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Abstract. Broadcast protocols are systems composed of a finite but ar-
bitrarily large number of processes that communicate by rendezvous (two
processes exchange a message) or by broadcast (a process sends a mes-
sage to all other processes). The paper describes an optimized algorithm
for the automatic verification of safety properties in broadcast proto-
cols. The algorithm checks whether a property holds for any number of
processes.

1 Introduction

Broadcast protocols [EN98] are systems composed of a finite but arbitrarily large
number of processes that communicate by rendezvous (two processes exchange
a message) or by broadcast (a process sends a message to all other processes).
They are a natural model for problems involving readers and writers, such as
cache-coherence problems.

From a mathematical point of view, broadcast protocols can be regarded as
an extension of vector addition systems or Petri nets. Their operational seman-
tics is a transition system whose states are tuples of integers. Moves between
transitions are determined by a finite set of affine transformations with guards.
Vector Addition Systems correspond to the particular case in which the matrix
of the affine transformation is the identity matrix.

In [EFM99], Esparza, Finkel and Mayr show that the problem of deciding
whether a broadcast protocol satisfies a safety property can be reduced to a
special reachability problem, and using results by Abdulla et al., [ACJ*96] (see
also [FS98]), they prove that this problem is decidable. They propose an ab-
stract algorithm working on infinite sets of states. The algorithm starts with the
set of states to be reached, and repeatedly adds to it the set of its immediate
predecessors until a fixpoint is reached.

As shown e.g. in [Kin99,DP99], linear arithmetic constraints can be used to
finitely represent infinite sets of states in integer valued systems. Symbolic model
checking algorithms can be defined using the ‘satisfiability’ and the ‘entailment’
test to symbolically compute the transitive closure of the predecessor relation
defined over sets of states. However, in order to obtain an efficient algorithm it
is crucial to choose the right format for the constraints.



In this paper we discuss different classes of constraints, and propose linear
constraints with disjoint variables as a very suitable class for broadcast proto-
cols. We show that the operations of computing the immediate predecessors and
checking if the fixpoint has been reached can both be efficiently implemented.
We also propose a compact data structure for these constraints.

We have implemented a specialized checker based on our ideas, and used
it to define a symbolic model checking procedure for broadcast protocols. As
expected, the solver leads to a significant speed-up with respect to procedures
using general purpose constraint solvers (HyTech [HHW97] and Bultan, Gerber
and Pugh’s model checker based on the Omega library [BGP97]). We present
some experimental results for both broadcast protocols and weighted Petri Nets.

2 Broadcast Protocols: Syntax and Semantics

2.1 Syntax
A broadcast protocol is a triple (S, L, R) where

— S is a finite set of states.

— Lis aset of labels, composed of a set X} of local labels, two sets X, x {?} and
X x {1} of input and output rendez-vous labels, and two sets Xy x {??} and
Xy x {1} of input and output broadcast labels, where X}, X, Xy, are disjoint
finite sets. The elements of X = X, U X, U X} are called actions.

— RC SxL xS is aset of transitions satisfying the following property: for
every a € X, and every state s € S, there exists a state s’ € S such that

PRI Intuitively, this condition guarantees that a process is always willing
to receive a broadcasted message.

We denote (s,1,5) € R by s L . The letters a,b,c,... denote actions. Ren-
dezvous and broadcast labels like (a, ?) or (b,!!) are shortened to a? and b!l. We
restrict our attention to broadcast protocols satisfying the following additional
conditions: (i) for each state s and each broadcast label a?? there is exactly one

state s' such that s < s’ (determinism); (i) each label of the form a, a!, a?
and a!! appears in exactly one transition.
Consider the following example:

unlock??



The finite-state automata in the figure models the behaviour of a system of iden-
tical processes that race for using a shared resource. Initially, all processes are in
the state think. Before accessing its own critical section, a process broadcasts
the request lock!!. In reply to the broadcast (Lock??) the remaining processes
are forced to move to the state wait (an abstraction of a queue). After using the
resource, the process in the critical section broadcasts the message unlock!! in
order to restore the initial configuration. The key point here is that the descrip-
tion of the protocol is independent of the number of processes in the network.

2.2 Semantics

Let B = (S, L, R) be a broadcast protocol, and let S = {s1,...,s,}. A config-
uration is a vector ¢ = {ci1,...,cn) where ¢; denotes the number of processes in
state s; for ¢ : 1,...,n.

Moves between configurations are either local (a process moves in isolation
to a new state), rendezvous (two processes exchange a message and move to
new states), or broadcasts (a process sends a message to all other processes; all
processes move to new states). Formally, the possible moves are the smallest
subset of IN™ x X' x IN" satisfying the three conditions below, where u; denotes
the configuration such that u;(s;) = 1 and u;(s;) = 0 for j # 4, and where ¢ = ¢’
denotes (c,a,c’) € R.

—Ifs; > s;, then c 2 ¢ for every c, ¢’ such that c(s;) > land ¢/ = c—u;+uy.
Le. one process is removed from s;, and one process is added to s;.

S Ifs S s; and sy LI s;, then ¢ % ¢’ for every c, ¢’ such that c(s;) > 1,
c(sp)>landc’' =c—w; —up +uj +w.
Le. one process is removed from s; and s, and one process is added to s;
and s;.

— If s AN sj, then ¢ = ¢’ for every c, ¢’ such that c(s;) > 1 and ¢’ can be
computed from c in the following three steps:

Ci =C—1u; (1)

ca(sk) = Y cils) (2)
{sllsla—?";sk}

¢ =t 3)

Le. the sending process leaves s; (1), all other processes receive the broadcast
and move to their destinations (2), and the sending process reaches s; (3).

Thanks to the conditions (i) and (i¢) of Section 2.1, the configuration ¢’ is
completely determined by ¢ and the action a.

We denote by < the pointwise order between configurations, i.e. ¢ < ¢ if
and only if c(s;) < ¢/(s;) for every i : 1,...,n. A parameterized configuration is
a partial function p: S — IN. Loosely speaking, p(s) = L denotes that the num-
ber of processes on state s is arbitrary. Formally, a parameterised configuration
denotes a set of configurations, namely those extending p to a total function.



2.3 Checking safety properties

In this paper we study the reachability problem for broadcast protocols, defined
as follows:

Given a broadcast protocol B, a parameterized initial configuration pg
and a set of configurations C, can a configuration ¢ € C be reached from
one of the configurations of pg?

In [EFM99] this problem is shown to be decidable for upwards-closed sets C.!
A set C is upwards-closed if ¢ € C and ¢’ > ¢ implies ¢’ € C. The mutual exclu-
sion property of the example in the introduction can be checked by showing that
no configuration satisfying Use > 2 (an upwards-closed set) is reachable from an
initial configuration satisfying Wait = 0, Use = 0. It is shown in [EFM99] that
the model-checking problem for safety properties can be reduced to the reacha-
bility problem for upwards-closed sets. (Here we follow the automata-theoretic
approach to model-checking [VW86], in which a safety property is modelled as
a regular set of dangerous sequences of actions the protocol should not engage
in.)

The algorithm of [EFM99] for the reachability problem in the upwards-closed
case is an “instantiation” of a general backwards reachability algorithm presented
in [ACJ196] (see also [FS98]). Define the predecessor operator as follows:

pre(C) ={c|c -, ' € C}.

Le., pre takes a set of configurations Cy, and delivers its set of immediate pre-
decessors. The algorithm repeatedly applies the predecessor operator until a
fixpoint is reached, corresponding to the set of all predecessors of Cjy. If this set
contains some initial configurations, then Cj is reachable.

Proc Reach(Cy : upwards-closed set of configurations)

C = Cy;
repeat
old_C :=C;
C :=old_C U pre(old_C);
until C = old_C;
return C

The algorithm works because of the following properties: (¢) if C' is upwards-
closed, then so is pre(C); (ii) the set of minimal elements of an upwards-closed
set with respect to the pointwise order is finite (see also Section 4); (4ii) the
repeat loop terminates. To prove property (7), we observe that we can associate
to each label a € X' [EFM99):

— The set of configurations Occ, from which a can occur.
In the case of local moves and broadcasts there is a state s; such that Oce, =
{c | e(s;) > 1}. In the case of rendezvous there are states s;,s; such that
Occq = {c| c(s;) > 1 and c(s;) > 1}.

! On the other hand, the problem is undecidable for singleton sets!.



— An affine transformation Ta(x) = M, - x + b, such that if ¢ % ¢, then
c¢' = Ta(c).
M, is a matrix whose columns are unit vectors, and b is a vector of integers.
(Actually, the components of b belong to {—1,0, 1}, but our results can be
extended without changes to the case in which they are arbitrary integer
numbers. An example is discussed in Section 8.)

Tt follows that pre(C) can be computed by the equation

pre(C) = U (Oce, NTFH(CO)) 4)

a€X

Hence if C is upwards-closed then so is pre(C). Properties (i) and (i4¢) are an
immediate consequence of the well-known

Lemma 1 (Dickson’s Lemma). Let vq, Vs, ... be an infinite sequence of ele-
ments of IN*. There exists i < j such that v; < v; (pointwise order).

The only known upper-bound for the number of iterations until termination
is non-primitive recursive [McA84]. However, despite this result, the algorithm
can still be applied to small but interesting examples.

3 Symbolic Representation via Constraints

A linear arithmetic constraint (or constraint for short) is a (finite) first-order
formula ¢1 A...A@,. with free variables (implicitly existentially quantified), and
such that each ¢; is an atomic formula (constraint) built over the predicates
=,>,<,>,< and over arithmetic expressions (without multiplication between
variables) built over +, —, *,0, 1, etc.

The solutions (assignments of values to the free variables that make the
formula true) of a constraint ¢ over the domain D are denoted by [¢]p. In the
sequel we always take D = Z, and abbreviate [¢] 57 to [¢]. We often represent
the disjunction of constraints ¢y V ...V ¢, as the set {¢1,...,¢n}.

Constraints can be used to symbolically represent sets of configurations of a
broadcast protocol. Given a protocol with states {s1,...,sn}, let x =21,..., 2,
be a vector of variables, where z; is intended to stand for the number of processes
currently in state s;. We assume that variables range over positive values (i.e.,
each variable x; comes with an implicit constraint z; > 0). A configuration ¢ =
{e1,...,¢n) is simply represented as the constraint A}, z; = ¢;. A parametric
configuration p = (py,...,pn) is represented as the constraint A}, ¢; where: if
p; € IN then ¢; is the atomic constraint z; = ¢;, and if p; = L then ¢; is the
atomic constraint z; > 0.

As an example, the flow of processes caused by the lock broadcast in the
protocol of the introduction is described by the inequality below (where, for
clarity, we use Think, Wait, Use instead of x1, zs,z3 and we omit the equalities
of the form z} = ;).

Think > 1 A Think' = 0 A Wait' = Think + Wait — 1 A Use’ = Use + 1



Let C be a class of constraints denoting exactly the upwards-closed sets, i.e.,
if a set S is upwards-closed then there is a set of constraints ¢ C C such that
[®] = S, and viceversa. We can use any such class C to derive a symbolic version
Symb-Reache of the procedure Reach:

Proc Symb-Reach; (&P : set of constraints of C)
b := Py;
repeat
old_® := &;
@ :=old_® U prec(old_P);
until Entailc (P, old_®);
return &

where (a) C is closed under application of pre;., (b) [pre:(®)] = pre([®]), and
(c) Entail¢ (®,¥) = true if and only if [#] C [¥].

Condition (b) on pre. can be reformulated in syntactic terms. Let & be a set
of constraints, and for each action a let G, be a constraint such that [G,] = Occ,
(we call G, the guard of the action a). We have T, ([#]) = [#[x/Ta(x)]]- By
equation (4) we obtain

prec(®) = \/  GoAgx/Ta(x)] (5)
a€X,pcd
where = denotes logical equivalence of constraints.

In the next sections we investigate which classes of constraints are suitable
for Symb-Reach,. We consider only classes C denoting exactly the upwards-
closed sets. In this way, the termination of Symb-Reach, follows directly from
the termination of Reach, under the proviso that there exist procedures for
computing pre.(®) and for deciding Entail¢ (, ¥).

The suitability of a class C is measured with respect to the following param-
eters:

(1) The computational complexity of deciding Entail¢ (@, ¥).
(2) The size of the set pre.(®) as a function of the size of &.

A note about terminology. Given two sets of constraints ¢, ¥, we refer to the
containment problem as the decision problem Entail(®,¥) = true for two sets
of constraints @, ¥, whereas we refer to the entailment problem as the decision
problem Entail({¢}, {1}) = true for constraints ¢ and .

4 NA-constraints: No Addition

A NA-constraint is a conjunction of atomic constraints of the form z; > k, where
z; € {x1,...,2,} and k is a positive integer.

The class of NA-constraints denotes exactly the upwards closed sets. If @ is a
set of NA-constraints then [®] is clearly upwards-closed. For the other direction,
observe first that an upwards-closed set C' is completely characterised by its set of



minimal elements M, where minimality is taken with respect the pointwise order
<. More precisely, we have C' = Umenr Up(m), where Up(m) = {c | ¢ = m}.
The set M is finite by Dickson’s lemma, and Up(m) can be represented by the
constraint z; > m(s1) A ... Az, > m(s,). So the set C can be represented by
a set of NA-constraints.

4.1 Complexity of the containment problem in NA

The containment problem can be solved in polynomial time. In fact, the following
properties hold. Let &, ¥ be sets of NA-constraints. Then,

— & entails ¥ if and only if for every constraint ¢ € & there is a constraint
1 € ¥ such that ¢ entails 1.
— Niy @i > k; entails A\, z; > I; if and only if k; > I; for i : 1,...,m.

Thus, the worst-case complexity of the test ‘@ entails ¥’ is O(|®|*|¥|*n), where
n is the number of variables in @ and V.

4.2 Size of the set prena (®)

Let @ be a set of NA-constraints. By equation (5), prexa ($) must be equivalent
to theset \/ ¢ 5 5cg GaAG[x/Ta(x)]. Unfortunately, we cannot choose prena ()
equal to this set, because it may contain constraints of the form z;, +...4+z;, >
k. However, when evaluating variables on positive integers, a constraint of the
form z;, + ...+ z;,, >k is equivalent to the following set (disjunction) of NA-
constraints:
\/ .Z'iIZkl/\.../\.’L'imka,
(K1, km)

where each tuple of positive integers (k1, ..., kn,) represents an ordered partition
of k,i.e. k1 + ...+ k,, = k. (Moreover, it is easy to see that this is the smallest
representation of z;, +. . .4+x;,, > k with NA-constraints.) We define the operator
prena as the result of decomposing all constraints with additions of (5) into NA-
constraints.

The cardinality of prena (?) depends on the number of ordered partitions of
the constants appearing in constraints with additions. For z; +. ..+ z,, > k, this
number, denoted by p(m, k), is equal to the number of subsets of {1,2,...,k+
m — 1} containing m — 1 elements, i.e.,

p(m, k) = (k—;rfl—l) _ <k+rg—l)‘

If ¢ is the biggest constant occurring in constraints of @, and n, a are the
number of states and actions of the broadcast protocol, we get |prena(®)| €
O(|®| *a* p(n,c)). This makes NA-constraints inadequate for cases in which the
constants ¢ & n, initially or during the iteration of algorithm Symb-Reachy,. In

n

this case we get p(n,c) = jﬁ? which leads to an exponential blow-up.



4.3 Conclusion.

NA-constraints have an efficient entailment algorithm, but they are inadequate
as data structure for Symb-Reach. Whenever the constants in the constraints
reach values similar to the number of states, the number of constraints grows
exponentially.

The blow-up is due to the decomposition of constraints with additions into
NA-constraints. In the following section we investigate whether constraints with
additions are a better data structure.

5 AD-constraints: With Addition

An AD-constraint is a conjunction of atomic constraints z;, + ... + z;, > k
where z;,,...,z;  are distinct variables of {z1,...,z,}, and k is a positive in-
teger. A constraint in AD can be characterized as the system of inequalities
A -x > b where A is a 0-1 matrix.

It is easy to see that AD-constraints denote exactly the upwards-closed
sets. Since AD-constraints are equivalent to disjunctions of NA-constraints, they
only denote upwards-closed sets, and since they are more general than NA-
constraints, they denote them all.

5.1 Complexity of the containment problem in AD.

The following result shows that even the entailment test between two AD-
constraints is difficult to decide.

Proposition 1 (Entailment in AD is co-NP complete). Given two AD-
constraints ¢ and v, the problem ‘¢ entails v’ is co-NP complete.

Proof. By reduction from HITTING SET [GJ78]. An instance of HITTING SET
consists of a finite set S = {s1,..., s}, a finite family Sy, ..., S, of subsets of
S, and a constant k < n. The problem is to find 7' C S of cardinality at most &
that hits all the S;, i.e., such that S; NT # (.

Take a collection of variables X = {z1,...,2,}. Let ¢ be a conjunction of
atomic constraints ¢;, one for each set S;, given by: If S; = {s;,,...,si,, }, then
¢i=$i1 +...+.’L‘ini >l.Lety=o1+...+xz, > k+1.

If ¢ does not entail 1), then there is a valuation V: X — IV that satisfies ¢
but not . Let T be the set given by: s; € T if and only V(z;) > 0. Since V
satisfies ¢, T is a hitting set. Since V' does not satisfy 1, it contains at most &
elements.

If T is a hitting set with at most k£ elements, then the valuation V: X — IV
given by V(z;) =1 if s; € T, and 0 otherwise, satisfies ¢ but not .

This implies that entailment of AD-constraints is co-NP-hard. Completeness
follows by noting that the containment problem for sets of linear arithmetics
constraints is co-NP complete [Sri92]. ]

The following corollary immediately follows.



Corollary 1 (Containment in AD is co-NP complete). Given two sets of
AD-constraints & and ¥, the problem ‘D entails ¥’ is co-NP complete.

5.2 Size of the set preap(®)

We can define

prean(®) = \/ GaAg[x/Ta(x)]

a€EX,pEP

since the right hand side is a set of AD-constraints whenever & is. If a is the
number of actions of the broadcast protocol, then |preap(®)| € O(|P| * a).

5.3 Conclusion

AD-constraints are not a good data structure for Symb-Reach either, due to the
high computational cost of checking containment and entailment. This result
suggests to look for a class of constraints between NA and AD.

6 DV-constraints: With Distinct Variables

DV-constraints are AD-constraints of the form
i1+ ...+ T1in, >k A...A Tma1+ ...+ Tmn, > km,

where z; ; and z; j are distinct variables (DV) for all 4, j,', j'. In other words,
a DV-constraint can be represented as A - x > b where A is a 0-1 matrix with
unit vectors as columns.

Since DV-constraints are more general than NA-constraints, but a particular
case of AD-constraints, they denote exactly the upwards-closed sets.

6.1 Complexity of the containment problem in DV.

Entailment between sets of DV-constraints can still be very expensive, as shown
by the following result.

Proposition 2 (Containment in DV is co-NP complete). Given two sets
of DV-constraints & and ¥, the problem ‘D entails ¥’ is co-NP complete.

Proof. By reduction from INDEPENDENT SET [GJ78]. An instance of INDE-
PENDENT SET consists of a finite graph G = (V, E) and a constant k < |V].
The problem is to find I C V of cardinality at most k such that for every u,v € I
there is no edge between u and v.

Assume V = {v1,...,v,}. Take a collection of variables X = {z1,...,2,}.
The set ¢ contains a constraint z; < 1fori:1...n, and z; + z; < 1 for every
edge (v;,v;) € E. The set ¥ is the singleton {¢}, where ¢) = z1+...+z, > k+1.

If @ does not entail 9, then there is a valuation V: X — IN that satisfies ¢
but not 1. Let I be the set given by: s; € I if and only V(z;) > 0. Since V



satisfies @, I is an independent set. Since V' does not satisfy v, it contains at
most k elements.

If I is an independent set with at most k elements, then the valuation V: X —
IN given by V(z;) = 1 if s; € I, and 0 otherwise, satisfies ¢ but not ). O

However, and differently from the AD-case, checking entailment between two
AD-constraints can be done in polynomial time. Let Var(¢) denote the set of
free variables occurring in the constraint ¢, and let Cons(-y) denote the constant
occurring in the atomic constraint yv. We have the following result:

Proposition 3. Let ¢ and v be an arbitrary and an atomic DV-constraint,
respectively. Let A be the largest set of atomic constraints 0 in ¢ such that
Var(8) C Var(). Then, ¢ entails v if and only if Xsc A Cons() > Cons(y).

Proof. (=): Assume X5c 4 Cons(§) < Cons(y). Then, any valuation that assigns
Cons(0) to one variable in § and 0 to the others, and 0 to the remaining variables
of Var(v), satisfies ¢ but not +.

(«): Clearly ¢ entails A. Since ¢ is a DV-constraint, A entails the constraint
> zievar(s) Ti = ZseaCons(6). Since Var(s) C Var(y) and 3 5c 4 Cons(6) >
Cons(7), it also entails -, () i > Cons(y), which is the constraint y. O

For instance, we have that x; + x2 > a A x3 > b entails z1 + x2 + 23 + x4 > ¢ if
and only ifa+b > ec.

Since ¢ entails 1 if and only if ¢ entails each atomic constraint of 1, we get
the following

Corollary 2 (Entailment in DV is in P). Given two DV-constraints ¢ and
1, it can be checked in polynomial time whether ¢ entails 1.

Since the symbolic procedure for the reachability problem requires to check
containment, and not entailment, Corollary 2 does not seem to be of much use at
first sight. However, it allows to define a new reachability procedure by replacing
the Entail¢ (P, old &) test in Symb-Reach by the local containment test:

forall ¢ € & exists ) € old &

Clearly, the local containment test implies the containment test, and so the new
procedure is partially correct. The risk of weakening the fixpoint test is that we
may end up with a non-terminating algorithm. Fortunately, this turns out not
to be the case, as shown by the following proposition.

Proposition 4. The procedure Symb-Reachpy, terminates.

Proof. Let X be a set of variables. Given Y C X, let Y > k denote the constraint
Eziey Ti 2> k.

Let ¢ be a DV-constraint on X. We define the function fs which assigns to
Y C X a natural number as follows:

k if @ contains the constraint Y > k
0 otherwise

fo(Y) = {



Observe that f, is well defined because ¢ is a DV-constraint. Define the pointwise
ordering < on these functions, given by fs < fy if fo(Y) < fyu(Y) for every
subset Y of X. We prove that the local containment test corresponds exactly
to the pointwise ordering. L.e., for DV-constraints, ¢ entails 1 if and only if

fo(Y) > fu(Y).

— If f4 > fy, then ¢ entails 1.
Let Y > k be an atomic constraint of ¢. It follows from f4(Y) > fy(Y") that
¢ contains a constraint Y > k' such that &' > k. So every solution of ¢ is a
solution of Y > k.

— If ¢ entails 9, then fg > fy.
We prove the contraposition. Let Y C X such that f4(Y) < fy(Y). Then ¢
contains a constraint Y > k, and ¢ contains a constraint Y > k' such that
k' < k (if ¢ contains no constraint Y > k' we can assume that it contains
the constraint Y > 0). Since ¢ is a DV-constraint, it has a solution Xy such
that Yy = k'. So X does not satisfy Y > k, and so ¢ does not entail ).

Assume now that Symb-Reachpy, does not terminate. Then, the i-th iteration of
the repeat loop generates at least one constraint ¢; such that ¢; does not entail
¢; for any i > j. By the result above, the sequence of functions fy, satisfies
fo: A fg; for any i > j. This contradicts Dickson’s lemma (consider a function

fo as a vector of W2|X|). O

6.2 Size of the set prepy (®P)

If ¢ is a set of DV-constraints, then the set of constraints (5) may contain
AD-constraints with shared variables. However, each constraint in set (5) is
either a DV-constraint or has one of the two following forms: ¢ A z; > 1 or
¢ Azx; > 1Ax; > 1, where ¢ is a DV-constraint with at most one occurrence of
z; and z;. The constraints of the form z; > 1 correspond to the ‘guards’ of the
transition rules of the protocol. Thus, in order to maintain constraints in DV-
form, all we have to do is to merge the ‘guards’ and the remaining DV-constraint
(i-e. @). The operator prepy is defined as the result of applying the following
normalization: Given a constraint x > 1 A 4+ y; + ... +ym > k A ¢ where, by
hypothesis, z does not occur in ¢, replace it by the equivalent set of constraints

k—1

VE@>k—iAyi+...4ym>ing).
=0

In the worst case, it is necessary to reduce each new constraint with respect to
two guards, possibly generating O(k?) new constraints. Thus, if a is the number
of actions of the protocol and ¢ is the maximum constant occurring in the set @
of DV-constraints, we have |prepy(®)| € O(|®| x a * ¢?).



6.3 Conclusion

DV-constraints are a good compromise between AD and NA-constraints. The
application of prepy does not cause an exponential blow up as in the case of
NA-constraints. Furthermore, though the containment test is co-NP complete, it
can be relaxed to an entailment of low polynomial complexity, unlike the case of
AD-constraints. Moreover, as shown in the next section, sets of DV-constraints
can be compactly represented.

7 Efficient Representation of Sets of Constraints

DV-constraints can be manipulated using very efficient data-structures and op-
erations. We consider constraints over the variables {z1,...,2,}.

Each atomic DV-constraint X,,cyz; > k can be represented as a pair (b, k),
where b is a bit-vector, i.e., b = (b1,...,b,) and b; = 1 if z; € Y, and 0
otherwise. Thus, a DV-constraint can be represented as a set of pairs. Based
on this encoding, the decision procedure of Corollary 2 can be defined using
bitvector operations not and or. (1 denotes the bitvector containing only 1’s.)

Proc Entails(cstr!, estr2: codings of DV-constraints)

var s : integer
for all pairs (ba, ko) in cstr2
s:=0;
for all pairs (by, k) in cstr!
if (not(by) or by) =1 then s := s + k; endif
endfor
if s < ko then return false endif
endfor;
return true

8 Examples

In this section we present and discuss some experimental results. We first show
some examples of systems and properties that we were able to verify automat-
ically, and then we compare the execution times obtained by using different
constraint systems.

The protocol shown in Fig. 1 models a network of processes accessing two
shared files (called ‘@’ and ‘b’) under the last-in first-served policy. When a
process wants to write on one of the files all processes reading it are redirect
in the initial state I. In the state I a process must send a broadcast before
starting reading a file: in this case all writers are sent back to the state I (last-
in first-served). Note that processes operating on ‘b’ simply skip the broadcast
concerning operations on ‘a’ and vice versa. The protocol must ensure mutual
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Fig. 1. Last-in first-served access to two resources.

exclusion between readers and writers. The initial parameterized configuration
of the protocol is

1>1,8,=0,8=0E,=0,E,=0,M,=0,M,=0.

We prove that the unsafe configurations Sa > 1, Ma > 1 are not reachable.

In Fig. 2, we describe a central server model [ABC*95]. Processes in state
think represent thinking clients that submit jobs to the CPU. A number of
processes may accumulate in state waitcpy,. The first job requesting the CPU
finds it idle and starts using it. A job that completes its service proceeds to
a selection point where it continues requesting the I/O subsytem or leaves the
central system. No specific policy is specified for the queues of waiting jobs. In the
initial state of the broadcast protocol in Fig. 2 an arbitrary number of processes
are in state think, whereas one process is respectively in state idlecpu, idleqgisk,
Nno;nt- The protocol must ensure that only one job at a time can use the CPU and
the I/O subsytem. The flow of processes is represented by a collection of rules
over 17 variables (one for each state). The initial parameterized configuration of
the protocol is

Think > 1, Idlepy, = 1, Idlegisr, = 1, No-int =1,



CLIENT:
stopped

return?? stop??

\ release-c!
req wait use-c!
cpu usgm

release-d!

release-c!

use-d!

CPU:

return??

N

stop??
return??

release-c?

DISK: INTERRUPTS:
use-d? %
release-d?

Fig. 2. Central Server System.

with all other variables equal to zero. We prove that the unsafe configurations
Usecpy > 2 is not reachable.

Petri Nets can be seen as a special case of broadcast protocols where the con-
straints generated during the analysis are in NA-form. Consider the Petri net of
[Ter94] shown in Fig. 3, which describes a system for manufacturing tables (for
instance, transition ¢4 assembles a table by taking a board from the place pg
and four legs from the place ps). The constraint-based representation introduces
a variable for each place and for each transition. The variables corresponding
to transitions count the number of times a transition is fired during the execu-
tion. There is a rule for each transition. For instance, the rule corresponding to
transition t4 is

Ps>1, P; >4, Pé:PG—].,Pé:P5—4, P7I:P7+1,T42T4+1

In [Ter94] it is shown that an initial marking of this is deadlock-free (i.e.,
no sequence of transition occurrences can lead to a deadlock) if and only if it
enables a sequence of transition occurrences containing ¢; at least three times
and all other transitions at least twice. Based on this preliminary result we can
then compute all deadlock-free initial states. They are exactly the predecessors
states of the states

Tl237T2227T3Z27T4227T5225T622
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Fig. 3. Manufacturing System modeled as a Choice-free Petri Net.

intersected with the initial states of the system, i.e., those such that 7; = 0 for
all ¢ and P; = Ps = P; = 0. The result of the fixpoint computation is given by
the following set of constraints

P1210;P221;P322 P
P1267P2257P322 Pl
Pl 267P2217P3217P421

3 P >12,P; > 2
LP,>1 P>6,P>2

VIV

8, P
8, P;

(AVALY

8.1 Comparison of execution times

We have tested the previous examples on HyTech (polyhedra representation of
sets of configurations, full entailment test), on Bultan, Gerber and Pugh’s model
checker based on the Omega library for Presburger arithmetic [BGP97], and on
the specialized model checker we have introduced in the paper (DV-constraint
representation of sets of states, local entailment test). HyTech works on real
arithmetic, i.e., it employs efficient constraint solving for dealing with linear
constraints. The results are shown in the following table, where ‘Presb’ refers to
the model checker of [BGP97], and ‘BitVector’ to our checker.

Fig|Rules| Unsafe States [Steps|BitVector!|[HyTech!| Presb?
1] 21 Se>1,M, >1 2 <ls <1s|not tested
Usecpy > 2 7 <l1s 5.5s 40s

Usecpy > 3 10 <l1s 16s 290s

21 9 Usecpy > 4 13 <ls 40s 1558s
Usecpy > 8 25 15s 578s|not tested

Usecp, > 10 31 76s 1738s[not tested

3| 6 Ty >3, AT >2 24 1090s >6h| 19h50m

1 On a Sun Sparc 5.6. 2 On a Sun Ultra Sparc.



9 Related work

The first algorithm for testing safety properties of broadcast protocols was pro-
posed by Emerson and Namjoshi in [EN98]. Their approach is based on an ex-
tension of the Karp and Miller’s cover graph construction (used for Petri Nets)
[KM69]. In [EFM99], Esparza, Finkel and Mayr show that the algorithm may
not terminate and propose a backwards-reachability procedure. The correctness
of the procedure follows from general results on the decidability of infinite state
systems by Abdulla et al. [ACJT96]. In [Kin99], Kindahl uses constraints as
symbolic representation of upwards-closed sets for Petri Nets and lossy channel
systems, but does not discuss the issue of finding adequate classes of constraints.
Finally, Delzanno and Podelski [DP99], and Bérard and Fribourg [BF99] have
recently applied real-arithmetics to model checking of integer systems.

10 Conclusion

We have proposed linear constraints with disjoint variables as a good symbolic
representation for upwards-closed sets of configurations of broadcast protocols.
Experimental results shown that even a prototype implementation can beat tools
for more general constraints.

Acknowledgements We thank Tevfik Bultan for the experiments using his model
checker based on Presburger Arithmetics [BGP9T].
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