2 2 3 23 3 1 2 1 7

no category 43 15 50 10 12 39 169 8 3 6 3 2 2 24

Σ 175 41 135 22 29 72 35 509 30 7 19 9 1 3 10 79

Table 2. IEEE-830 classification and defect source. Using the nine defect sources we
managed to classify 395 defects (340 from data set 1 and 55 from data set 2).

hardware was available, just in order to be able to run a test, and then, once
information on the hardware was available, the update to the correct value
was forgotten.

variant Out of the 65 requirements defects whose defect source can be assigned
to variant, 34 of them fall into the class incomplete (all of them stem from
data set 1, i.e., none is from data set 2). To give an example, a requirement
defining the characteristics of the cooling fan, which obviously applies only
to the variants of the DC-to-DC converter that actually have a fan, had not
been marked as such.

All these 34 requirements defects have in common that they arise from
forgetting the treatment of a special case. As explained above, the variants
of the DC-to-DC converter were usually defined through the assignment of
variant-specific values to the set of parameters. That is, a requirement that
refers to only one variant (as in the example above) is a special case. Such
variant restrictions had to be written as part of the requirement, which could
easily be forgotten. Allocating a specific attribute in the database of system
requirements to record the variants a requirements applies to might have
helped with variant management but might have introduced other issues.

wording The 85 requirements defects whose defect source can be assigned to
wording all stem from data set 1, i.e., none are from data set 2. This means
that, if a wording defect was detected then it was detected in the requirements
review phase. The fact that none was detected in a later development phases
means that either all of them were detected through the requirements reviews,



or, at least, those that were not did not cause any follow-up defect, at least
not one that was detected in later development phases.
We now consider 12 out of the 85 wording defects that fall into the class
ambiguous. The particularity of the defects in this subset is that their follow-up
defects can be hard to detect due to the subtle ways in which they exteriorise.
To give an example, the wording average is ambiguous (for example, because
the exact set of samples is not specified). Different interpretations of the
term average may lead to results whose incorrectness is not immediately
apparent.
The wording defects that belong to classes other than ambiguous are rather of
cosmetic nature, i.e., with little or no potential to cause damage (because the
user gives the requirement its intended, rather than its actual meaning). We
give two examples to demonstrate this. The first example: After the request

to rise the target voltage, the PCU reaches [voltage] belongs to the
class incorrect ; the correct wording is: After the request to rise the

target voltage, the output voltage U HV reaches [voltage] (it is not
the DC-to-DC converter that reaches the voltage but the output voltage;
PCU stands for Power Control Unit). The second example: [. . . ] has an

output voltage level [. . . ] before t LV CTRL has elapsed belongs
to the class not verifiable); the correct wording is: [. . . ] has an output

voltage level [. . . ] at the latest when t LV CTRL has elapsed.
Our analysis determines that the high number of wording defects (belonging
to classes other than ambiguous) stem from copying similar requirements
that already had the defect.

state machine Out of the 21 requirements defects whose defect source can be
assigned to state machine (3 in data set 1 and 7 in data set 2), 10 fall into
the class incomplete. To give an example, non-determinism was introduced
by accident, e.g., by forgetting guards on outgoing transitions (where the
transition to an error state should be chosen in any case, if possible).

calculation All of the 22 requirements defects whose defect source can be
assigned to calculation (15 in data set 1 and 7 in data set 2) fall into the
class incorrect. To give an example from data set 1, the requirement: The
overshoot caused by the LV jump must not exceed U HV DUMP OVERSHOOT

should have been: The overshoot caused by the LV jump must not exceed

U HV Target + U HV DUMP OVERSHOOT. In the 7 cases that belong to data set
2 (i.e., requirements defects detected not during the requirements review
but in later development phases), the requirements defects were particularly
costly to fix (8 man-hours per requirements defect, on average). All of these 7
cases in data set 2 correspond to the same kind of mistake, namely a wrong
sign or the wrong comparative symbol (< instead of >, etc.).

figure The 20 requirements defects whose defect source can be assigned to figure
all stem from data set 1, i.e., none are from data set 2. In the DC-to-DC
project figures are always backed by requirements (written as text), which
information from figures could be validated with. The fact that none was
detected in a later development phase means that either all of them were
detected through the requirements reviews, or, at least, those that were not



did not cause any follow-up defect, at least none that was detected in later
development phases.

What classes of requirements defects occur least often?

There are three classes of requirements defects that occur least often: not verifiable
(29), inconsistent (31), and not ranked (1); see Table 1.

not verifiable The fact that the number of requirements defects that fall into
the class not verifiable is relatively low can be explained by the combination
of two measures taken for the two processes of requirements elicitation
and requirements review. For the process of requirements elicitation, the
requirement engineers formulated the functional requirements while having
in mind their translation into a restricted subset of natural language which
itself maps directly to a formal language (a subset of temporal propositional
logic; see [9]). For the process of requirements review, from the beginning of
the project, a test engineer had to be present in every review meeting.

inconsistent The relatively low number of requirements defects that fall into
the class inconsistency may seem surprising at first, given that the project
has more than 1600 system requirements. The explanation for the low number
lies in the fact that the project is the development of a new product and
that the set of requirements engineers did not change over the whole project
lifetime (i.e., the risk of inconsistency between new and old requirements was
relatively small).
As we will discuss further below, the cost for fixing can be relatively high for re-
quirements defects that fall into the class inconsistency (29h per requirements
defect on average; 86h in the worst case).

ranked There is only one requirements defect that falls into the class ranked
(which stands for ranked for importance and stability). Even though the
project mostly adheres to the IEEE 830 standard for requirements specifi-
cations, an exception is made in this class and it was decided to omit the
ranking of requirements. In the project, all system requirements are equally
important since every single one of them gets implemented in the final product
(customer requirements that need not to be implemented are not elicitated
as system requirements).

What classes of requirements defects are most costly to fix?

Table 3 shows that the most expensive requirements defects fall into the class
inconsistent (29 man-hours per requirement), the class incomplete (17 hours),
and the class incorrect (12 hours).

On single cases, the cost for fixing a requirements defect of the class incon-
sistent can be rather high: 86 hours in the example of a requirements defect
with the error source state machine which was detected during system testing.
The reason that it was not detected in the requirements reviews lies in the fact
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reqs review* 3 1 5 6 3 3.4 2 1 5 4 2 18

design review 9 3 11 1 3 5.4 9 3 1 1 1 20

module test 5 28 16.5 1 1 3

system test 14 16 16 86 3 3 1 19.9 10 1 7 1 1 1 2 30

vehicle test 33 23 38 23 11 8 22.7 2 2 4 3 1 6 24

other 10 2 6.2 3 1 5

avg. 12 11 17 29 3 6 4 30 7 19 9 1 3 10

Table 3. The effort spent on fixing a requirements defect (in man-hours per requirements
defect, on average, rounded to integers). By effort we mean the set of activities that
were needed to fix the defect in the requirement and all of its ramifications, including
reviewing, implementation, and testing. The columns refer to the IEEE 830 classification.
The rows refer to the development phases. The requirements defects stem from data
set 2, i.e., from development phases later than the requirements review phase. This
applies also to the requirements defects in the first row marked reqs review*. These stem
from work on the requirements that took place after the requirements review phase,
for example when the requirement was refined (into software, hardware, or mechanic
requirements), when another (closely related) requirement was added, or when formal
analysis in the style of [7,8] was applied. The average is calculated on the basis of the
corresponding set of requirements defects whose size is listed in the table on the right,
under the heading “requirements defects”.

that it involves 16 requirements from different requirements documents. The 16
requirements specify interacting conditions on error signals.

Regardless of the class into which a requirements defect falls, the later in
development it is detected, the higher is the effort necessary to fix it. This general
tendency is confirmed by the numbers in Table 3. The effort lies between 3 and 5
hours for the early development phases (reqs review* and design review), whereas
it rises to 23 hours for the latest development phase (vehicle testing).

Table 3 refers to only 76 out of the 79 requirements defects in data set 2.
For three requirements defects, two of class incorrect with the defect source
calculation(33 hours resp. 18 hours), one of class incorrect with the defect source
parameter (32 hours), we were unable to determine the development phases in
which they were detected.

We did not set up a table for the classification of requirements defects according
to the defect source because the basis for calculating the average cost would
become somewhat thin. We only mention that the most costly defect sources are
functionality (14 man hours per requirements defect on average), state machine
(14 hours), and parameter (12 hours).



What classes of requirements defects are least costly to fix?

Table 3 shows that the least expensive requirements defects fall into the class not
traceable (4 man- hours per requirement on average) and the class not modifiable
(6 hours) (we do not take into account the class not ranked for the same reasons
as explained above).

Among the development phases, the highest cost occurs with the requirement
defects detected in the latest development phase, i.e., vehicle test (8 resp. 11
man-hours per requirement on average). We observe, however, the increase of
cost with respect to the early development phases (requirements review* and
design review, 3 man hours per requirement on average) is not as drastic for not
traceable and not ranked as with the costly requirements defect classes which we
have discussed above.

The maximal cost for fixing a single requirements defect of the class not
traceable was 18 hours. The maximal cost for fixing a single requirements defect
of the class not modifiable was 6 hours. This is still far away form the maximal
cost of 86 hours for fixing a single requirements defect of the class inconsistent.

4 Lessons Learned

In Section 3 we have presented a post hoc analysis of the data collected during a
5-year industrial project. In this section, we will present the conclusions which
we have drawn and which may help to improve the practice in follow-up projects.

The results of the analysis seem to justify a number of decisions that have
been made regarding the requirements engineering processat the beginning of
the DC-to-DC project. We list these decisions below.

Include test engineers in the project from the beginning. In every
requirements review session, a test engineer participated. As the analysis reveals,
the effect of the decision is that not verifiable requirements were detected during
the reviews and not later during testing.

Separate parameters in the requirements from their concrete val-
ues. The requirements are formulated using a parameter, i.e., a name for a
value (instead of the value itself). The parameter is bound to a concrete value
only in the parameter data base. The motivation behind this decision is to help
the management of variants (since the set of parameter values can be defined
individually for each variant and the set can be exchanged without modifying the
requirements). The analysis reveals that this decision introduced a rather large
number of requirements defects. However, these requirements defects are of the
kind that can be detected automatically. Since the analysis also reveals that the
number of modifiability defects linked to parameters and version management
is small, the decision seems well justified. Another effect of the decision is to
minimise the risk of incorrectness defects (due to forgotten updates of parameters
values). Since the analysis also reveals that incorrectness defects are among the
most costly to fix, the benefit is apparent.



Develop the requirements specification in a refinement process
along the functional structure. Concretely, in the project, the function-
ality of the DC-to-DC converter was decomposed into sub functionalities with
defined interaction and responsibility; this decomposition was iterated until the
single parts could be described by few requirements. This means a lot of effort
spent on the front-loading (with a detailed system concept, with respect to both,
a functional and a component view, which was then used to organise and detail
the system requirements). Since the analysis reveals that the number of inconsis-
tency defects in the DC-to-DC converter project was rather low (considerably
lower than, e.g., in the projects studied in [6,4,7]), the decision seems effective in
decreasing the risk of inconsistency defects.

We next list a few recommendations for the requirements engineering process
that seem justified in light of the analysis.

Apply automated tools to detect inconsistencies. Table 1 shows that
9 out of 31 requirements defects that fall into the class inconsistent were not
detected during the requirements review phase. Table 3 shows that those 9
requirements defects have a rather high cost for fixing the defect of 29 man-hours
per requirement on average (as we have described above, in one case, where
the cost amounts to 86 hours, the inconsistency involves 16 requirements which
specify an intricate interaction between error signals). In the future, the systems
that we develop will become even more complex, and the risk that a requirements
defect escapes the manual review process will become even higher. This calls
for the use of automated tools that use model checking techniques to detect
even elaborate forms of inconsistencies between requirements (and even between
timing constraints); see, e.g., [7,8,9]. The use of automated tools involves an initial
extra effort which is needed for formulating requirements in a machine-readable
format. Our analysis suggests that the investment of such an effort might pay off.

Include the type of the requirements defect in the defect report.
In our analysis, we specified the type of a requirements defect by the class (in
the classification based on the IEEE 830 standard) and/or by the defect source
(the defect part of the requirement). The person who writes the defect report
will know the type and to write it down seems to create only little overhead. In
contrast, to reconstruct the type from a defect report is a rather involved and
time consuming task (a task that was necessary in our post hoc analysis). The
immediate availability of the type of the requirements defect means that this
useful information can already been taken into account during the requirements
engineering process, for example in review meetings.

Analyse requirements defects in order to screen the requirements
engineering process. Without an analysis of the requirements defects, informa-
tion on the requirements defects lies dormant in the data base of defect reports.
Information such as the information gathered in Tables 1-3 is, however, useful to
review decisions that have been made regarding the requirements engineering
process. This information is useful continuously during the project, and it is
useful in order to give recommendations for follow-up projects.



5 Threats to Validity

In this section, we analyse threats to validity defined in Neuendorf [5] and
Wohlin [11].

5.1 Construct Validity

Experimenter Expectancies [11] Expectations of an outcome may inadvertently
cause the raters to view data in a different way. This threat applies to the
classification of the defects, as one of the raters was aware of the results reported
in the related work. However, the other analyst was not familiar with those
results. The reliability analysis in Section 3 suggests that the classification was
not biased.

Semantic Validity This threat arises if the analytical categories of texts do not
correspond to the meaning these texts have for particular readers. In this analysis
the classes are clearly defined by IEEE 830 [3] so this threat is minimised. For
the definition of the defect source we named the source in a most unambiguous
way, gave an explanation of the source and several brief examples to minimise
this threat.

5.2 External Validity

Sampling Validity [5] This threat arises if the sample is not representative for
requirements defects. In this study we analysed all requirements defects detected
during the project’s elapsed runtime written down either in review reports or in
the fault data base. There is the risk that not all defects were tracked this way.
However, as it is not allowed in the project to change requirements without a
tracking number to a change request this risk is low. Another risk is that the
project is not yet finished. However, as the product will go into production in
six months and the product has passed thorough testing both at Bosch and at
the customer we expect that all critical defects are already uncovered. Still the
results may not be transferable to other projects. In this project special care
was taken to ensure testable and modifiable requirements. Therefore we assume
that the results presented in Section 3 may differ with that respect from other
projects.

Interaction of Selection and Treatment [11] This threat arises if the raters
in this study (see Section 3) are not representative for Bosch engineers. The
classification was done by a student and a PhD student at Bosch, and supervised
by a requirements engineer at Bosch. The requirements engineer also classified a
small sample. The reliability analysis in Section 3 suggests that the classification
is sufficiently independent of the raters with respect to the IEEE classes.



5.3 Conclusion Validity

Low statistical significance [11] This threat is concerned with statistical tests
of low power. The stability analysis conducted for the IEEE 830 uses a small
sample of only 16 reports. This stability analysis should give a picture of the
stability of the classification. For cases where the analysis were unsure of the
classification a requirements engineer from the project was consulted.

There were only 79 reports of requirements defects that slipped the require-
ments review at the end of the requirements development phase, thus the number
of data points in data set 2 is fairly low, especially for the calculation of the
average times in Table 3. This cannot be helped, as we took all defect data from
the project, so we could not increase the selection.

6 Related Work

The work most closely related to ours is perhaps the work by Ott in [6] which
also describes an empirical analysis on requirements defects (there, at Daimler
AG). The work in [6] refers to requirements on a higher level than the system
requirements to which our work refers. The requirements in [6] would be considered
customer requirements at Bosch. Another difference lies in the granularity of the
analysis. The work in [6] uses a classification on the same level of abstraction
as our classification based on the IEEE 830 standard. The work in [6] does not
refine the analysis in the way we do by considering the defect sources (parameter,
variant, etc.). The classes in [6] cannot be mapped 1-1 to the classes in our
work. But still, one can observe that in the distribution of requirements defects
according to the work in [6] and in our work are compatible.

The work by Lauesen and Vinter in [4] describes the analysis of requirements
defects in two comparatively small requirement specifications for a noise source
location system (107 and 94 requirements, compared to over 1600 requirements in
our work). There, about 60% of the requirements defects related to unstated de-
mands (i.e., to incompleteness), which is high in comparison to the corresponding
number in our analysis (26%).

The idea to refine the classification based on the IEEE 830 standard by
considering defect sources is inspired by the Orthogonal Defect Classification
(ODC) used by Chillarege et al. in [1]. More precisely, our notion of defect source
is comparable to the notion of defect type in [1]. Instead of using the notion of
defect trigger in [1], we use the development phase in which the requirements
defect was detected (design review, system test, etc.).

Their defect categorisation is based on two groups: the defect type, which is a
defect description implied by the eventual correction (e.g. assignment, function,
algorithm, documentation), and the defect trigger, which describes the condition
the defect surfaced under (e.g. concurrency, timing, boundary conditions). We
use the basic ideas of ODC for a deeper analysis of our requirements defects by
using the defective part of the requirement is similar to the defect type in ODC.

In contrast with our work on requirements defects, the work by Walia et
al. in [10] considers the requirements error (i.e., the (human) error done while



working on requirements; in contrast, the requirements defect is the manifestation
of a requirements error in the requirements specification). The work in [10] uses
a classroom experiment in order to classify requirements errors according to, e.g.,
human failure, process, or documentation error. Our initial attempts to analyse
requirements errors for the DC-to-DC project using the classification of [10] were
not successful (due to the lack of stability, i.e., the analysis results were not
robust under the change of analyst). We leave the analysis of requirements errors
in an industrial project to future work.

7 Conclusion and Future Work

We have analysed the set of 588 requirements defects reported in the DC-to-DC
project at Bosch with over 1600 system requirements during a lifetime of 4.5
years. We have formulated the insights gained from the results of the analysis and
we have used them to review decisions regarding the requirements engineering
process at the beginning of the DC-to-DC project and to give recommendations
for new decisions.

We have refined the initial classification of requirements defects, which is
based in the IEEE 830 standard using the notion of defect sources. The resulting
classification turned out to be useful tool for the analysis of requirements defects
in the DC-to-DC project. It is an interesting topic of future work to evaluate
whether this classification is more universally applicable or whether it can be
used as the basis of a universally applicable classification of requirements defects.
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