
Applying Restricted English Grammar on
Automotive Requirements — Does It Work?

A Case Study

Amalinda Post1, Igor Menzel1, and Andreas Podelski2

1 Robert Bosch GmbH, Corporate Research, Stuttgart, Germany
{Amalinda.Post,Igor.Menzel}@de.bosch.com,

2 University of Freiburg, Department of Computer Science, Freiburg, Germany
podelski@informatik.uni-freiburg.de

Abstract. [Context and motivation] For an automatic consistency
check on requirements the requirements have to be formalized first. How-
ever, logical formalisms are seldom accessible to stakeholders in the auto-
motive context. Konrad and Cheng proposed a restricted English gram-
mar that can be automatically translated to logics, but looks like natural
language. [Question/problem] In this paper we investigate whether
this grammar can be applied in the automotive domain, in the sense
that it is expressive enough to specify automotive behavioral require-
ments. [Principal ideas/results] We did a case study over 289 informal
behavioral requirements taken from the automotive context. We evalu-
ated whether these requirements could be formulated in the grammar
and whether the grammar has to be adapted to the automotive context.
[Contribution] The case study strongly indicates that the grammar,
extended with 3 further patterns, is suited to specify automotive behav-
ioral requirements of BOSCH.

Keywords: automotive, requirements, formalization, real-time

1 Introduction

In this work we investigate whether the restricted English grammar provided by
Konrad and Cheng [1] suffices to express behavioral requirements taken from the
automotive context. The grammar looks like natural language, however it allows
an automatic translation into linear time logic (LTL)[2], computational tree
logic (CTL)[2], graphical interval logic (GIL)[3], metric temporal logic (MTL)[4],
timed computational tree logic (TCTL)[4], and real-time graphical interval logic
(RTGIL)[5].

We are only interested in requirements specifying the behavior of the system,
i.e., we do not consider any other kind of requirements. Thus, in the following, ev-
ery time we speak of “requirements” we mean in fact behavioral requirements [6],
i.e., requirements specifying the behavior of the system. We consider behavior
without exact timing bounds (e.g., “If the system is in diagnostic mode then pre-
viously the diagnostic request DiagStart held.”) and behavior with exact timing

2

bounds (e.g., “If the diagnostic request IRTest appears then the infrared lamps
are turned off after at most 6 seconds”). The case study is motivated from au-
tomotive development processes. In this context sets of requirements often com-
prise of several hundred pages. The requirements are mainly written in natural
language. There are a lot of involved stakeholders, many of them spread over
different companies [7]. Furthermore, requirements specifications are manually
checked for errors, e.g., by peer reviews [8].

The problem addressed in this work is that such a manual check is a con-
siderable effort since requirements affect each other and cannot be analyzed in
isolation [9]. Therefore automatic checks are desirable already for small sets of
requirements [10,11,12]. However, to allow automatic checks the requirements
need to be available in a formal language, such as, e.g., a logic like LTL. In
addition to that, the new functional safety standard for Automotive Electronic
Systems ISO26262 (currently under development) states that for safety criti-
cal systems at least a semi formal specification of safety requirements is highly
recommended [13]. Thus, in the automotive domain a need arises for methods
developing semi formal or formal requirements.

Unfortunately such formalizations are rarely accessible to the stakeholders
who need to read them [14,1]. Thus, before working with a formal specification
all the stakeholders would need to be trained in the chosen logic, even beyond
company boundaries. In practice this is clearly unrealistic. Another possibility
is to develop both a formal and an informal requirements document. But this
is double work and it will be difficult to hold both documents consistently over
the development time of 2-5 years.

Thus, the idea is to use a language that retains the mathematical rigor but
uses a vocabulary and syntax very close to natural English language. Such a
language is provided by Konrad and Cheng [1]. They propose a restricted English
grammar that represents a specification pattern system (SPS), such that every
pattern looks like natural language but can be translated into a logical formula
in LTL, CTL, TCTL, RTGIL or MTL. The drawback of this language is that it
covers only a subset of the statements possible to express in the particular logic.
For example the following requirement cannot be expressed in the SPS as the
SPS provides no pattern that expresses such a behavior: “For a codeword with
5 digits, the time between entering the first digit and the last one is less than 5
seconds”. However, the SPS does not claim to be complete. Thus, the question
is not whether all possible requirements can be expressed in this SPS but: Does
in practice the SPS suffice to express automotive requirements?

If this would be true, then automotive requirements could be expressed in
SPS, i.e., they would be still readable for all stakeholders (as they look like
natural language) but could be automatically checked by a computer (as they can
be automatically translated into logical formulas). To investigate that question,
we did a case study over 289 requirements taken from five projects from the
automotive domain. The requirements were given in informal prose. For the
case study we checked for every requirement in this sample whether it could be
reformulated in the SPS without loss of meaning.

3

2 Related Work

Various tabular notations aim to provide requirements that are both accessi-
ble and suitable for formal analysis. For example, Heitmeyer et al [11] have
built a variety of tools for checking consistency, completeness, and safety prop-
erties of requirements expressed in the tabular SCR notation. In contrast to
the tabular notation, formalisms like B or Z [15] aim to express requirements
in a mathematical way. E.g., the formalism Z defines rigid notations for logical
operations, quantifiers, sets, and functions. Whereas Z is strictly designed as a
specification language, the goal of B is to use mathematical proofs to verify con-
sistency between refinement levels and to enable an automatic transformation of
requirements into some executable code. However neither B nor Z offer a natural
language representation.

Some research, such as the Attempto Controlled English project [16] and
the work of Han [17], attempt to construct formal specifications from natural
language requirements. However, automatic interpretation of natural language
is still error-prone, as natural language is often vague and the information is
often implicitly stated. The use of natural language in the work described here
is much less ambitious.

This work investigates whether the restricted English grammar proposed by
Konrad and Cheng [1] can be applied to the automotive context. The grammar
depicted in Table 1 represents a specification pattern system (SPS) [1] with 16
non-recursive patterns. Every pattern can be mapped to logical statements in,
e.g., the logics MTL, TCTL and RTGIL. The patterns without exact timing
bounds were originally proposed by Dwyer et al in [18]. Konrad and Cheng
extend these patterns in their SPS.

The patterns consist of non-literal terminals (given in a sans serif font) and
literal terminals (confined via quotation marks). For example, the min duration
pattern consists of “it is always the case that once ” P “ becomes satisfied, it
holds for at least ”c “time units”, with P, c as non-literal terminals and the rest
as literal terminals. The non-literal terminal P denotes a boolean propositional
formulae that describes properties of states and is used to capture properties of
the system. The non-literal terminal c is instantiated with integer values.

Both Dwyer et al [18] and Konrad [19] evaluate their approach with a case
study. However, Dwyer evaluates the applicability only for patterns without
exact timing bounds, and Konrad only for patterns with exact timing bounds.
To our knowledge there are no case studies that evaluate the applicability of the
SPS for mixed requirements.

The work of Dwyer et al has been extended in a number of directions. Grunske
extends the patterns to express also probabilistic quality properties [20]. This
extension might be useful to express availability or reliability requirements, how-
ever in our case study we consider only behavioral requirements, thus we base
our work on Konrad’s SPS.

Cobleigh et al. developed the tool PROPEL (PROPerty ELucidator) that
aims to guide users through the process of creating property specifications in
supporting them in selecting a suited pattern and scope [21]. The tool provides

4

Start 1: property ::= scope “,” specification “.”

Scope 2: scope ::= “Globally” | “Before” R | “After” Q | “Between” Q “ and” R | “After”
Q “until” R

General 3: specification ::= qualitative type | realtime type | invariant type

Quali.

4: qualitative type ::= occurrence category | order category | possibility category
5: occurrence category ::= absence pattern | universality pattern | existence pattern | bounded existence
6: absence pattern ::= “it is never the case that” P “ holds”
7: universality pattern ::= “it is always the case that” P “ holds”
8: existence pattern ::= P “ eventually holds”
9: bounded existence ::= “transitions to states in which ” P “ holds occur at most twice”
10: order category ::= “it is always the case that if” (precedence pattern | response pattern |

precedence chain 1-2 | precedence chain 2-1 | response chain 2-1 | response
chain 1-2 | constrained chain)

11: precedence pattern ::= P “holds, then” S “previously held”
12: precedence chain 1-2 ::= S “holds and is succeeded by” T “, then” P “ previously held”
13: precedence chain 2-1 ::= P “holds then ” S “ previously held and was preceded by ” T
14: response pattern ::= P “holds then ” S “eventually holds”
15: response chain 1-2 ::= P “ holds“ then ” S “eventually holds and is succeeded by” T
16: response chain 2-1 ::= S “holds and is succeeded by ” T “, then ” P “eventually holds af-

ter ” T
17: constrained chain ::= P “holds “then ” S “eventually holds and is succeeded by” T “,

where” Z “does not hold between” S “and” T

real time

18: real time type ::= “it is always the case that” (duration category | periodic category | RT
Order category) | possible real time category

19: duration category ::= “once” P “ becomes satisfied, it holds for” (min duration | max duration)
20: min duration ::= “at least” c “ time unit(s)”
21: max duration ::= “less than” c “ time unit(s)”
22: periodic category ::= P “ holds” bounded recurrence
23: bounded recurrence ::= “ at least every” c “time unit(s)”
24: RT Order category ::= “if” P “ holds, then” S “holds” (bounded response | bounded invariance)
25: bounded response ::= “ after at most” c “time unit(s)”
26: bounded invariance ::= “ for at least” c “time unit(s)”

Table 1. Restricted English grammar given by Konrad and Cheng in [1].

both a finite-state automaton representation and a natural language represen-
tation. However, the tool currently only supports patterns without exact timing
bounds.

3 Planning of the case study

3.1 Study goals and questions

In order to assess whether the SPS proposed by Konrad and Cheng can be
suitably applied in the automotive domain two questions should be raised: first,
is the SPS expressive enough to express automotive requirements? And, second,
do developers, requirements engineers, and sub-suppliers accept the SPS, in the
sense that they think it easy to use and useful?

In this case study we address only the first question. However, in order to
ensure that BOSCH requirements engineers and developers can understand re-
quirements formalized in SPS and can apply it to their requirements, we did an
initial informal survey. We showed them requirements formalized in SPS, and
asked them to explain their meaning to us and to apply the SPS on some of
their behavioral requirements. The results indicate that requirements formalized
in SPS are easy to understand and SPS is easy to apply. However, many experts
asked for tool support. Therefore, we plan to develop a tool and do a further
case study to address this question in a bigger context — presuming the present
case study indicates the SPS is expressive enough.

Another property we investigate in this case study is the pattern complexity :
every pattern in the SPS can be expressed in logic, but not every pattern can be
expressed in every logic. We define pattern complexity as a function that maps a

5

pattern to the least expressive logic of a given finite set of logics in which it can
be expressed. We are interested whether our case study contains subsets with a
small pattern complexity.

Therefore, we identified four subgoals of the case study:

Goal 1a Is it possible to express all automotive requirements in the SPS by
Konrad and Cheng?

Goal 1b If there are automotive requirements, that cannot be expressed in the
SPS, what is the reason? I.e. could such requirements be expressed in another
formalism?

Goal 2 Are all patterns in the SPS by Konrad and Cheng relevant for the
automotive domain? I.e. are there patterns that are never needed?

Goal 3 What is the relation between application domain (e.g., human machine
interface, engine controller,...), the requirements development phase and the
pattern complexity?

As depicted in Figure 1, the subgoals 1a, 1b, and 2 investigate the relation
between requirements and SPS, whereas subgoal 3 relates requirements (via the
SPS) with pattern complexity.

SPS by
Konrad/Cheng

Informal
requirements

in natural
language

from
automotive

context

CTL patterns

TCTL patterns

Goal 1
Is the SPS expressive
enough? I.e.,can all

requirements in the case
study be mapped to the
SPS by Konrad/Cheng?

Goal 2
Are all patterns in the SPS
by Konrad/Cheng relevant?
I.e., are there patterns, such

that no requirement is
mapped to that pattern?

LTL
Patterns

Goal 3
How is the relation

between the
requirements
development
phase, the

application domain,
and the pattern

complexity?

Fig. 1. In the case study we investigate the relation between requirements and
SPS, and between requirements and pattern complexity.

3.2 Selection of the sample

Selection criteria for documents In the first step we selected requirements
documents from different BOSCH projects of the automotive domain. To get a
representative sampling, we decided to apply stratified sampling over the auto-
motive application domains car multimedia, driving assistance, engine control-
ling, powertrain development, and catalytic converter development. Moreover,
we decided to use projects from different development stages, i.e. platform and

6

customer projects [22] from concept phases to well-known development phases3.
We then used convenience sampling to select a project out of every stratum.

Each project had several requirements documents, some consisting of more
than 100 pages. In order to get a representative sample we asked the corre-
sponding requirements engineers to give us a requirements document such that,
first, the document contained behavioral requirements, and, second, the docu-
ment was representative for the application domain. This way we obtained the
following five requirements documents: a document specifying a Human Ma-
chine Interface(HMI) D1 (of a car multimedia project), a document specifying
an error-handling concept D2 (of a driving assistance project), one of a con-
troller of a heater of an oxygen sensor D3 (of a catalytic converter project), one
of a powertrain controller D4 (of a powertrain project), and one of an engine
injection device D5 (of an engine control project).

Selection criteria for requirements Every document D1, . . . , D5 consisted
of several chapters. In the documents process requirements (e.g., “The testing
coverage shall be at least 99% over all code statements”) or other nonfunctional
requirements were mostly grouped together into chapters, thus separated from
the behavioral requirements. In this work we are only interested in behavioral
requirements. Therefore we scanned the chapters of the documents and made
a list with the chapters containing such requirements. After that we randomly
chose a chapter out of this list, and selected all requirements in the chapter. In
this way we obtained the set of requirements R1 out of D1, . . . , R5 out of D5.
R, the union of these sets, consisted of 289 requirements. We randomly chose
chapters instead of the requirements itself, as in our experience a requirement
should not be interpreted out of its context.

After that we preprocessed the initial data set: we deleted 11 headings, and
22 statements, that were either mere descriptions but not real requirements
(e.g., “Most drivers prefer a smooth deceleration”), or requirements that did not
specify behavior (e.g., “All failure thresholds shall be defined and documented by
the developers.”). Furthermore we deleted 11 redundant requirements. In order
to ensure that these redundant requirements, headings and statements could be
safely deleted, we discussed every deletion with 2 further experts.

After that our sample consisted of 245 informal requirements in prose.

3.3 Case study design

The setting of the case study is depicted in Figure 2: As input we used 245
informal requirements. These are analyzed in a content analysis with the category
system defined below.

The category system consists of three main groups: phenomenon require-
ments, requirements expressible in SPS and requirements not expressible in SPS.

3 Platform projects develop a collection of reusable artifacts, such as requirements,
software components, test plans etc. These artifacts are then reused in customer
projects in order to build applications.

7

phenomenon requirementdetermine
corresponding

categories

R1
R1

R1
R1

Ri

Sets of informal
requirements

expressible
in SPS

bounded inv. pattern

Absence pattern

...

category system

not expressible in SPS

Fig. 2. case study design

The category requirements expressible in SPS is further refined in the patterns
defined in [1].

We defined a requirement as phenomenon requirement if it specified not be-
havior but data. An example for such a requirement is “An error is built up
as following: error name (2 Byte), error status (1Byte), odometer value when
the error occurred (2Byte)”. Note that a phenomenon requirement cannot be
mapped to a pattern, instead the data it specifies is mapped to non-literal ter-
minals. Thus, phenomenon requirements are indirectly expressed in the SPS.

We defined a requirement as expressible in SPS if and only if the SPS provides
one or more suitable patterns and there is an assignment to the non-literal
terminals of these patterns, such that the conjunction of the instantiated patterns
expresses the meaning of the requirement.

We defined a requirement as not expressible in SPS, if it was not a phe-
nomenon requirement and could not be reformulated in the SPS without loss of
meaning.

We then asked a requirements engineer to determine for every requirement in
the sample whether it was a phenomenon requirement, a requirement expressible
in SPS or a requirement not expressible in SPS. For requirements expressible
in SPS the engineer should further give instantiated patterns expressing the
meaning of the requirement.

The majority of the informal requirements could be reformulated into ex-
actly one instantiated pattern. However, for some requirements a conjunction
of multiple instantiated patterns was needed to express the meaning of the ini-
tial requirement. Thus, we obtained a set size for the resulting requirements
expressible in SPS, phenomena and not expressible in SPS of 307. The follow-
ing statistics concerning subgoal 1 and subgoal 2 relate to the initial number
of requirements(245), the statistics for the subgoal 3 relates to the 307 SPS
requirements.

4 Analysis of the results

4.1 Goal 1: expressivity of the SPS

In a first step we investigated whether it is possible to reformulate all require-
ments of the case study in SPS. Therefore we first measured how many re-

8

quirements could be expressed in the SPS by Dwyer et al, which is limited to
patterns without exact timing bounds. After that we compared these results
with the measurements for the SPS by Konrad and Cheng. Figure 3 depicts the
results.

The figure shows that for the requirements in the case study the extension of
Konrad and Cheng strongly reduces the number of not expressible requirements.
However, 39 requirements could not be reformulated. 25 of these requirements
needed a branching time concept, not provided in the given patterns.

The branching concept was needed to allow the specification of possible be-
havior. Consider the requirement If the gear is in P then it must be possible to
start the engine. In the later development phases this requirement will certainly
be split into further more precise and deterministic requirements, e.g, If the gear
is in P and the ignition is turned on then the system starts the engine. If the
gear is in P and the ignition is turned off, then the engine stays off.... However,
in the early development phases it is desirable to allow also a less precise speci-
fication, as the information to specify the requirements in the deterministic way
is probably not yet known. Thus, for early development phases we think that an
extension with branching time concept patterns is needed.

Therefore, we propose to extend the grammar by Konrad and Cheng with
possibility patterns depicted in Table 2. With the help of these patterns it is
possible to reduce the number of not expressible requirements from 39 to 14,
as depicted in Figure 3. Figure 4 depicts that in greater detail for R1, . . . , R5:
every bar represents the number of requirements, that were not expressible in
the SPS by Konrad and Cheng. E.g., 25 requirements of R4 were not expressible.
The bars are further divided into two classes: the number of requirements that
could be expressed by the new possibility patterns is depicted in light gray, the
number of requirements that are still not expressible is depicted in dark gray.
Note that in the case study the possibility patterns were especially needed for
the requirements of the projects in an early development phase, particularly in
R4. This is plausible as in later development phases such requirements will be
split into more precise requirements.

Formalization of automotive requirements in pattern language

0 50 100 150 200 250

 SPS by
 Dwyer et al

 SPS by
 Konrad/ Cheng

 extended
 SPS

number of requirements

phenomenon

not expressible
in SPS

expressible in
SPS

Fig. 3. The number of not expressible requirements is strongly reduced by Kon-
rad and Chengs’ patterns. It can be further reduced in extending the grammar
with possibility patterns.

9

5

6 2

0 10

5

10

15

20

25

powertrain
controller

(R4)

HMI
(R1)

error
handler

(R2)

oxygen
sensor
(R3)

engine
controller

(R5)

nu
m

be
r o

f r
eq

ui
re

m
en

ts

project

not expressible in
extended SPS
expressible in extended
SPS

1
8

5

out of context
unclear
description of appearance

Fig. 4. The left Figure depicts the number of requirements not expressible in
the language by Konrad/Cheng but expressible via extended patterns. On the
right a further classification of requirements not expressible in extended SPS.

However, even with this extension it was not possible to find a reformula-
tion in SPS for 14 requirements. Thus, we investigated what reasons made a
requirement not expressible. We identified three reasons, depicted in Figure 4.

One not expressible requirement was only not expressible because it was out
of the system context: “If failures are detected in multiple electronic control
units (ECUs) the same classification of faults shall be used in all ECUs”. This
requirement was given to a project developing a single ECU, but clearly this
requirement cannot be solved on the ECU level as in this context it is not
known what faults are detected by other ECUs. However, on the context level
of the whole car the requirement could be expressed in SPS.

Five requirements could not be formalized as they did not specify any behav-
ior. Instead they described the appearance of the product, e.g., “the warning icon
is an image of two cars with a star in between”. As in this work we wanted to in-
vestigate only behavioral requirements, these requirements were wrongly selected
into our sample. Thus, for the result of this case study (limited to behavioral
requirements) these five requirements should be ignored.

Finally, the majority of requirements became not expressible because the
meaning of the requirement was not clear or just too vague. Neither the require-
ments engineer who formalized the requirements in the first step, nor the eval-

possibility pattern ::= “if” P “holds then there is at least one execution sequence
such that” S “eventually holds”

possible bounded
response pattern

::= “if” P “holds then there is at least one execution sequence
such that” S “holds after at most” c “time unit(s)”

possible bounded
invariance pattern

::= “if” P “holds then there is at least one execution sequence
such that” S “holds for at least” c “time unit(s)”

Table 2. Grammar of the extended patterns

10

uators understood what the requirement wanted to specify, thus, it was clearly
impossible to formalize it. Examples for such requirements are “The drag torque
and the activation torque depend on the operating state.”(how?) and “warning
in central line of vision”(how is the “line of vision” determined? E.g., adaptive
to the size of the driver?). Thus, in these 8 cases, the problem was not that the
SPS was not expressive enough but instead that the requirements were unclear.
So, in fact the SPS helped to identify requirements that needed to be revised.

Thus, we come to the conclusion that the extended version of the SPS is
well suited to express behavioral requirements from the automotive context. The
majority of the behavioral requirements could be directly expressed in the SPS
by [1]. With an extension of only three patterns, all behavioral requirements
could be expressed as long as their meaning was clear. As only three further
patterns were needed, the case study indicates that Dwyer et al may be right
with their belief that in practice only some few patterns are needed to express
requirements. The effort to extend the SPS was low, i.e., we had to add only
three patterns with their formalization. Furthermore the SPS helped to iden-
tify requirements that needed to be revised. Thus it seems that for behavioral
automotive requirements the SPS is well suited.

However, for requirements that are not behavioral requirements this claim
does not hold. In fact the requirements specifying the appearance of the product
were nearly impossible to formalize in any formalism. Thus, we think this is an
indication that not all kind of requirements can be formalized. It seems that
behavioral requirements are suitable for formalization, but for the other kinds of
requirements this needs to be investigated. I.e., methods are needed that separate
between requirements that can be formalized and requirements that need to be
validated via other methods.

4.2 Goal 2: pattern relevance

Next, we evaluated whether all patterns in the SPS by Konrad and Cheng are
relevant for the automotive application domain. This question needs to be asked
to find a minimal pattern set. We assume that a less complex SPS with fewer
patterns is easier and faster to use for developers than one with many patterns.
However, we still want to express all automotive requirements. Thus, we evalu-
ated whether the SPS by Konrad and Cheng contains patterns that were never
needed in the case study.

We identified six patterns that were not needed to express any requirement
in the case study: the bounded existence, precedence chain 1-2, precedence chain
2-1, response chain 1-2, response chain 2-1 and constrained chain pattern. Thus,
the case study indicates that for the system level in the automotive application
domain these patterns might be omitted.

4.3 Goal 3: pattern complexity versus application domain

The SPS by Konrad and Cheng (and also the extended version) can be auto-
matically transformed to the logics LTL, CTL, GIL, MTL, TCTL, and RTGIL.

11

However, not every pattern can be translated into every logic. All provided pat-
terns can be translated into TCTL. But, e.g., only the patterns without any
reference to quantitative time or possible behavior can be expressed in LTL.

For LTL, CTL and TCTL tool support is available [23,24], therefore we focus
in the following work on these logics. However, even for this subset of logics, there
is a trade off between expressivity of the logic and its computational class. E.g.,
a consistency check for a set of requirements can be transformed into the satisfi-
ability problem. However, the satisfiability problem is undecidable for TCTL [4],
while decidable for LTL and CTL. Thus we are interested in the pattern complex-
ity and its relation to the application domain (e.g., human machine interface,
engine controller,...), and the requirements development phase. We define pat-
tern complexity as a function that maps a pattern to the least expressive logic
∈ {LTL, CTL, TCTL} in which it can be expressed. The result of the mapping
is depicted in Figure 5.

TCTL Patterns

minDurationPattern,
maxDurationPattern,

boundedRecurrencePattern,
boundedResponsePattern,
boundedInvariancePattern,

possibleBndRespPattern,
possibleBndInvPattern

CTL Patterns

possibilityPattern

LTL Patterns

absencePattern
universalityPattern,
existencePattern,
boundedExistencePattern,
precedencePattern,
precedenceChainPattern1-2
precedenceChainPattern2-1,
responsePattern,
responseChainPattern1-2,
responseChainPattern2-1,
constrainedChainPattern1-2

Fig. 5. The patterns are classified according to the least expressive logic they
can be expressed in. The extended patterns are depicted in italic font.

Note that all LTL Patterns can be expressed in CTL as well, and both CTL
and LTL Patterns can be also expressed in TCTL. Generally, LTL is no subset
of CTL. However, in this case all patterns that can be expressed in LTL can be
expressed in CTL as well. We counted for every set of requirements R1, ..., R5

the number of LTL, CTL and TCTL Patterns.

As visible in Figure 6, TCTL Patterns were needed in every project. Only in
the set of requirements of the earliest development phase the number of TCTL
Patterns was negligible. This indicates that for the specification of the whole
system functionality the need for TCTL Patterns is inevitable. However, it might
be the case that individual components of the system could be solely expressed
in less complex patterns. Further investigations are needed to prove or refute
that thesis.

12
Patternkosten im Vergleich zu Application domain

0

20

40

60

80

100

120

powertrain
controller

(R4)

HMI (R1) error
handler

(R2)

oxygen
sensor
(R3)

Engine
controller

(R5)

TCTL Patterns
CTL Patterns
LTL Patterns

Fig. 6. TCTL-Patterns were needed in every project.

5 Threats to validity

In this section, we analyze threats to validity defined in Neuendorf [25], Krip-
pendorff [26], and Wohlin [27].

5.1 External validity

Sampling validity [25] This threat arises if the sample is not representative
for the requirements. In order to minimize this threat we used the selection
procedure described in Section 3.2, thus getting representative requirements of
every application domain. A limitation of the case study is that we only used
requirements of BOSCH projects. Thus we cannot extend our results to the
whole automotive domain but only for BOSCH’s automotive domain.

Interaction of selection and treatment [27] This threat arises if the requirements
engineer in this study (see Section 3.3) is not representative for BOSCH require-
ments engineers. However, the reliability analysis in Section 5.4 suggests that
the application of the patterns is sufficiently independent of the evaluator.

5.2 Internal validity

Selection [27] This threat arises due to natural variation in human performance.
The requirements engineer in this study (see Section 3.3) could have been espe-
cially good in formalization. The reliability analysis in Section 5.4 suggests that
the application of the patterns is sufficiently independent of the evaluator. Thus
variation in human performance is probably not an issue.

5.3 Construct validity

Experimenter expectancies [27] Expectations of an outcome may inadvertently
cause the evaluators to view data in a different way. However, the evaluators

13

have no benefit from a good or bad outcome for the applicability of the SPS as
they did not invent it. Thus, such psychological effects probably did not affect
the evaluators.

Semantic validity [26] This threat arises if the analytical categories of texts do
not correspond to the meaning these texts have for particular readers. In the case
study the categories are clearly defined in Section 3.3 and through the patterns
in the SPS [1]. However, when reformulating an informal requirement in SPS
there are several possibilities to instantiate a pattern with a phenomenon that
shall correspond to the description in the text. Thus, in the formalization the
requirements engineer might invent phenomena without clearly defining their
meaning. Discussion with experts showed that a data dictionary is a potential
candidate to minimize this threat.

Face validity [25] Face validity is the extent to which a measure addresses the
desired concept, i.e. the question whether it measures what it is supposed to
measure. In order to ensure face validity we discussed with experts, without
mention of the case study, whether the instantiated patterns are a good repre-
sentation of their concept of behavioral requirements. The discussion indicated
that the patterns seem to capture typical behavioral requirements.

5.4 Conclusion validity

Intercoder reliability [25] Unreliable coding limits the chance to make valid
conclusions based on the results. In order to minimize this threat, especially
for evaluators with varying backgrounds, we asked a requirements engineer with
high experience in the application domain as well as an individual with low
experience in the application domain and external to the project to code a set
of 30 requirements. The requirements were randomly chosen out of the sample
defined in Section 3.2. In order to minimize the threat of different interpretations
of the phenomena we gave both evaluators a data dictionary. The results yielded
a reliability of 0.86/0.86 according to Cohen’s Kappa/Scott’s pi. In consequence
the measure seems to be very reliable.

Even though the reliability is good we were interested in the reasons for dif-
ferent codings. We identified that the requirements engineer tended to use his
domain knowledge when formalizing the requirements. E.g, consider the follow-
ing informal requirement: “If the locally measured voltage is not available, the
voltage value as received from the bus shall be used.”. Using the phenomena local-
VoltageNotAvailable, busVoltage and internalVoltage with their obvious mean-
ings, the evaluator with low experience in the application domain expressed the
requirement as following “Globally, it is always the case that if localVoltageNo-
tAvailable holds, then internalVoltage == busVoltage holds as well”. However,
the requirements engineer specified instead “Globally, it is always the case that
if localVoltageNotAvailable & errorGetsActive & ¬ busOff holds, then error-
Voltage == busVoltage holds as well”. The engineer used the additional system
knowledge, that (first) the locally measured voltage is only needed to be stored

14

if an error appears, and (secondly) that if the bus is off, then this requirement
does not apply.

Thus, differing knowledge of the system context might lead to unreliable
results. We believe that this threat can be further minimized if the coders discuss
their interpretation of the informal requirements prior to the formalization.

6 Conclusion

This case study investigates the question whether in practice the SPS suffices to
express automotive behavioral requirements. Based on the results of Section 4.1
we think that at least for automotive requirements of BOSCH this question can
be answered with yes.

The belief of Dwyer et al is that some few patterns suffice to express the ma-
jority of the properties of a system. This is only a belief and cannot be proven.
Nevertheless, we think that Dwyer et als’, Konrad’s and our case study confirm
that belief: in every case study the majority of requirements could be reformu-
lated in the SPS. Furthermore, the distribution of the patterns indicates the
same: some few patterns are extensively used whereas a lot of patterns are only
sparsely used. Thus, it seems that in practice some few patterns suffice to express
automotive behavioral requirements of BOSCH. However, further studies with
requirements of other automotive suppliers are needed to refute or strengthen
that belief for the whole automotive domain.

Furthermore the case study indicates that for BOSCH the SPS may be even
reduced, as six patterns were not needed. It might be beneficent to investigate
whether developers can apply such a less complex SPS even faster.

Moreover the case study shows that the SPS can be easily adapted to a
certain application domain. The adaptation to the BOSCH automotive domain
required the addition of three further patterns to the SPS and their translation to
the logical formalisms. This effort stays reasonable as only few further patterns
are needed. Last, regarding the pattern complexity, it seems that on system level
there are always requirements that can be solely expressed in TCTL Patterns. It
would be interesting to investigate whether this is also true on component level.

Concluding, the results indicate that it will be worth developing tool support
to allow the next stage of evaluation. In the next stage it should be evaluated
whether in practice automotive requirements engineers accept the strictures of
SPS and how strong they rate the benefit of formal reasoning.

References

1. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE ’05: Proc.
27th Int. Conf. Softw. Eng., New York, NY, USA, ACM (2005) 372–381

2. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer
science. Volume B. Elsevier Science Publishers, Amsterdam (1990) 995–1072

3. Ramakrishna, Y.S., Melliar-Smith, P.M., Moser, L.E., Dillon, L.K., Kutty, G.:
Interval logics and their decision procedures. TCS 170(1-2) (1996) 1 – 46

15

4. Alur, R.: Techniques for automatic verification of real-time systems. PhD thesis,
Stanford University, Stanford, CA, USA (1992)

5. Moser, L.E., Ramakrishna, Y.S., Kutty, G., Melliar-Smith, P.M., Dillon, L.K.: A
graphical environment for the design of concurrent real-time systems. ACM Trans.
Softw. Eng. Methodol. 6(1) (1997) 31–79

6. Davis, A.M.: Software requirements: objects, functions, and states. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1993)

7. Heumesser, N., Houdek, F.: Experiences in managing an automotive requirements
engineering process. In: RE, IEEE Computer Society (2004) 322–327

8. Walia, G.S., Carver, J.C.: A systematic literature review to identify and classify
software requirement errors. Inf. Softw. Technol. 51(7) (2009) 1087–1109

9. Dahlstedt, A.G., Persson, A.: Requirements interdependencies - moulding the state
of research into a research agenda. In: REFSQ. (2003) 71–80

10. Heimdahl, M.P.E., Leveson, N.G.: Completeness and consistency analysis of state-
based requirements. In: IEEE Trans. on SW Engineering. (1995) 3–14

11. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Transactions on Software Engineering and
Methodology 5(3) (1996) 231–261

12. Yu, L., Su, S., Luo, S., Su, Y.: Completeness and consistency analysis on require-
ments of distributed event-driven systems. In: TASE, Washington (2008) 241–244

13. ISO26262: Road vehicles - Functional safety, Part 8, Baseline 17. (2010)
14. Hall, A.: Realising the benefits of formal methods. Journal of universal computer

science (J.UCS) 13(5) (may 2007) 669–678
15. Abrial, J.R.: Formal methods in industry: achievements, problems, future. In:

ICSE, New York, ACM (2006) 761–768
16. Kuhn, T.: Acerules: Executing rules in controlled natural language. In: Int. Conf.

on Web Reasoning and Rule Systems, Springer (2007)
17. Han, B., Gates, D., Levin, L.: From language to time: A temporal expression

anchorer. TIME (June 2006) 196–203
18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: ICSE, New York, ACM (1999) 411–420
19. Konrad, S.: Model-driven Development and Analysis of High Assurance Systems.

PhD thesis, Michigan State University, East Lansing, MI (October 2006)
20. Grunske, L.: Specification patterns for probabilistic quality properties. In: ICSE,

New York, ACM (2008) 31–40
21. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User guidance for creating precise

and accessible property specifications. In: FSE, New York, ACM (2006) 208–218
22. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-

dations, Principles and Techniques. Springer-Verlag, USA (2005)
23. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. (2004) 200–236
24. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV: An OpenSource Tool for Symbolic Model
Checking. In: CAV. Volume 2404 of LNCS., Copenhagen, Springer (July 2002)

25. Neuendorf, K.A.: Content Analysis Guidebook. Sage Publications (2002)
26. Krippendorff, K.H.: Content Analysis: An Introduction to Its Methodology. 2nd

edn. Sage Publications, Inc (2003)
27. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-

imentation in software engineering: an introduction. Kluwer Academic Publishers,
Norwell, USA (2000)

	Applying Restricted English Grammar on Automotive Requirements - Does It Work? A Case Study
	Amalinda Post, Andreas Podelski

