Beyond Region Graphs:
Symbolic Forward Analysis of Timed Automata

Supratik Mukhopadhyay and Andreas Podelski

Max-Planck-Institut fiir Informatik
Im Stadtwald, 66123 Saarbriicken, Germany
{supratik|podelski}Ompi-sb.mpg.de

Abstract. Theoretical investigations of infinite-state systems have so
far concentrated on decidability results; in the case of timed automata
these results are based on region graphs. We investigate the specific
procedure that is used practically in order to decide verification prob-
lems, namely symbolic forward analysis. This procedure is possibly non-
terminating. We present basic concepts and properties that are useful for
reasoning about sufficient termination conditions, and then derive some
conditions. The central notions here are constraint transformers asso-
ciated with sequences of automaton edges and zone trees labeled with
successor constraints.

1 Introduction

A timed automaton [AD94] models a system whose transitions between finitely
many control locations depend on the values of clocks. The clocks advance con-
tinuously over time; they can individually be reset to the value 0. Since the
clocks take values over reals, the state space of a timed automaton is infinite.

The theoretical and the practical investigations on timed automata are re-
cent but already quite extensive (see e.g. [AD94,HKPV95,LPY95,Bal96,DT98]).
Many decidability results are obtained by designing algorithms on the region
graph, which is a finite quotient of the infinite state transition graph [AD94].
Practical experiments showing the feasibility of model checking for timed au-
tomata, however, employ symbolic forward analysis. We do not know of any
practical tool that constructs the region graph. Instead, symbolic model check-
ing is extended directly from the finite to the infinite case; logical formulas over
reals are used to ‘symbolically’ represent infinite sets of tuples of clock values
and are manipulated by applying the same logical operations that are applied
to Boolean formulas in the finite state case.

If model checking is based on backward analysis (where one iteratively com-
putes sets of predecessor states), termination is guaranteed [HNSY94]. In com-
parison, symbolic forward analysis for timed automata has the theoretical disad-
vantage of possible non-termination. Practically, however, it has the advantage
that it is amenable to on-the-fly local model checking and to partial-order reduc-
tion techniques (see [HKQO98] for a discussion of forward vs. backward analysis).

In symbolic forward analysis applied to the timed automata arising in practi-
cal applications (see e.g. [LPY95]), the theoretical possibility of non-terminating
does not seem to play a role. Existing versions that exclude this possibility
(through built-in runtime checks [DT98] or through a static preprocessing
step [HKPV95]) are not used in practice.

This situation leads us to raising the question whether there exist ‘interesting’
sufficient conditions for the termination of symbolic model checking procedures
for timed automata based on forward analysis. Here, ‘interesting’ means applica-
ble to a large class of cases in practical applications. The existence of a practically
relevant class of infinite-state systems for which the practically employed pro-
cedure is actually an algorithm would be a theoretically satisfying explanation
of the success of the ongoing practice of using this procedure, and it may guide
us in designing practically successful verification procedures for other classes of
infinite-state systems.

As a first step towards answering the question that we are raising, we build
a kind of ‘toolbox’ consisting of basic concepts and properties that are useful
for reasoning about sufficient termination conditions. The central notions here
are constraint transformers associated with sequences of automaton edges and
zone trees labeled with successor constraints. The constraint transformer asso-

ciated with the sequences of edges ey,...,e, of the timed automaton assigns
a constraint ¢ another constraint that ‘symbolically’ represents the set of the
successor states along the edges ej,...,e, of the states in the set represented

by . We prove properties for constraint transformers associated with edge se-
quences of a certain form; these properties are useful in termination proofs as we
then show. The zone tree is a vehicle that can be used to investigate sufficient
conditions for termination without having to go into the algorithmic details of
symbolic forward analysis procedures. It captures the fact that the constraints
enumerated in a symbolic forward analysis must respect a certain tree order.
We show how the zone tree can characterize termination of (various versions
of) symbolic forward analysis. A combinatorial reasoning is then used to derive
sufficient termination conditions for symbolic forward analysis. We prove that
symbolic forward analysis terminates for three classes of timed automata. These
classes are not relevant practically; the goal is merely to demonstrate how the
presented concepts and properties of the successor constraint function and of
the zone tree can be employed to prove termination. Termination proofs can be
quite tedious, as the third case shows; the proof here distinguishes many cases.

2 The Constraint Transformer ¢ — [w](y)

A timed automaton U can, for the purpose of reachability analysis, be defined
as a set £ of guarded commmands e (called edges) of the form below. Here L is
a variable ranging over the finite set of locations, and = (z1,...,z,) are the
variables standing for the clocks and ranging over nonnegative real numbers. As
usual, the primed version of a variable stands for its value after the transition.

The ‘time delay’ variable z ranges over nonnegative real numbers.
e = L=U(Av(z)|L =0 Na(z,z,2).

The guard formula 7.(xz) over the variables & is built up from conjuncts of
the form z; ~ k where z; is a clock variable, ~ is a comparison operator (i.e.,
~€ {=,<,<,>,>}) and k is a natural number.

The action formula a.(x, z’, 2) of e is defined by a subset Reset, of {1,...,n}
(denoting the clocks that are reset); it is of the form

ae(z,x’,2) = /\ Ti=2A /\ T, =z + 2.
i€Reset, iZReset,

We write ¢, for the logical formula corresponding to e (with the free variables «
and z’; we replace the guard symbol | with conjunction).

Ye(x, ') = L=t Av(x) AL =0 ATz a.(z,z’,2)

The states of U (called positions) are tuples of the form (¢, v) consisting of values
for the location and for each clock. The position (¢, v) can make a time transition
to any position (¢,v + §) where § > 0 is a real number.

The position (£, v) can make an edge transition (followed by a time transition)
to the position (¢, v’) using the edge e if the values ¢ for L, v for @, ¢' for L'
and v’ for x’ define a solution for 1.. (An edge transition by itself is defined if
we replace the variable z in the formula for a by the constant 0.)

We use constraints ¢ in order to represent certain sets of positions (called
zones). A constraint is a conjunction of the equality L = ¢ with a conjunction
of formulas of the form z; — z; ~ ¢ or &; ~ ¢ where c is an integer (i.e. with
a zone constraint as used in [DT98]). We identify solutions of constraints with
positions (£, v) of the timed automaton.

We single out the initial constraint ©° that denotes the time successors of
the initial position (¢°,0).

0 — 7 _ 40 _ _
o = L=0x1 >0, =21,...,Lp, =T

A constraint ¢ is called time-closed if its set of solutions is closed under time
transitions. Formally, () is equivalent to (3z3z(p Az =21 + 2 A ... Az}, =
zn+2))[x/2’]. For example, the initial constraint is time-closed. In the following,
we will be interested only in time-closed constraints.

In the definition below, ¢'[x’/z] denotes the constraint obtained from ¢’ by
a-renaming (replace each z by z;).

We write e;..... em for the word w obtained by concatenating the ‘letters’
€1,--.,6en; thus, w is a word over the set of edges &, i.e. w € £*.

Definition 1 (Constraint Transformer [w]). The constraint transformer
wrt. to an edge e is the ‘successor constraint function’ [w] that assigns a con-
straint @ the constraint

[el(p) = Gz(p A¢e))[z’/x].

The successor constraint function [w] wrt. a string w = e;..... em of length
m > 0 is the functional composition of the functions wrt. the edges e1, ..., em,

ie. [wl =[ei]o...o[em]-

Thus, [e](¢) = ¢ and [w.e](¢) = [e]([w](¢)). The solutions of [w](y) are
exactly the (“edge plus time”) successors of a solution of ¢ by taking the sequence
of transitions via the edges ey, ..., ey, (in that order).

We will next consider constraint transformers [w] for strings w of a certain
form. In the next definition, the terminology ‘a clock z; is queried in the edge €’
means that z; is a variable occurring in the guard formula 7 of e; ‘x; is reset
in e’ means that ¢ € Reset,.

Definition 2 (Stratified Strings). A string w = e;..... em of edges is called
stratified if

— each clock zq,...,x, is reset at least once in w, and
— if z; is reset in e; then x; is not queried in ey, ..., €;.

Proposition 1. The successor constraint function wrt. o stratified string w is
a constant function over satisfiable constraints (i.e. there exists a unique con-
straint ., such that [w](e) = @ for all satisfiable constraints).

Proof. We express the successor constraint of the constraint ¢ wrt. the stratified
string w = e; .. .e,, equivalently by

[w](p) = GxIzt... 3™ 13 .2 (P A1 Ao Ahy))[2/2™]

where 1)y, is the formula that we obtain by applying a-renaming to the (quantifier-
free) conjunction of the guard formula 7., () and the action formula a., (2, 2, 2)
for the edge ey; i.e.

Yr = 7ek($k_1)/\O‘Gk(wk_lva:kvzk)'

Thus, in the formula for e;, we rename the clock variable x; to xf‘l, its primed
version z} to z¥, and the ‘time delay’ variable z to z*.

We identify the variables z; (applying in ¢) with their “0-th renaming” z?
(appearing in 1);); accordingly we can write ° for the tuple of variables z.

We will transform 3zt ... 3™ 1 ()1 A. .. Ay, equivalently to a constraint 1)
containing only conjuncts of the form z* = z! + ... + 2™ and of the form
24+ ... 4+ 2™ ~ ¢ where [> 0; i.e. ¢ does not contain any of the variables
z; of ¢. Thus, we can move the quantifiers 3z inside; formally, Jz(p A ¢) is
equivalent to (Jzp) A ¢. Since ¢ is satisfiable, the conjunct 3z is equivalent
to true. Summarizing, [w](y) is equivalent to a formula that does not depend
on ¢, which is the statement to be shown.

The variable z¥ (the “k-th renaming of the i-th clock variable”) occurs in the

action formula of 1y, either in the form z¥ = 2* or in the form z¥ = xf_l + 2F,

and it occurs in the guard formula of 91, in the form z¥ ~ c.
If the i-th clock is not reset in the edges ey, ..., e;_1, then we replace the

conjunct z¥ = z¥ 1 + 2F by 2F = z; + 21 +... 2",

Otherwise, let [be the largest index of an edge e; with a reset of the i-th
clock. Then we replace =¥ = z¥™! 4 2% by 2 = 20 + ... 4 2%,

If k = m, the first case cannot arise due to the first condition on stratified
strings (the i-th clock must be reset at least once in the edges ey, ..., e,,). That
is, we replace zj* = af::.”fl +2z* always by a conjunct of the form z¥ = 2/ +.. . +2%.

If the conjunct =¥ ~ c appears in ¢y 1, then, by assumption on w (the second
condition for stratified strings), the i-th clock is reset in an edge e; where [< k.
Therefore, we can replace the conjunct z¥ ~ c by z; + ... + 2 ~ c.

Now, each variable z¥ (for 0 < k& < m) has exactly one occurrence, namely
in a conjunct C' of the form zF = z; + 2! +...2% or z¥ = 2! +...2". Hence, the
quantifier 3z¥ can be moved inside, before the conjunct C; the formula 3z% C
can be replaced by true.

After the above replacements, all conjuncts are of the form 2" = 2! +...+2z™
or of the form 2! 4+ ... 4+ 2™ ~ ¢; as explained above, this is sufficient to show

the statement. [

We say that an edge e is reset-free if Reset. = 0), i.e., its action is of the form
ae = A=y, T; = Ti- A string w of edges is reset-free if all its edges are.

Proposition 2. If the string w is reset-free, and the successor constraint of a
time-closed constraint of the form L = £ A ¢ is of the form L = €' A ', then ¢

entails ¢, formally ¢' = .

Proof. 1t is sufficient to show the statement for w consisting of only one reset-free
edge e. Since ¢ is time-closed, it is equivalent to (3xJz(p A &’ = x + 2))[z/2’].

Then [w](L = £Ap) is equivalent to (3... (L = ApAa’ =x+2' Aye(2')A
" = a’ +2')[x/x"]. This constraint is equivalent to L = ¢' A p(z) A y(x). This
shows the statement.

3 Zone Trees and Symbolic Forward Analysis

Definition 3 (Zone Tree). The zone tree of a timed automaton U is an infinite
tree with domain £* (i.e., the nodes are the strings over £) that labels the node w
by the constraint [w](¢°).

That is, the root € is labeled by the initial constraint ¢°. For each node w la-
beled ¢, and for each edge e € £ of the timed automaton, the successor node w.e
is labeled by the constraint [e](¢). Clearly, the (infinite) disjunction of all con-
straints labeling a node of the zone tree represents all reachable positions of U.

We are interested in the termination of various versions of symbolic forward
analysis of a timed automaton I/. All versions have in common that they traverse
(a finite prefix of) its zone tree, in a particular order. The following definition of
a non-deterministic procedure abstracts away from that specific order.

Definition 4 (Symbolic Forward Analysis). A symbolic forward analysis
of a timed automaton U is a procedure that enumerates constraints @; labeling
the nodes w; of the zone tree of U in a tree order such that the enumerated
constraints together represent all reachable positions. Formally,

— i = [wi](¢°) for 0 < i < B where the bound B is a natural number or w,
— if w; is a prefix of w; then i < j,
— the disjunction V0§i<B ©; 18 equivalent to the disjunction V0§i<w O

We assume that the constraint ¢; is computed by applying any of the known
quantifier elimination algorithms (see e.g. [MS98]) to a conjunction of con-
straints.

The number ¢ is a leaf of a symbolic forward analysis if the node w; is a leaf
of the tree formed by all the nodes w; where 0 < i < B.

We say that a symbolic forward analysis terminates if the bound B is finite
(i.e. not w). We define that symbolic forward analysis terminates with local sub-
sumption if for all its leafs ¢ there exists j < ¢ such that the constraint ¢; entails
the constraint ¢;. In contrast, it terminates with global subsumption if for all
its leafs ¢ there the constraint ¢; entails the disjunction of all constraints ¢;
where j < i. Model checking is more efficient with local subsumption than with
global subsumption, both practically and theoretically [DP99].

A depth-first symbolic forward analysis depends on a chosen order of edges.
Symbolic forward analysis terminates if and only if the depth-first symbolic
forward analysis of I/ terminates for every order chosen.

If the symbolic depth-first forward analysis of I/ terminates for at least one
order of edges, then also the breadth-first version terminates. The converse need
not be true, as the counterexample of Figure 1 shows.

Fig. 1. Example of a timed automaton for which the breadth-first version of symbolic
forward analysis terminates but the depth-first version does not, if the edge numbered 4
is followed before the edge numbered 7.

A path p in a zone tree is an infinite string over &, i.e., p € £¥; p contains
a node w if the string w is a prefix of p, written w < p. A node v precedes a
node w if v is a prefix of w, written v < p.

Definition 5 (Local finiteness). A path p of a zone tree is locally finite if and
only if it contains a node w labeled by a constraint that entails the constraint
labeling some node v preceding w (formally, there exist v and w such that v <
w < p and [w](¢°) E [v](¥°)). A zone tree is locally finite if every path is.

Proposition 3. Every symbolic forward analysis of a timed automaton U ter-
minates with local subsumption if and only if the zone tree of U is locally finite.

We will next investigate the special class of strings (that we call cycles) that
correspond to cycles in the control graph of the given timed automaton. Each
cycle in the graph-theoretic sense corresponds to finitely many cycles in the sense
defined here (as strings), depending on the entry location.

We say that an edge e of the form L =¢... [L' ={'... leads from the lo-
cation £ to the location ¢’. This terminology refects the fact that there exists
a directed edge from ¢ to ¢' labeled by the corresponding guarded command in
the control graph of the given timed automaton (we will not formally introduce
the control graph). Semantically, all transitions using such an edge go from a
position with the location £ to a position with the location ¢'. We canonically
extend the terminology ‘leads to’ from edges e to strings w of edges.

Definition 6 (Cycle). The string w = ej..... em of length m > 1 is a cycle if
the sequence of edges ey, ..., ey lead from a location ¢ to the same location /¢
such that there exists a sequence of edges that leads from the initial location ¢°
to £ whose last edge is different from e,,.

The last condition above expresses that £ is an entry point to the corresponding
cycle in the control graph of the given timed automaton U. The next notion is
used in effective sufficient termination conditions.

Definition 7 (Simple Cycle). 4 cyclew =e;..... em 18 called simple if it does
not contain a proper subcycle; formally, no string e;. ej where1<i<j<m
s also a cycle.

Proposition 4. A locally infinite path p € £ in the zone tree of the timed au-
tomaton U contains infinitely many occurrences of a simple cycle w; formally, p
is an element of the omega-language (£*.w).

Proof. Let p be a locally infinite path. Then there exists a location £ such that
infinitely many nodes on this path are labeled by ¢ (i.e. a constraint of the
form L = ¢ A The strings formed by the edges connecting two nodes labeled
by ¢ must all contain a simple cycle. Since the number of simple cycles is finite,
some simple cycles must be repeated infinitely often. [

A string is stratifiable if contains a stratified substring (a substring of a string
€1evnn. e is any string of the form e;.. ... e;j where 1 <1i < j <m).

Proposition 5. If every simple cycle of the timed automaton U is either reset-
free or stratifiable, the zone tree of U is locally finite.

true

Fig. 2. Example of a timed automaton showing that the property: “Every reachable
location is reachable through a simple path” does not entail termination of depth-first
symbolic forward analysis.

Proof. Follows from Propositions 1, 2 and 4. [

We apply the above results to obtain our first sufficient termination condition.

Theorem 1. Symbolic depth-first forward analysis of a timed automaton U ter-
minates if all simple cycles of U are either reset-free or stratifiable.

Proof. Follows from Propositions 3 and 5. [

4 RQ Automata

A timed automaton U is called RQ [LB93] if for each clock z, U contains exactly
one edge with a reset of z and exactly one edge with a query of z, and moreover,
for every transition sequence of U starting from the initial position, the sequence
of resets and queries of z is alternating, with a reset before the first query; here, U
refers to the timed automatonfrom I/ obtained by replacing all conjuncts = ~ ¢
in the guard formulas by the conjunct z > 0. We may require wlog. that no
edge e of a timed automaton U/ contains both a reset of a clock and a query of
a clock.

RQ automata have the following interesting property: if a location is reach-
able then it is reachable through a simple path, i.e. a sequence of edges that
form a string not containing a cycle [LB93]. So it is possible to derive special-
ized terminating graph algorithms for reachability for RQ automata. Moreover,
a cycle is traversable infinitely often if it is traversable once [LB93]. We will now
investigate how a generic model checker based on symbolic forward analysis be-
haves on RQ automata. We do not know whether we obtain termination for this
special case. We know that the distinguished property of RQ automata (that
reachability is equivalent to reachability through a simple path) by itself is not
sufficient for termination; Figure 2 gives a counterexample.

We will consider two special classes of RQ automata. The first one is char-
acterized by the cut condition.

A timed automaton U satisfies the cut condition if any two simple cycles w
and w' are either identical or their sets of edges are disjoint. Graph-theoretically,

every simple cycle in the control graph has exactly one entry point (which is then
called the ‘cut vertex’).

Theorem 2. Symbolic depth-first forward analysis of an RQ timed automaton U
terminates if it satisfies the cut condition and in every simple cycle, either all
or no clock is reset.

Proof. A simple cycle containing a reset for each clock in an RQ automaton sat-
isfying the cut condition is stratified. Hence, Theorem 1 yields the statement. |

The second class of RQ automata is obtained by restricting the number of clocks
to two.

Theorem 3. Symbolic depth-first forward analysis of an RQ timed automaton
with two clocks terminates.

Proof. We name the two clock variables of the automaton z and y. We note R,
the unique edge of the time automaton where z is reset, and @, the one where z is
queried; similarly we define R, and @,. By our non-proper restriction, R, # Q.
etc..

A segment S of a path p in a zone tree is a sequence of nodes ny,...,n,, of
the zone tree. The string w = e; ...e,,—1 labels the segment S if n,, is reached
from n; by following the edges e1,...,e,, in the zone tree.

For a proof by contradiction, assume that p is an infinite branch of the
zone tree. By Proposition 4, there exists a simple cycle w (leading, say, from
the location £ to ¢) that repeats infinitely often on p. We write Si, Sa, ... for
the segments that are labeled by w (in consecutive order). We write L; for the
segment between S; and S;;;. We note v* the string labeling the segment L;;
each string v’ is a cycle (leading also from the location £ to £). Below we will use
the terminology ‘w labels S;” and ‘v’ labels L;’.

We first distinguish between the cases whether the edge R, is part of the
string w (“R; € w”) or not.

Case 1 R, € w.

The edge @, must then also be an element of w (if the cycle w can be executed
once then even infinitely often [LB93]; if it contained R, but not @, then the
RQ condition would be violated).

Case 1.1 R, € w.

Again, we must have that @, € w.

We distinguish between the cases that the edge R, appears strictly before the
edge @, in the strings w (“R, < @,”) or after (“Q, < R,”).

Case 1.1.1 R, < Q.

Repeating the above reasoning for z instead of y, we distinguish between the
cases “R, < @,” and “Qy < R,”.

Case 1.1.1.1 R, < Q..

The two assumptions R, < @, and Ry < @, mean that the string w is stratified.
Hence, by Proposition 1, the successor constraint function wrt. w is constant.
Hence, the constraint labeling the last node of S> entails the constraint labeling

the last node of S;. Thus, the path p is locally finite, which achieves the contra-
diction.

Case 1.1.1.2 @, < R,.

We distinguish the cases whether the edge (), appears before the edge R, or
strictly after.

Case 1.1.1.2.1 @, < R,,.

Combining the assumptions leading to this case, namely R, € w (and hence also
Q. € w) and Ry € w (and hence also @, € w) and R, < @, and @, < R, and
Q. < Ry, we know that the string w is of the form w = w;.Q;.w> such that w,
contains R, and R,. Hence, the substring wy of w stratified. By Proposition 1,
the successor constraint function wrt. ws is constant, and hence also the one
wrt. w. As in the case above, we achieve a contradiction.

Case 1.1.1.2.2 R, < Q.

Again we combine the assumptions leading to this case: namely R,, Q,, Ry, Qy €
wand R, <@, and @, < R, and Ry < Q.

Ounly using that R, < R,, we know that the string w is of the form w =
wl.Ry.wg.Rz.wg.

One of the two cases, namely R, &€ L; or R, € L;, will hold for infinitely many
segments L;’s.

Case 1.1.1.2.2.1 R, ¢ L;.

Then also Q. ¢ L; (because of the RQ-condition and since L; is a cycle).

We then distinguish between the analogue cases for y instead of x.

Case 1.1.1.2.2.1.1 R, ¢ L;.

Again, then Q, & L;.

We are assuming that R,,Q., Ry, Qy & L; for infinitely many L;. We take two
such segments, calling them L and L'. Let v and v’ be the string labeling (the
edge linking the nodes in) L and L'. Then, the successor constraint functions
wrt. v and v’ are the identity.

We form the stratified strings V = Ry.ws.v.wi.R, and V' = Rp.ws.v".wi.Ry.
Since the successor constraint functions wrt. v and v' are the identity, the suc-
cessor constraint functions wrt. V' and V' are the same constant function. The
same reasoning as above leads to a contradiction.

Case 1.1.1.2.2.1.2 R, € L;.

Then also @, € L;. Because of the RQ-condition and since the edge R, pre-
cedes @, in S;, the first occurrence of R, precedes the first occurrence of @,
in L;. Hence, the strings v and v’ (defined as above, labeling of some L;’s) is of
the form v = v1.Ry.v3 or v = v{.R,,.v5 where vy, vs, v] and v5 do not contain any
reset or any query of a clock variable (and hence, yield the identity as the succes-
sor constraint function). We form the stratified substrings V = R;.ws.v1.R, and
V' = R;.w3.v1.Ry, which yield the same constant successor constraint function
for the same reason as above. Again, this leads to a contradiction.

Case 1.1.1.2.2.2 R, € L;.

Again, then @, € L;. Now we are assuming that R,,Q,, Ry, Q, € L; for in-
finitely many L;.

As in Case 1.1.1.2.2.1.2, the first occurrence of R, must precede the first occur-

rence of @, in L;.

Assume that there is a reset of = in L; before the first reset of y. We form the
string R,.ws.v1, R, where w = wi.R,.wy is such that ws does not contain any
reset (by the assumptions for the cases 1.1.1.2 and 1.1.1.2.2) and vt = v1.Ry.09
(the string labeling L;) is such that v; does not contain any reset. Following
the lines of the proof for Proposition 2 one can show that for any constraint ¢,
[Ry-wa.v1.R;](p) entails [R;](p). This is a contradiction (to the fact that the
path p is locally infinite).

Assume that there is no reset of z in L; before the first reset of y. Then the
string formed by the edges leading from the reset of in \S; to the first reset of y
in L; is stratified. We can then apply the same reasoning as in Case 1.1.1.2.1 to
derive a contradiction.

Case 1.1.2 Q, < R,,.

Thus now R, € w (and hence @, € w), R, € w (and hence @, € w) and
@y < R,. Now we consider the following subcases of this case.

Case 1.1.2.1 R, < Q,

This case is symmetric to Case 1.1.1.2.1 where R;,R, € w, Q, < R, and
Ry, < Qy.

Case 1.1.2.2 @, < R,.

The assumption of the case is that the reset occurs after the query for both
clocks. Due to the RQ condition, there cannot be any query between the two
resets. Therefore, R;.w1.R,, (or, symmetrically, R,.w1.R;) forms a stratified sub-
string of w. As before, we obtain a contradiction.

We refer to the full version of this paper [MP99] for the remaining cases. [

5 Future Work

The presented work targets theoretical investigations of timed automata not at
the verification problem itself but, instead, at the termination behavior of the
procedure solving it in practice, namely symbolic forward analysis. This work is a
potential starting point for deriving interesting sufficient termination conditions.
There are, however, other open questions along these lines.

Our setup may also be used to derive necessary termination conditions. These
are useful obviously in the cases when their test is negative. Another question is
whether there exist decidable necessary and sufficient conditions.

We may also consider logical equivalence instead of local subsumption for a
practically more efficient, but theoretically weaker fixpoint test (used in tools
such as Uppaal [LPY95]). We observe that Proposition 1 is still directly applica-
ble in the new context, but Proposition 2 is not. The comparison of the different
fixpoint tests (equivalence, local and global subsumption) is an interesting sub-
ject of research.

We may be able to derive natural and less restrictive sufficient termination
conditions when we consider the enhancement of symbolic forward analysis with
techniques from [Boi98] to compute the effect of loops, i.e. essentially the con-
straint transformer [w*] for simple cycles w.

The constraint transformers [w] form a ‘symbolic version’ of the syntactic
monoid [Eil76] for timed automata. This notion may be of intrinsic interest and
deserve further study.

Acknowledgement. We thank Tom Henzinger and Jean-Francois Raskin for
discussions.

References

[AD94]

[Bal96]

[Boi98]

[DPYY]

[DT98]

[Eil76]

R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183-236, 1994.

F. Balarin. Approximate reachability analysis of timed automata. In Pro-
ceedings of 17th IEEE Real-Time Systems Symposium, pages 52-61. IEEE
Computer Society Press, 1996.

B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, Université de Liege, 1998.

G. Delzanno and A. Podelski. Model checking in CLP. In Rance Cleaveland,
editor, Proceedings of TACAS’99, the Second International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume
1579 of Springer LNCS. Springer-Verlag, 1999.

C. Daws and S. Tripakis. Model checking of real-time reachability properties
using abstractions. In B. Steffen, editor, Proceedings of the 4th International
Conference on Tools and Algorithms for the Construction of Systems, LNCS
1384, pages 313-329. Springer-Verlag, 1998.

S. Eilenberg. Automata, Languages and Machines, volume B. Academic
Press, 1976.

[HKPV95] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable

[HKQ98]

[HNSY94]

[LB93]

[LPY95]

[MP99]

[MS98]

about hybrid automata? In Proceedings of the 27th Annual Symposium on
Theory of Computing, pages 373-382. ACM Press, 1995.

T. A. Henzinger, O. Kupferman, and S. Qadeer. From pre-historic to post-
modern symbolic model checking. In Proceedings of the International Con-
ference on Computer-Aided Verification, pages 195-206. Springer, 1998.
T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model
checking for real-time systems. Information and Computation, 111(2):193—
244, 1994. Special issue for LICS 92.

W. K. C. Lam and R. K. Brayton. Alternating RQ timed automata. In
C. Courcoubetis, editor, Proceedings of the 5th International Conference on
Computer-Aided Verification, LNCS 697, pages 236-252. Springer-Verlag,
1993.

K.G. Larsen, P. Pettersson, and W. Yi. Compositional and symbolic model
checking of real-time systems. In Proceedings of the 16th Annual Real-time
Systems Symposium, pages 76-87. IEEE Computer Society Press, 1995.

S. Mukhopadhyay and A. Podelski. Beyond region graphs: Symbolic
forward analysis of timed automata, 1999. Full Version. Available at
http://www.mpi-sb.mpg.de/~podelski.

K. Marriott and P. J. Stuckey. Programming with Constraints: An Intro-
duction. MIT Press, 1998.

