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1 Introduction

Automated verification methods can today be applied
to practical systems [McM93]. One reason for this suc-
cess is that implicit representations of finite sets of
states through Boolean formulas can be handled effi-
ciently via BDD’s [BCM*90]. The finiteness is an in-
herent restriction here. Many systems, however, operate
on data values from an infinite domain and are intrin-
sically infinite-state; i.e., one cannot produce a finite-
state model without abstracting away crucial properties.
There has been much recent effort in verifying such sys-
tems (see e.g. [ACJT96,BW98,BGP97,CJ98, HHWT97,
HPR97,LPY97,SKR98]). One important research goal
is to find appropriate data structures for implicit rep-
resentations of infinite sets of states, and design model
checking algorithms that perform well on practical ex-
amples.

It is obvious that the metaphor of constraints is use-
ful, if not unavoidable for the implicit representation of

sets of states (simply because constraints represent a re-
lation and states are tuples of values). The question is
whether and how the concepts and the systems for pro-
gramming over constraints as first-class data structures
(see e.g. [Pod94,Wal96]) can be used for the verification
of infinite-state systems. The work reported in this paper
investigates Constraint Logic Programming (see [JM94])
as a conceptual basis and as a practical implementation
platform for model checking.

We present a translation from concurrent systems
with infinite state spaces to CLP programs that pre-
serves the semantics in terms of transition sequences.
The formalism of ‘concurrent systems’ is a widely-used
guarded-command specification language with shared
variables promoted by Shankar [Sha93]. Using this trans-
lation, we exhibit the connection between states and
ground atoms, between sets of states and constrained
facts, between the pre-condition operator and the log-
ical consequence operator of CLP programs, and, finally,
between CTL properties (safety, liveness) and model-
theoretic or denotational program semantics. This con-
nection suggests a natural approach to model checking
for infinite-state systems using CLP: model checking as
as deduction of logical consequences of a CLP program.
In fact, the model of a CLP program can be character-
ized as the fixpoint of the logical consequence operator, a
specialization of modus ponens' to the fragment of Horn
clauses. This operator is made effective by using con-
straint facts to implicitly represent set of ground atoms.
Constraint facts can be manipulated symbolically via the
operations defined on constraints (e.g. variable elimina-
tion, satisfibility and entailment tests).

The use of deduction to compute temporal proper-
ties allows us to enhance the model checking procedure
by enriching the set of inference rules used to generate
logical consequences of a CLP program. Similar tech-
niques are used, e.g., in Constraint Databases [KKR95,

1 If A and A — B hold, then B holds.
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Fig. 1. A connection between two fields.

Rev93,RSS92] to improve the efficiency of bottom-up
query evaluation.

We explore the potential of this approach practically
by using one of the existing CLP systems with different
constraint domains as an implementation platform. We
have implemented an algorithm to generate models for
CLP programs using constraint solvers over reals and
Booleans. The implementation amounts to a simple and
direct form of meta-programming: the input is itself a
CLP program; constraints are syntactic objects that are
passed to and from the built-in constraint solver; the
fixpoint iteration is a source-to-source transformation for
CLP programs.

As practical examples, we focus on the verifica-
tion problem for systems with (unbounded) integer
values; see e.g. [BW94,BW98 Bul98, BGP97,BGP9I8,
Cer94,CJ98,FR96,SKR98]. The problem is undecid-
able for most classes of practical importance. Fol-
lowing [BW94,BW98|, we apply our possibly non-
terminating model checking procedure and we use ab-
stractions to enforce or (simply speed-up) termination
on practical examples.

As first abstraction, we consider the relaxation from
integers to reals of the operators used in the definition of
the model checking algorithms. We show that the relax-
ation is accurate for a wide class of integer systems (e.g.
integer vector systems, Petri Nets, integral relational au-
tomata, discrete timed systems). This abstraction is used
to make each step of the model checking procedure as ef-
ficient as possible.

In addition to the relaxation real-int, we present a
set of inference rules to accelerate the computation of
logical consequences of CLP programs. The rules are
given through an inference system specialized to CLP
programs with linear constraints. We show that the al-
gorithm resulting from enhancing the model checking
procedure (based on fixpoint computations) with the ap-
plication of the acceleration rules still yields a full test
for temporal properties. The correctness and accuracy of
the method is ensured by the soundness of the inference
rules. Given the rule-based nature of CLP programs, the
acceleration rules can be naturally accomodated in our
CLP implementation.

These abstractions allow us to solve the problems
taken into considerations at acceptaple cost. Further-
more, the experiments show that, perhaps surpris-
ingly, the powerful (triple-exponential time) decision
procedure for Presburger Arithmetic used in other ap-
proaches [BGP98,SKR98] for the same verification prob-
lems is not needed; instead, the (polynomial-time) con-

tl=0 or

t2=0

Fig. 2. Automata for the bakery algorithm.

sistency and entailment tests for linear arithmetic con-
straints (without disjunction) that are provided by CLP
systems are sufficient.

Plan of the paper. In Section 2, we will introduce the
formal setting of CLP (see also Appendix A), and the
translation of concurrent systems to CLP programs. In
Section 3, we will show how to express CTL proper-
ties in terms of CLP program semantics. In Section 4,
we will turn the theory into practice discussing a model
checking method. In Section 5, we will show how the
method can be implemented using the features of exist-
ing CLP systems. In Section 6, we will present the tech-
niques that can be used to analyze integer infinite-state
systems using efficient constraint solving. In Section 7,
we will present a number of case-studies. In Section 8,
we will discuss related work. And, finally, in Section 8,
we will conclude the paper with the future perspectives
of our work.

2 Translating Concurrent Systems into CLP

We take the bakery algorithm (see [BGP97] and Fig.
2) as an example of a concurrent program, using the
notation of [MP95]:

begin turn; :=0; turns:=0; P, || P end

where P; || P, is the parallel execution of the subpro-
grams P; and P», and P; is defined by:

repeat
think : turn; := turns + 1;
wait :  when turn; < turns or turns, =0 do
critical section;
use :
turny ;=0
forever
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and P, is defined symmetrically. The algorithm ensures
the mutual exclusion property (at most one of two pro-
cesses is in the critical section at every point of time).
The integer values of the two variables turn; and turns
in reachable states are unbounded; note that a process
can enter wait before the other one has reset its counter
to 0.

The concurrent program above can be directly en-
coded as the concurrent system S in Figure 3 follow-
ing the scheme in [Sha93]. Each process is associated
with a control variable ranging over the control locations
(i.e. program labels). The data variables correspond to
the program variables. The states of S are tuples of con-
trol and data values, e.g. (think, think,0, 3). The primed
version of a variable in an action stands for its successor
value. We omit conjuncts like p, = po expressing that
the value remains unchanged.

Following the scheme proposed in this paper, we trans-
late the concurrent system for the bakery algorithm into
the CLP program shown in Figure 2 (here, p is a dummy
predicate symbol, think,wait, and use are constants,
and variables are capitalized; note that we often sepa-
rate conjuncts by commas instead of using “A”).

If the reader is not familiar with CLP, the following in-
troduction together with Appendix A are all one needs
to know for this paper. A CLP program is simply a logi-
cal formula, namely a universally quantifed conjunction
of implications (like the one in Figure 2; the implications
are usually called clauses). Its first reading is the usual
first-order logic semantics. We give it a second reading
as a non-deterministic sequential program. The program
states are atoms, i.e., applications of the predicate p to
values such as p(think, think,0,3). The successor state
of a state s is any atom s’ such that the atom s is a
direct logical consequence of the atom s’ under the pro-
gram formula. This again is the case if and only if the
implication s < s’ is an instance of one of the implica-
tions.

For example, the state p(think,think,0,3) has as
a possible successor the state p(wait,think,4,3), since
p(think,think,0,3) <« p(wait,think,4,3) is an in-
stance of the first implication for p (instantiate the vari-
ables with P, = think, Turn; = 0, Turn} = 4 and
Turns = 3).

A sequence of atoms such that each atom is a di-
rect logical consequence of its successor in the sequence
(i.e., a transition sequence of program states) is called a
ground derivation of the CLP program.

In the following, we will always implicitly iden-
tify a state of a concurrent system S with the corre-
sponding atom of the CLP program Ps; for example,
(think,think,0,3) with p(think,think, 0, 3).

We observe that the transition sequences of the con-
current system S in Figure 3 are exactly the ground
derivations of the CLP program Ps in Figure 2. More-
over, the set of all predecessor states of a set of states
in § is the set of its direct logical consequences under

the CLP program Pgs. We will show that these facts are
generally true and use them to characterize CTL prop-
erties in terms of the denotational (fixpoint) semantics
associated with CLP programs.

We will now formalize the connection between concur-
rent systems and CLP programs. We assume that for
each variable z there exists another variable z’, the
primed version of z. We write x for the tuple of variables
(z1,...,25) and d for the tuple of values (dy,...,d,).
We denote validity of a first-order formula ¢ wrt. to a
structure D and an assignment a by D, a |= 9. As usual,
afx — d] denotes an assignment in which the variables
in x are mapped to the values in d. In the examples of
Section 7 formulas will be interpreted over the domains
of integers and reals. Note however that the following
presentation is given for any structure D.

A concurrent system (in the sense of [Sha93)) is a triple
(V,0,&) such that

— V is the tuple x of control and data variables,

— 0O is a formula over V called the initial condition,

— £ is a set of pairs (1, ¢) called events, where the en-
abling condition 1 is a formula over V' and the action
¢ is a formula of the form 2} =e; A ...z, = e, with
expressions e1,..., e, over V.

The primed variable z' appearing in an action is used to
represent the value of x after the execution of an event.
In the examples, we use the notation cond ¢ action ¢
for the event (¢, ¢) (omitting conjuncts of the form z' =

The semantics of the concurrent system S is defined
as a transition system whose states are tuples d of values
in D and the transition relation 7 is defined by

r = {{(d,d") | D,a[x+—d] =1,
D,ax—d,x' — d'] E ¢,
(¥, ) € €}

The pre-condition operator pres of the concurrent
system S is defined through the transition relation:
pres(S) = {d | exists d’ € S such that (d,d’) € 7}.

For the translation to CLP programs, we view the
formulas for the enabling condition and the action as
constraints over the structure D (see [JM94]). We intro-
duce p for a dummy predicate symbol with arity n, and
init for a predicate with arity 0. 2

Definition 1 (Translation of concurrent systems
to CLP programs). The concurrent program S
is encoded as the CLP program Ps given below, if
S =(V,0,&) and V is the tuple of variables x.

Ps ={p(x) « vAdADP(X)|[(¥,9) €} U
{init « O Ap(x)}

2 Note that e.g. p(think, Py, Turni,Turns) < ... in the nota-
tion used in examples is equivalent to p(P1, P2, Turni, Turna) +
P1 = think A ... in the notation used in formal statements.
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Control variables pi,p2 :

{think, wait, use}
Data variables turni,turns :

int.

Intial condition p; = think A ps = think A turn; = turnz =0

Events cond p; = think action p| = wait A turni=turns+1
cond p1 = wait A turny < turns action p'1 = use
cond p; = wait A turns =0 action p| = use
cond p; = use action p} = think A turny =0

symmetrically for Process 2

Fig. 3. Concurrent system S specifying the bakery algorithm

it < Turny = 0, Turns = 0, p(think, think, Turni, Turns) ,

p(think, Po, Turny, Turns) < Turni=Turns+1, p(wait, P>, Turny, Turns),
p(wait, Po, Turni, Turns) <« Turni < Turnz, p(use, P2, Turny, Turns),
p(wait, Po, Turni, Turns) < Turns =0, (use, P2, Turny, Turns),
p(use, P2, Turny, Turns) <+ Turn} =0, (think, Py, Turn}, Turns),

SR

. symmetrically for Process 2

Fig. 4. CLP program Ps for the concurrent system S in Figure 3.

The direct consequence operator Tp associated with a
CLP program P (see [JM94]) is a function defined as
follows: applied to a set S of atoms, it yields the set of
all atoms that are direct logical consequences of atoms
in S under the formula P. Formally,

Tp(S) = {p(d) | p(d) + p(d’) is an instance of
a clause in P, p(d') € S}.

We obtain a (ground) instance by replacing all variables
with values. In the next statement we make implicit use
of our convention of identifying states d and atoms p(d).

Theorem 1 (Adequacy of the translation S —
Ps).

(i) The state sequences of the transition system defined
by the concurrent system S are exactly the ground
derivations of the CLP program Psgs.

(ii) The pre-condition operator of S is the logical con-
sequence operator associated with Pg, formally:
pres = Tpg.

Proof. The clause p(x) + ¥ A ¢ A p(x’) of Ps corre-
sponds to the event (1, ¢). Its instances are of the form
p(d) + p(d') where D,afx — d,x’ — d'] E ¢ A ¢.
Thus, they correspond directly to the pairs (d,d’) of
the transition relation 7 restricted to the event (1, ¢).
To prove (i), we first show that state sequences corre-
spond to ground derivation by induction of the length
of a sequence. The base case follows by noting that the
intial states are instances of the body of the init-clause.
Let us assume now that the thesis holds for a state-
derivation dod; ...d;. If (d;,d;+1) € 7 there exists a

clause in the translation such that its set of instances
contains p(d;) < p(d;y1). Furthermore, by inductive
hypothesis, p(do)p(d1)...p(d;) is a ground derivation.
Thus, by applying a resolution step we obtain the new
sequence p(dg)p(dy)...p(d;)p(di+1). The converse can
be proved by induction on the length of a derivation.
Point (ii) follows directly by definition of pres and
Tp,. a

As an aside, if we translate S into the CLP program
P2 where

P2 ={px) AP AP = p(x') | (¥,¢) €E} U
{® = p(x)}

then the post-condition operator is the logical con-
sequence operator associated with Ps, formally:
posts = Tpp We thus obtain the characterization of the
set of reachable states as the least fixpoint of Tpgm.

3 Expressing CTL Properties in CLP

We will use the temporal connectives: EF (exists fi-
nally), EG (exists globally), AF (always finally), AG
(always globally) of CTL (Computation Tree Logic) to
express safety and liveness properties of transition sys-
tems. Following [Eme90], we identify a temporal prop-
erty with the set of states satisfying it.

In the following, the notion of constrained facts
will be important. A constrained fact is a clause
p(x) + ¢ whose body contains only a constraint c.
Note that an instance of a constrained fact is of the
form p(d) < true which is the same as the atom
p(d), ie. it is a state. Given a set of constrained
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facts F, we write [F]p for the set of instances of
clauses in F (also called the ‘meaning of F’ or the
‘set of states represented by F’). For example, the
meaning of the singleton F,,,; consisting of the fact
p(P1, Po, Turny, Turns) < Py =use, Py=use is the set of
states [Fut]p = {p(use,use,0,0), p(use, use, 1,0), .. .}.

The application of a CTL operator on a set of
constrained facts F' is defined in terms of the mean-
ing of F. For example, EF(F) is the set of all states
from which a state in [F|p is reachable. In our exam-
ples, we will use a more intuitive notation and write
e.g. EF(p1 = p2 = use) instead of EF (Fpyt).

As an example of a safety property, consider mu-
tual ezclusion for the concurrent system S in Figure 3
(“the two processes are never in the critical section at
the same time”), expressed by AG(— (p1 = p2 = use)).
Its complement is the set of states EF(p; = p2 = use).
As we can prove, this set is equal to the least fixpoint for
the program Ps & F),,; that we obtain from the union
of the CLP Program Ps in Figure 2 and the singleton
set of constrained facts F,,;. We can compute this fix-
point and show that it does not contain the initial state
(i.e. the atom init).

As an example of a liveness property, starvation
freedom for Process 1 (“each time Process 1 waits, it
will finally enter the critical section”) is expressed by
AG(p1 = wait — AF(p; = use)). Its complement is the
set of states FF(p1 = wait A EG(—p; = use)). The set
of states EG(— p1 = use) is equal to the greatest fixpoint
for the CLP program Pgs @ Fit4py in Figure 5. We obtain
Ps @ Fst4y from the CLP Program Pg by a transforma-
tion wrt. to the following set of two constrained facts:

Fstary = { p(P1, P2, Turny, Turnsy) < Py = think,
p(Py, P2, Turny, Turns) < P, = wait }.

The transformation amounts to ‘constrain’ all clauses
p(labely, -, _,_) + ... in Pg such that label; is ei-
ther wait or think (i.e., clauses of the form
p(use,_,_,_) + ... are removed).

To give an idea about the model checking method
that we will describe in the next section: in an interme-
diate step, the method computes a set F’ of constrained
facts such that the set of states [F']p is equal to the
greatest fixpoint for the CLP program Ps © F. The
method uses the set F' to form a third CLP program
Ps & F'. The least fixpoint for that program is equal to
EF(p1 = wait AN EG(—p; = use)). For more details, see
Corollary 1 below.

We will now formalize the general setting.

Definition 2. The CLP programs P @ F and P © F
are the following formulas, for a given CLP program P
and a set of constrained facts F'.

Po»F = PUF
PoF ={px)<caicApX)]|px)<c €F,
p(x) « c1 Ap(x') € P}.

Theorem 2 (CTL properties and CLP program
semantics). Let S be a concurrent system and let Pg
be the CLP program which results from applying the
translation of Def. 1 to S, then the following properties
holds for all sets of constrained facts F'.

EF(F) = 1fp(TrsaF)
EG(F) = gfp(Tpsor)

Proof. From the fixpoint characterizations of CTL prop-
erties (see [Eme90]) we know that EF(F) = uZ.F U
EX(Z) and EG(F) =vZ.FNEX(Z) where EX(Z) =
pres(Z). From Theorem 1, using the operators of Def.
2, the CLP programs Ps & F' and Ps @ F' are such that
Tpser(Z) = pres(Z)UF and Tpyor(Z) = pres(Z)NF.
As a consequence, we have that EF(F) = lfp(Tpser)
and EG(F) = gfp(Tpsor)- -

By duality, we have that AF(—F) is the comple-
ment of ¢fp(Tppr) and AG(—F) is the complement
of Ifp(Tpgr). We next single out two important CTL
properties that we have used in the examples in order
to express mutual exclusion and absence of individual
starvation, respectively.

Corollary 1 (Safety and Liveness).

(i) The concurrent system S satisfies the safety property
AG(—F) if and only if the atom ‘init’ is not in the
least fixpoint for the CLP program Ps & F'.

(ii) S satisfies the liveness property AG(F; — AF(— Fz))
if and only ‘init’ is not in the least fixpoint for the
CLP program Pg & (Fy A F'), where F' is a set of
constrained facts denoting the greatest fixpoint for
the CLP program Ps © F5.

For the constraints considered in the examples, the sets
of constrained facts are effectively closed under nega-
tion (denoting complement). Conjunction (denoting in-
tersection) can always be implemented as F A F' =
{p(x) « c1Nex | px) « c1 € F, px) « ca €
F', c¢1 A co is satisfiable in D}.

4 Defining a Model Checking Method

It is important to note that temporal properties are un-
decidable for the general class of concurrent systems that
we consider. Thus, the best we can hope for are ‘good’
semi-algorithms, in the sense of Wolper in [BW98]: “the
determining factor will be how often they succeed on the
instances for which verification is indeed needed” (which
is, in fact, similar to the situation for most decidable ver-
ification problems [BW98]).

A set F' of constrained facts is an implicit repre-
sentation of the (possibly infinite) set of states S if
S = [F]p. From now on, we always assume that F
itself is finite. We will replace the operator Tp over
sets of atoms (i.e., states) by the operator Sp over sets
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it < Turni = 0,Turns =0, p(think,think, Turni, Turns),

p(think, P2, Turni, Turnz) <+ Turni=Turns+1, p(wait, P2, Turn}, Turns),
p(wait, Pa, Turni, Turns) — Turny < Turna, p(use,Ps,Turni,Turns),
p(wait, Pa, Turni, Turns) +— Turns =0, p(use, Po, Turny, Turnsz),
p(wait, think, Turni, Turns) <+ Turny=Turni+1, p(wait, wait, Turni, Turny),
p(wait,wait, Turni, Turns) < Turns < Turni, p(wait,use, Turni,Turns),
p(wait, wait, Turni, Turns) <+ Turny =0, p(wait, use, Turny, Turnsz),
p(wait,use, Turni, Turns)  + Turny =0, p(wait, think, Turni, Turns),
p(think, think, Turni, Turns) < Turny=Turni+1, p(think, wait, Turny, Turns),
p(think, wait, Turny, Turny) < Turns < Turni, p(think,use,Turni,Turns),
p(think, wait, Turni, Turns) <+ Turni =0, p(think, use, Turni, Turns),
p(think,use, Turny, Turns) <+ Turny =0, p(think, think, Turn,, Turns)

Fig. 5. The CLP program Pg @ Fstqry for the concurrent system S in Figure 3.

of constrained facts, whose application Sp(F) is effec-
tively computable (see Appendix A). If the CLP pro-
grams P is an encoding of a concurrent system, we can
define Sp as follows (note that F' is closed under re-
naming of variables since clauses are implicitly univer-
sally quantified; i.e., if p(z1,...,2z,) < ¢ € F then also
p(zh,...,z,) < clz}/z1,..., 2 /z,] € F.)

Sp(F) = {p(x) <~ c1Aca | p(x) < c1 Ap(x') € P,
p(x') < ca EF,
c1 A ey is satisfiable in D}

If P contains also constrained facts p(x) < ¢, then these
are always contained in Sp(F).

The Sp operator has been introduced to study the
non-ground semantics of CLP programs in [GDL95],
where also its connection to the ground semantics is
investigated: the set of ground instances of a fixpoint
of the Sp operator is the corresponding fixpoint of
the Tp operator, formally {fp(Tp) = [Ifp(Sp)]p and
9fp(Tp) = [9fp(Sp)]p (see Appendix A). Thus, Theo-
rem 2 leads to the characterization of CTL properties
through the Sp operator via:

EF(F) = [lfp(Sper)|D,
EG(F) = [gfp(SporF)]D-

Now, a (possibly non-terminating) model checker can
be defined in a straightforward way. It consists of the
manipulation of constrained facts as implicit represen-
tations of (in general, infinite) sets of states. It is based
on standard fixpoint iteration of Sp operators for the
specific programs P according to the fixpoint definition
of the CTL properties to be computed (see e.g. Corol-
lary 1). An iteration starts either with F' = ) represent-
ing the empty set of states, or with F' = {p(x) < true}
representing the set of all states. The computation of the
application of the Sp operator on a set of constrained
facts F' consists in scanning all pairs of clauses in P and
constrained facts in F' and checking the satisfiability of
constraints; it produces a new (finite) set of constrained
facts.

The iteration yields a (possibly infinite) sequence Fp,
Fy, F5, ... of sets of constrained facts. The iteration
stops at i if the sets of states represented by F; and F;
are equal, formally [Fi]p = [Fit1]p.

We interleave the least fixpoint iteration with the
test of membership of the state init in the intermediate
results; this yields a semi-algorithm for safety properties.

The fixpoint test is based on the test of subsumption
between two sets of constrained facts F' and F'. We say
that F' is subsumed by F' if the set of states represented
by F' is contained in the set of states represented by F”,
formally [F]p C [F']p. Testing subsumption amounts
to testing entailment of disjunctions of constraints by
constraints.

We next describe some optimizations that have shown
to be useful in our experiments (described in the next
section). Our point here is to demonstrate that the com-
bination of mathematical and logical reasoning allows
one to find these optimizations naturally.

Local subsumption. For practical reasons, one may
consider replacing subsumption by local subsumption as
the fixpoint test. We say that F' is locally subsumed
by F' if every constrained fact in F' is subsumed by
some constrained fact in F’. Testing local subsump-
tion amounts to testing entailment between quadrati-
cally many combinations of constraints. Generally, the
fixpoint test may become strictly weaker but is more
efficient, practically (an optimized entailment test for
constraints is available in all modern CLP systems) and
theoretically. For linear arithmetic constraints, for exam-
ple, subsumption is prohibitively hard (co-NP [Sri93])
and local subsumption is polynomial [Sri93]. An abstract
study of the complexity of local vs. full subsumption
based on the CLP techniques can be found in [Mah95];
he shows that (full) subsumption is co-NP-hard unless
it is equivalent to local subsumption.

Elimination of redundant facts. We call a set of con-
strained facts F' irredundant if no element subsumes an-
other one. We keep all sets of constrained facts Fi, Fs, ...
during the least fixpoint iteration irredundant by check-
ing whether a new constrained fact in F;y; that is not
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locally subsumed by F; itself subsumes (and thus makes
redundant) a constrained fact in Fj. This technique is
standard in CLP fixpoint computations [MR&9].

4.1 Strategies

We obtain different fixpoint evaluation strategies (essen-
tially, mixed forms of backward and forward analysis)
by applying transformations such as the magic-sets tem-
plates algorithm [RSS92] to the CLP programs Ps @ F.
Such transformations are natural in the context of CLP
programs which may also be viewed as constraint data
bases (see [RSS92,Rev93]).

The application of a kind of magic-set transformation
on the CLP program P = Ps@ F', where the clauses have
arestricted form (one or no predicate in the body), yields
the following CLP program P (with new predicates p and
init).

P = {p(x) < body,p(x') | p(x) < body € P} U

{p(x') < ¢, p(x) | p(x) < ¢, p(x') € P} U
{init « true}

We obtain the soundness of this transformation wrt.
the verification of safety properties by standard re-
sults [RSS92] which say that init € [fp(Tp) if and
only if init € [fp(Ts) (which is, init € [fp(Sp)).
The soundness continues to hold if we replace the con-
straints ¢ in the clauses p(x’) < ¢,p(x) in P by con-
straints c# that are entailed by c. We thus obtain a whole
spectrum of transformations through the different pos-
sibilities to weaken constraints. In our example, if we
weaken the arithmetical constraints by true, then the
first iterations amount to eliminating constrained facts
p(labely,labels, _, ) < ... whose locations {label;, labels)
are “definitely” not reachable from the initial state.

5 Implementation in a CLP system

In this section, we describe the main procedures of our
prototype. The rule-based nature of a CLP program al-
lows us to incorporated naturally different optimizations
for the basic model checking procedures (based on fix-
point computations). In the implementation we make an
extensive use of the main features of CLP: unification of
terms, meta-programming, dynamic manipulation of the
program database, and constraint solving.

So far we used CLP programs as mathematical model
for transition systems. Existing CLP systems, however,
adopt incomplete strategies to compute a derivation for
a goal and a program. First of all, CLP programs are
executed following the left-to-right selection order for
the literals of a goal (i.e., the body of a clause can be
read as a sequence of subgoals). Furthermore, clauses
are selected from the program following the order in

which they are written (i.e., from top to bottom). Fi-
nally, when a subgoal fails (i.e., it has no successful
derivations) the interpreter tries to find another possible
derivation by selecting (in backtracking) other possible
choices for the subgoals executed so far. We use the syn-
tax A:-Bi,...,B, to denote (clauses of) CLP programs
used to code our model checker (i.e. their execution takes
into account all the previous assumptions). This way, we
distinguish them from CLP programs viewed as math-
ematical object, whose clauses will be still written as
p(x) < ¢, p(x').

The algorithms of this section can be used with any
constraint domain. All we need to know about the con-
straint solver is that it provides the following operations:

— satisfiable(C,C"): checks satisfiability for the con-
straint C' and returns its solved form C".

— wariable_elimination(C, T,C’): C’ is obtained from
the constraint C projecting away the variables con-
tained in the term T.

— entail(C,D): checks if the constraint C entails the
constraint D.

We will also use C' A D to denote the conjunction of the
constraints C' and D.

In our implementation, we store the CLP program
resulting from the translation of Def. 1, and the states
computed during the exploration of its state space in
the internal database provided by CLP systems. Each
clause p(t) < p(t’) Ac of a program is stored as the fact
r(p(t), p(t’),c), whereas each state p(t) < c is stored
as the fact s(I,p(t),c) where I is a number denoting
the iteration in which the fact has been added to the
database.

Let us first consider the computation of EF. The
predicate apply_Sp in Fig. 6 implements an application of
the Sp operator to a given clause and a given fact. Both
the clause and the fact are selected from the database
(non-deterministically, in principle, following the order
they are stored in the database, in practice) using the
predicates select_clause and select_fact. The parameter I
of the predicate apply_Sp denotes the index of the cur-
rent fixpoint iteration. Note that, by monotonicity of
Sp, at step I + 1 we don’t need to select facts with in-
dex less than I i.e., each fact is selected only once dur-
ing the whole fixpoint computation. The predicate unify
(occurring in the body of apply_Sp) finds the most gen-
eral unifier for the variables of the atoms 4 and B (i.e.,
after its execution the constraints C' and D will range
over the same set of variables). After checking for satis-
fiability of the conjunction C' A D, the resulting solved
constraint C” is projected over the variables contained
in the head of the clause H. Note that, here, constraints
are considered as uninterpreted (when manipulated as
facts) as well as interpreted terms (when passed to the
constraint solver, e.g., via the predicates satisfiable and
variable_elimination). The last step consists of adding
the newly constructed fact (H < C") to the current
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handle_new_fact(I,A,C):-
select_fact(J,B,D),
entail(A,C,B,D),!.

handle_new_fact(I,A,C,B,D):-
assert_fact(I+1,A,C).

apply_Sp(I):-
select_clause(H,B,C),
select_fact(I,A,D),
unify(A,B),
satisfiable(C N D,C’),
variable_elimination(C’,H,C”),
handle_new_fact(I,H,C”).

Fig. 6. Application of the Sp operator.

ef(P,F):-
assert_program(P),
assert_facts(F),
least_fizpoint(0).

least_fizpoint(I):-
all_derivations(apply-Sp(I)),
initial_state_not_reached(I),!,
least_fizpoint (I+1).

least_fizpoint(I):-
write(’Fizpoint reached or initial state detected’).

Fig. 7. Main loop for least fixpoint.

database. This tasked is carried out by the predicate
handle_new_fact. The new fact is added only if it does
not entail an existing fact (i.e. the denotations of the
new fact are not contained in the denotations of an ex-
isting fact, checked using the predicate entail). This way,
we implement the local subsumpion test we mentioned
before.

To enforce the exhaustive exploration of the
database, we use a special built-in predicate we
call all_derivations (in CLP systems this predicate
is usually called bag-of or find_all). The invocation
all_derivations(G) explores all possible derivations for
the goal G. This idea is used to implement the core
of the algorithm for computing EF as given in Fig.
7. The predicate ef loads the transition system P and
the initial set of facts F' in the program database (using
CLP built-in primitives). Then, it starts the loop used
to compute the backwards reachable states. The first
clause for least_fizpoint computes all possible derivations
for the predicate apply_Sp (by invoking all_derivations),
and then tests for the presence of the initial state in the
resulting database (predicate initial_state_not_reached).
The CLP built-in predicate ‘I’ (called cut) is used to
make the predicate least_fizpoint deterministic after the
test for the initial state. This way, the second clause

apply_Sp(1):-
select_clause(H,B,C),
select_fact(I,A,D),
make_copy(A,D,CopyA,CopyD),
unify(A, B),
satisfiable(C A D,C’),
variable_elimination(C’,H,C”),
not_entail(H,C”,CopyA,CopyD),
handle_new_fact(I,H,C”).

Fig. 8. Heuristic for the application of the Sp operator.

9fp(P):-
assert_program(P),
assert_template,
greatest_fizpoint(0).

greatest_fizpoint(1):-
all_derivations(apply-Sp_for_gfp(I)),!,
not_contained(I,1+1),
greatest_fizpoint(I+1).

greatest_fizpoint(1):-
write(’Greatest fizpoint reached’).

Fig. 9. Main loop for greatest fixpoint.

for least_fixpoint is selected only when the predicate ap-
ply_Sp has no derivations (i.e., no news facts can be
derived using Sp) or the initial state occurs in the
database.

In Fig. 8, we modify the specification of apply_Sp
applying the following heuristic: before testing for sub-
sumption, we check if the newly computed fact is sub-
sumed by the fact that produced it. To implement it,
we simply make a copy with fresh new varibales of the
selected fact, A < D in Fig. 8, and then we check that it
is not entailed by the newly produced one. (The reason
we need to a copy of the original fact is that the invo-
cation of predicate unify may turn the fact A «+ D in
an instance of the original selected fact; as an example,
consider unify(p(X),p(3))). This heuristic may drasti-
cally cut the exploration of the state space needed to
test subsumption. Note that the predicate apply_Sp can
also be extended so as to incorporate the elimination of
redundant facts we mentioned in the previous section.
We will present other heuristics in Section 6.

We use similar techniques to implement the compu-
tation of the greatest fixpoint of Sp (e.g. used in EG).
The main loop used to compute the greatest fixpoint is
given in Fig. 9. The predicate assert_template is used
to initialize the database with a set of facts representing
the Herbrand base. The predicate not_contained(I,I+1)
is used to test that the set of facts computed at step I
are not subsumed by the facts computed at step I + 1
(i.e., the fixpoint has not been reached, yet). In its im-
plementation, we used again a local subsumption test.
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Similarly, we obtain apply_Sp_for_gfp from apply_Sp by
substituting not_subsumed(H,C”) with the predicate in-
vocation not_subsumed(I+1,H,C”), i.e., we check that
the fact H + C" is not subsumed by facts computed
at step I + 1 (in the greatest fixpoint computation the
denotations of F;; coincide with the intersection of the
denotations of Fy,..., Fit1).

A full CTL model checker can be obtained by com-
bining this procedures and by using other set operations
like intersection and complementation. Complementa-
tion is domain-specific: unless the constraint solver pro-
vides a built-in procedure to compute the complement
of a constraint, the user has to define its own procedure.

We have implemented the model checking proce-
dure described above in SICStus Prolog 3.7.1 using the
arithmetic constraint solver CLP(Q,R) [Hol95] and the
Boolean constraint solvers (which are implemented with
BDDs). In the following section we will report on ex-
perimental results obtained by analysing several type of
infinite-state systems.

6 Infinite-State Integer Systems

The verification problem for systems with (un-
bounded) integer values is receiving increasing at-
tention; see e.g. [BW94,BW98 Bul98,BGP97,BGP98S,
Cer94,CJ98,FR96,SKR98]. The problem is undecidable
for most classes of practical importance. So what can you
do? There are basically two answers. (1) Give a possi-
bly non-terminating algorithm that terminates for useful
examples. This is the approach followed e.g. by [BW9S,
BGWT'97]. (2) Give a semi-test that yields the defi-
nite answer for useful examples (the other answer being
‘don’t know’); see e.g. [BGP97,CGL92,LGS*94,Gra94,
Dam96,Hal93, HPR97, HH95].

One obtains a semi-test by introducing abstractions
that yield a conservative approximation of the origi-
nal property. In this section, we consider automated,
application-independent abstractions that do not enforce
termination; instead, their approximation is accurate,
i.e. does not loose information wrt. the original prop-
erty. This way, we carry over the practical advantage
of the second approach, namely the acceleration of the
model-checking fixpoint computation, to the first ap-
proach while still implementing a full test, i.e. maintain-
ing the definiteness of all answers.

To know the accuracy of an abstraction is important
conceptually and pragmatically. Note that there seems
to be no other way to predict its effect (“too rough?”)
for a particular application. Obviously, the accuracy is
useful for debugging (or finding typos); ‘don’t know’ an-
swers are quite frustating. Finally, it allows us to deter-
mine the ‘correct’ parameters in initial-state specifica-
tions.

We have considered abstractions of different nature.

We show that the symbolic model checking proce-
dure (based on the CLP semantic operators) over reals
obtained by relaxation from the one over integers yields
a full test of temporal properties for a specific class of
CLP program; the class of integer systems that can be
translated to this type of CLP programs contains many
examples considered in the literature. The purpose of
this abstraction is to accelerate each single fixpoint it-
eration. The number of iterations does not decrease. In
order to show that it does not increase, we prove that
the relaxation of the fixpoint test is accurate as well.

Applying history-dependent acceleration techniques
as already foreseen in the abstract interpretation
scheme [CC77], we show that a set of acceleration rules of
the model-checking fixpoint operator yields an accurate
model checking algorithm (i.e. a full test if terminat-
ing). The acceleration rules are formulated via a deduc-
tive system, i.e., they are specialized rules to compute
logical consequences of CLP programs with linear con-
straints. The correctness and accuracy of the method is
ensured by the soundness of the inference rules. Given
the rule-based nature of CLP programs, the acceleration
rules can be naturally accomodated in our CLP imple-
mentation of the model checking procedure.

We also consider approximations that may return
don’t know answers. They can be applied when the ac-
curate approximations fail from returning an answer or
when the form of constraints involved in the systems
does not guarantee the accuracy of the relaxation int-
real.

6.1 Relazation

In this section, we investigate the int-real relaxation of
the symbolic model checking procedures (based on Sp)
defined for a large class of CLP programs (concurrent
systems) with unbounded positive integer values (which
we call ‘simple’ for the lack of a better name). 3

The relaxation from integers to reals stems from lin-
ear programming (see e.g. [Sch86]). The motivation there
is the same as here: the manipulation of linear arith-
metic constraints is less costly over reals than over in-
tegers, theoretically (e.g. polynomial vs. NP-hard for
the satisfiability test) as well as practically (e.g., the
variable elimination is less involved). Even if the com-
plexity for integers is the same as for reals for a par-
ticular application (as discussed in details in the de-
scription of the Omega library, a solver for Presburger
arithmetics [Pug91]), there exist many highly optimized
constraint systems over reals, general-purpose such as
CLP(R) and special purpose such as Uppaal [BLL"98]
or Hytech [HHWT97], which one would like to exploit
for model checking (simple) concurrent systems over in-
tegers.

3 Note that this abstraction is not an embedding of the verifica-
tion problem for a system over integers into one for a system over
reals.
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In the rest of the section we will define the class of
CLP programs for which we can prove that the relax-
ation int-real of the constraint operators used in Sp is
accurate.

Definition 3 (Simple CLP programs). A simple
CLP program consists of clauses p(x) < p(x’) A ¢ where
¢ (called simple constraint*) is built up according to the
following grammar (where c is an integral constant, and
z and y are (primed or unprimed) variables ranging over
positive integers).

¢ = z<y+c|lc<z|z<c]|true|false| ¢1 A ¢s.

Simple CLP programs results from the translation
of systems that contain comparisons between variables,
assignments between variables, increments and decre-
ments. Note that the expression z < y + ¢ can be
translated to ¢ < y + ¢ — 1, without loss of preci-
sion (by hypothesis, simple programs are interpreted
over N). Furthermore, = y + ¢ can be translated to
xr < y+c AN x > y+ c Vector Addition Systems
[KM69] (a.k.a. Petri Nets), and Integral Relational Au-
tomata [Cer94] are two examples of systems whose trans-
lation in CLP gives rise to simple CLP programs. The
reachability problem is decidable for these classes (see
e.g [Cer94,Lam92]). Other examples are multi-clocks au-
tomata [CJ98] and gap-order automata [FR96].

The above-mentioned decidability results are related
to the general results for verification problems of infinite-
state systems in [ACJT96,FS98]. The communication
protocols considered in [BGP97,BGP98,SKR98], such
as the bakery algorithm of Section 2, are examples of
systems that can be translated to simple CLP programs
but that do not seem to belong to a known decidable
subclass.

We will interpret simple constraints over positive
subset of both, the domains N and R of integers and
reals, respectively. In the following, given a CLP pro-
gram P, we will use Spp to fix the domain D of in-
terpretation of the operators satisfiable, entail, and
variable_elimination used for its definition (see Section
5).

Proposition 1 (Relaxation of constraint opera-
tors). The relaxation of the tests of satisfiability and
entailment and of the variable elimination is accu-
rate; i.e., the predicates satisfiable, entail, and wvari-
able_elimination over simple constraints yields the same
results for D = N and for D = R.

Proof. To show that the satisfiability test is invariant
under the relaxation int-real, we note that a simple
constraint z — y < c is satisfiable in R if and only if
floor(z — y) < floor(c) is satisfiable in N; the prop-
erty extends to conjunctions of simple constraints. Fur-
thermore, it is easy to see that the considered class

4 In [BF99], they are called counter regions formulas.

of constraints is closed under application of Fourier-
Motzkin’s variable elimination (see also [BF99] for the
special case of Petri Nets). Finally, to show that the en-
tailment test is invariant under the relaxation, we sim-
ply note that the negation of an atomic simple con-
straint is still a simple costraint. Now, the thesis fol-
lows by noting that the test entail(C,D; A Ds3) can
be reduced to the tests not(satisfiable(C' A —=D1)) and
not(satis fiable(C' A =D3)). O

Proposition 2 (Relaxation of Sp). Let P be a
simple CLP program. The application of the operator
Sp over integers, namely Spy, and its real relaxation,
namely Spr, to a set of simple constrained facts I yield
two sets of constrained facts denoting the same relation
over integers. Formally,

[Spr(Dy = [Sen(D)ln = Tp(I).
Proof. By definition of Sp and Prop. 1. O

The iteration of Prop. 2 yields that for all £ > 0,
[SBz(DIn = [SEn ()]

This means that the relaxations of the model check-
ing procedures from integers to reals ‘compute’ (if termi-
nating) the same set of states of simple systems. More-
over, since the subsmuption test is invariant under the
relaxation, we obtain the following result.

Theorem 3 (Relaxation). The relaxation of the
symbolic model checking procedures for safety and live-
ness properties of Corollary 1 defined for simple integer
programs is accurate.

Note that, though our formal setting is that of CLP,
the previous results can be generalized to any symbolic
model checking procedure based on real-arithmetics, by
simply substituting Sp with the (symbolic) predecessor
operator used in that context. For instance, in [BF99],
Berard and Fribourg apply the relaxation int-real to
Petri Nets, in order to use HyTech for invariant check-
ing. Finally, note that Proposition 2 holds for any CLP
program with simple constraints in the body of clauses,
i.e., the body of clause may contain more than a sin-
gle atomic literal. We have restricted our formulation
to unary programs in order to simplify the presentation
(in this paper we are interested only in CLP programs
obtained via the translation of integer systems).

We have applied our prototype implementation in
CLP(R) to prove mutual exclusion and starvation free-
dom for the bakery algorithm (see Sect. 2 and Sect. 3).
The computation terminates in both cases proving the
algorithm correct. The resulting fixpoints are accurate
by the results proved in this section. We will turn back
to this and other examples after introducing acceleration
methods for our model checking procedures.
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Pk p(x) < p(x') A C,
FEpx)«—z<y+cAD,
D entails 3x’'.D[x' /x| A C,
ClEz'=z+cs Ny'=y + c, where c, —c, >0

P F E=p(x)« D

P Ep(x) < p(x") A C,
FEpx)+—z<cAD
D entails 3x'.D[x' /x] A C
C E z'=z + ¢, where ¢, >0

PO F =p(x)« D

rule 3

P = p(x) < p(x") A C,
FEpx)+~z=cAD
D is equivalent to 3x'.D[x'/x] A C
CEz=r+1

PoFlEp(x)«— DAz >c

rule 1 rule 2

Pk p(x) < p(x") AC,
FEpx)<z>cAD
D entails 3x’.D[x'/x] A C
C = z'=z + ¢, where ¢, <0

P F E=p(x)« D

rule 4

Fig. 10. Deductive systems for accelerating least fixpoint computation.

6.2 Accurate Abstractions

In this section, we consider how one can achieve (or just
speed up) the termination of the symbolic model check-
ing algorithm for safety properties, without loss of pre-
cision.

Our method is based on the following intuition.
Given a CLP program P and a set of facts F, Sp(F)
gives us the set of direct logical consequences (i.e., com-
puted in one step) of P @ F'. Basically, they are obtained
applying the modus ponens rule of first order logic. In
many cases, however, it is possible to use stronger infer-
ence rules that allow to saturate the set of logical conse-
quences of P & F' in one step.

Consider the program p(z,y) + v =y + 1 Ap(z,y’)
and the fact p(z,y) < z < y. The computation of
lfp(Sper) generates an infinite sequence of strictly in-
creasing sets of facts,

FOZ{p(xay)(_:ESy}a
F1:F0U{p(m,y)<—x§y+1},
F2:F1U{p(m,y)<—x§y+2},

whose infinite union is equivalent to the fact p(z,y) <
true. However, it is easy to prove that p(z,y) < true
is a logical consequence of P @ F' without having to go
through the iterations of Sp.

The kind of deductive rules we will present can be
viewed as a generalization of this simple idea. The re-
sulting deductive system will be used to accelerate the
computation of the least fipoint of Sp (i.e., they will be
applied (if possible) at each iteration). The correctness
of the method will follow by proving the soundness of
the resulting deduction system.

Let P be a CLP program (not necessarily a simple
program), F' be a set of facts, and let F' = G denote that
G is a logical consequence of F'. The inference rules are
shown in Fig. 10. Rule 1, 3 and 4 are used to guess the
direction of growth of the constraints generated during

the iterations of Sp (i.e., a sort of widening operator
formulated in logical terms). Rule 2 is used to detect a
periodic behaviour in the modification of the value of
variable z. Note that, for instance in rule 1, the first
condition, namely P E p(x) < p(x’) A C, means that
the clause p(x) < p(x’) AC can be obtained as a logical
consequence of the clauses of the program P, i.e., it is
not necessarily a clause of P.

Clearly, the rules can be extended so as to consider
more involved constraints (e.g., inequalities with more
than two variables). In this paper, however, we restrict
out attention to simple constraints. It is also important
to remark that the previous rules represent a sort of
limit case for accelerations we can express using real con-
straints without explicit quantifiers over natural number.
For instance, to represent the set of values obtained by
repeatedly incrementing the variable z by ¢, we would
need a constraint of the form In.x = n * ¢ where n is
a natural number. To handle this type of constraints it
would be necessary to work with a mixed int-real con-
straint solver.

The acceleration rules of Fig. 10 are sound as we will
prove in following proposition. This means that when
incorporated in the least fixpoint computation they will
not alter the result of the computation, i.e., the resulting
fixpoint will be accurate. A note on the notation: in the
rest of the section, we will write Sp({f}) and [{f}] as
Sp(f) and [f], respectively (here f is a fact).

Proposition 3. Rules 1-4 of Fig. 10 are sound.

Proof. In this proof we use the properties mentioned in
Appendix A. We only prove the soundness of the rule
1. Let @ consists of the clauses p(x) + p(x’) A C and
p(x) + z < y + ¢ A D satisfying the hypothesis of rule
1. Let f(n) =p(x) + D,z <y+c+n(cy —cz). We first
prove that [f(n)]p is a subset of [S3(0)]p for all n > 0.
The proof is by induction on n. Base case: by defini-
tion. Inductive step. Let us assume that [f(n)]p is a sub-
set of [S3(0)]p. By monotonicity of Tg, To([f(n)]p) C
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Tq([S5(0)]p), thus, by a property of Sq, [Sq(f(n))]p) C
[Sg+1(®)]p. Now, the expression on the left-hand side
gives us the new fact f' = p(x) < D[x'/x]|ANC Az <
y+c+(m+ 1), —c) (e (o C 1S5 (0)p. We
conclude noting that, by the third hypothesis of rule
1 (namely D entails 3x’.D[x’/x] A C) it follows that
[p(x) < DAz <y+c+(n+1)(cy —cz)lp C [f]p
Let us go back now to the main proof. To conclude, we
simply note that, since ¢, — c; > 0, the denotations of
Us_o{p(x) < DAz <y+c+n(c, —c;)} coincide with
those of p(x) « D, i.e., p(x) < D is a logical conse-
quences of @, and, by the first and second hypothesis of
rule 1, is a logical consequence of P & F. Similar argu-
ments apply to the other rules. 0O

Theorem 4 (Acceleration). The algorithm obtained
by abstracting the least fixpoint operator Sp in the sym-
bolic model checking algorithm for safety properties with
the acceleration defined in Figure 10 yields (if terminat-
ing) a full test of safety properties for concurrent systems
over integers or reals.

Proof. By the soundness of the rules in Fig. 10. O

6.3 Strategy for acceleration

The inference rules of Fig. 10 are non-deterministic wrt.
the clause, fact and constraint to consider. In this sec-
tion, we will propose a strategy for the selection of the
candidate clause and fact. Our model checker imple-
ments this strategy during the computation for safety
properties.

Let us first consider rule 1 of Fig. 10. We assume that
F is the set of facts computed at a given iteration for
computing the least fixpoint of Sp. Now, let f1 = p(x) «
C and fo = p(x) < D be two facts in F, obtained,
respectively, after ¢ and j (¢ < j) applications of Sp.
Furthermore, let us assume that C entails D and that
there exists a sequence of clauses ci,...,c, in P such
that fo = S¢, (... (S (f1)) (i-e., fo is reachable from
fi)-

Under these hypotheses, we will try to apply rule 1
to the fact f; (clearly, a logical consequence of F') and
to the clause obtained by unfolding the clauses cq,...,c,
(i.e., composing them into a single clause). The unfolding
of a list of clauses is defined formally as follows. Let
ci =p(x) + CiAp(x’) fori:1,...,n. We first compute
the following fact:

p(x) <~ C =5, (...5,(p(x) « C1)...).

The unfolded clause is then defined as p(x) < C Ap(x’).

The method we propose can be viewed as a dynamic
generation of loops of the original CLP programs.

A similar idea can be used for rules 3-4 of Fig. 10.
For rule 2, we need a slightly different strategy. Since this
rule is used to detect periodic behaviour of a variable,
say z, instead of looking for two fact f; and f; such

handle_new_fact(I,A,C):-
select_fact(B,D),
compare(I,A,C,B,D),!.

compare(I,A,C,B,D):-
entail(A,C,B,D),!.

compare(I,A,C,B,D):-
entail(B,D,A,C),
compute_unf_clause(B,D, A, C,UnfC),
accelerate(B,D, UnfC,D’),!,
assert_fact(I+1,B,D’).

handle_new_fact(I,A,C,B,D):-
assert_fact(I+1,A,C).

Fig. 11. Code for acceleration rules.

that [fi]p C [f2]p, we look for two facts f1 = p(x) «
z =cADand fo = p(x) « & =c+ 1A C such that
D is equivalent to C and f> is reachable from f; via a
sequence of clauses (as before).

These ideas can be easily incorporated in the CLP
implementation of Section 5. Specifically, all we have to
do is to modify the procedure handle_new_fact (see Fig.
6 of Section 5) as shown in Fig. 11. Remember that the
predicate handle_new_fact takes care of inserting newly
produced facts at a given iteration of the applications of
Sp. In the new version, we first check that new fact is
not subsumed by an existing one. Then, we apply our
heuristics to derive loops from the programs. The predi-
cate compute_unf_clause succeeds if the fact A «+ C can
be reached from fact B + D using the unfolded clause
UnfC. If the heuristics succeeds, we try to apply one of
the acceleration rules (we assume the predicate acceler-
ate to be defined according to the rules of Fig. 10). The
predicate accelerate succeeds if the conditions of one of
the rules of Fig.10 are satisfied returning the new con-
traint computed for the fact B < D.

If the acceleration can not be applied we simply add
the fact to the database (last rule for handle_new_fact).

6.4 Conservative Approximations

In many cases the accuracy of the relaxation int-real can
not be guaranteed by the form of the program and of the
property taken into consideration.

However, the relaxation int-real still gives us a con-
servative approximation of safety and liveness proper-
ties for this type of systems (i.e., systems that can not
be translated to simple CLP programs). In fact, the fol-
lowing relation holds for any CLP program with integer
variables and a collection I of (linear) constraint fact:

[Sen()]n C [Spr(I)]N-

In other words, when computig over R, for a generic CLP
program with constraint over integers, only negative an-
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swers (e.g., the initial state is not in the least model
computed over R) are definite answers.

Following ideas developed in abstract interpretation
[CCT7], it is also possible to apply acceleration operators
that may return don’t know answers, i.e., when incorpo-
rated in fixpoint computation, they yield a conservative
approximation of the property taken into consideration.
In this section we will introduce a new widening opera-
tor {} (in the style of [CHT78], but without a termination
guarantee) used to define Sﬁ(F) = F{tSp(F) (so that
[Sp(F)]p C [Sﬁ(F)]D). The operator {} may return an
upper approximation of the least fixpoint for Sp.

The operator f} is defined in terms of constrained
facts. For example, if

F={p(X,Y)+~X>0Y>0X<Y}
F'={pX,Y)+~ X >0,Y>0,X <Y +1} then
FAF' = {p(X,Y) « X >0,Y > 0}.

Formally, F{{F' contains each constrained fact that is
obtained from some constrained fact p(x) < c1 A...Acy
in F' by removing all conjuncts ¢; that are strictly en-
tailed by some conjunct d; of some ‘compatible’ con-
strained atom p(x) < di A...Ad,, in F, where ‘compat-
ible’ means that the conjunction c; A.. . Ac,AdiA.. . Adp,
is satisfiable. This condition restricts the applications of
the widening operator e.g to facts with the same values
for the control locations.

Contrary to the ‘standard’ widening operators
in [CH78] and to the improved versions in [HPR97,
BGP98]|, the operator f} can be directly implemented
using the entailment test between constraints; further-
more, it is applied fact-by-fact, i.e., without requiring a
preliminary computation of the convex hull of union of
polyhedra. Note that the convex hull is computationally
very expensive and it might be a source of further loss of
precision. Let us consider e.g. the two sets of constrained
atoms

F={p(,X)+ X >2}
F'={p(t,X) + X >2, p({,X) + X <0}.

When applied to F' and F’, each of the widening op-
erator in [BGP98,CH78, HPRI7] returns the (polyhedra
denoted by the) fact p(¢, X) < true. In contrast, our
widening is precise here, i.e., it returns F’.

Finally, note that the use of constrained facts auto-
matically induces a partitioning over the state space wrt.
the set of control locations. The partitioning reduces the
applicability of the widening for the benefit of precision
of the computation (see also [HPR97,BGP98]).

7 Case-studies

In this section we comment on some experimental results
obtained with our model checker implemented in SICS-
tus Prolog and the CLP(Q,R) library. In order to show

the generality of the approach we select three different
types of integer systems: communication protocols, pa-
rameterized systems, and constraint programs used for
array-bounds checking of imperative programs. Commu-
nication protocols like the bakery algorithm are typical
examples of concurrent systems, whereas the remaining
examples are interesting for the difficulties their analysis
may present. For the sake of simplicity, in the following
sections we will bypass Shankar’s intermediate syntax,
directly translating the examples to CLP programs.

7.1 Communication Protocols

Bakery algorithm. Mutual exclusion and starvation
freedom for the bakery algorithm (see Sect. 2 and Sect.
3) can be verified without the use of accelerations (exe-
cution time for starvation freedom: 0.9s). In versions of
the bakery algorithm for 3 and 4 processes (not treated
in [BGP97]), a maximum operator (used in assignments
of priorities such as Turn; = maz(Turng, Turng) + 1)
is encoded case-by-case in the constraint representation.
This makes the program size grow exponentially in the
number of processes.

Ticket Algorithm. The ticket algorithm (see Fig. 12) is
based on similar ideas as the bakery algorithm. Here,
priorities are handled using two global variables, namely
t and s. The variable ¢ is used to assign new priorities
to processes waiting for entering their critical section.
The variable s is used to store the value of the ticket of
the next process to be served. Each process has a local
value used to store the current value of its ticket. Fig. 13
shows the simple CLP program resulting from the trans-
lation of the algorithm taken into consideration (for the
translation, we follow the same method we followed for
the bakery algorithm). The safety property is expressed
by AG(—(p1 = use A py = use)) (as for the bakery algo-
rithm). Since both the program and the property contain
simple constraints only we can predict that the analysis
over R will be accurate.

We prove safety by applying the accurate accelera-
tion (rule 1 of Fig. 10) during the fixpoint iterations. In a
second experiment we applied the magic set transforma-
tion instead and obtained a proof in 0.6s. We proved star-
vation freedom, i.e., AG(p1 = wait — AF(p1 = use)),
in 1.5s applying the accurate acceleration for the outer
least fixpoint (the inner greatest fixpoint terminates
without abstraction).

Producer-consumer protocols are other interesting
examples of concurrent programs. We will discuss some
examples taken from [BGP98] in the following section.

Bounded Buffer. The first protocol we consider mod-
els the communication of producers and consumers con-
nected via a buffer of size s. Fig. 14 shows the automata
for a producer and a consumer; here the variable a de-
notes the number of empty cells in the buffer, p the
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Fig. 12. Automata for the ticket algorithm.

Initial Condition:
Transitions:

p(think, P, A, B,T,S) « T >=0,T
p(P, think, A, B,T,S) « T >=0,T
p(wait, P,A,B,T,S) + A=<S§,
p(P,wait,A,B,T,S) + B=<S§,
p(use, P,A,B,T,S) + S>=0,51
p(P,use, A,B,T,S) + S>=0,51

System variables: p(Pi, P>, A, B, T, S).
initial < T = S, p(think,think,0,0,T,S).

=T+1,p
=T+1,p
p
p
=S+1,p
=S+1,p

wait, P,T, B,T1,S).
P,wait, A, T,T1,S).
use, P, A, B,T,S).
P,use, A,B,T,S).
think, P, A, B, T, S1).
P,think, A, B, T, St).

NN N N S

Fig. 13. The CLP-program for the ticket algorithm.

a>0,a’=a-1,p’=p+1

Producer

a<S,a’=a+l,c’=c+1l

Consumer

Fig. 14. Producer-consumer with bounded buffer.

number of produced items, and ¢ the number of con-
sumed items. The CLP-program that describes a system
with a producer, a consumer and two buffers is given in
Figure 15. The first invariant that we want to prove is
Invy = AG(p1+p2—(c1+c2) = s—a). Note that the pre-
vious constraint is not simple, i.e., the relaxation int-real
will give us a conservative approximation of the prop-
erty. Before applying our model checker, we transform
the previous property in AG(p1 + p2 — (1 + ¢c2) +a <
s—1Api+p—(c1 +c2)+a > s+ 1). Our model
checker proves the property in 0.2s without need of ac-
celerations. Another safety condition is given by Invy =
AG(0 < p1+p2—(c1+¢2) < s). Using the invariant Inv;
we can write Invs as the safety property AG(0 < a < s).
Furthermore, it is easy to see that the above program is
safe if and only if the following (simple) program is safe:

S

) A
S)

A-1.

p(4,
A "= A+1.

S) « p(
p(4,S

(_pAl, 7AZ]'7 ,:
)(—p(AI, 7ASS 17

’

Our model checker proves the safety property Invy for
the new program in one step.

Unbounded Buffer. We consider now a protocol for pro-
ducers and consumers connected via unbounded buffers.
The system can be represented by an automaton with
two states: idle, in which only the consumer is active
(to weaken the producer), and send, in which both pro-
cesses are active. Fig. 16 shows the automata for a pair
producer-consumer and only one buffer. The variable p
keeps track of the number of produced items, the vari-
able ¢ the number of consumed items and g the number
of elements in the buffer. The CLP program in Fig. 17
models a system with a producer a consumer and two
unbounded buffers. To prove the invariant AG(p > c¢)
we prove that AG(p = ¢+ ¢1 + ¢2), (note that ¢; > 0),
e, AGp<c+qgp+qgp—-—1Ap>c+aqg+q¢gp+1)(a
non-simple constraint). We prove the property in 3 steps
by applying the widening operator of Section 6.4.

7.2 Array Bounds Checking.

In this section, we will discuss an application of our
model checker for checking array bounds of imperative
programs. The main idea is to extract, from the flow
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Initial Condition:

Transitions:

p(A,P1,P2,01,02,S
p(A7P17P27017027S
p(A,P1,P2,01,02,S
p(A,P1,P2,01,02,S

~— — — —

System variables: p(A, P, P»,C1,C>,S).
initial (—p(A,P1,P2,C1,Cz,S),A = S,P1 = Pz = 01 = Cz = O,S Z 1.

— A> 1,A’ =A- 1,P{ =P + 1,p(A’,P{,P2,Cl,Cz,S).
— A Z l,A’ =A— l,Pé = Pz =+ l,p(A’,PhPé,Cl,Cz,S).
A+ 1701 =Ci+ ]-ap(AlaplaPQaC;.aC??S)'
— A< S— 1,A’ =A+ ].,Cé =Cs2 + ].,p(A’,Pl,Pz,Cl,Cé,S).

—A<S-1,A =

Fig. 15. CLP for producers and consumers connected via a bounded buffer.

g>0,9’=g-1,c’=c+1

g>0,9’=g-1,c’=c-1

p’=p+1,q’=q+1

Fig. 16. Producer-consumer with unbounded buffer.

Initial Condition:
Transitions:

p
/4 S7 P7Q17Q27C)
/4 S7 P7Q17Q27C)

System variables: p(A, P1, P»,C1,C>, S).
p(—7P7Q17Q27C) +— P= C:Ql = Q2 =0.

p(idleaPanaQQ)C) «— p(senda P7Q17Q2)C)'

p(send7P7Q17Q27C) — p(idle7P7Q17Q27C)'

p(send7P7Q17Q27C) — P =P+ vai = Ql + 1,p(send,P1,Qi,Qz,C).
(SendaPanaQQaC) +—PL=P+ 1)Q% = Q2 + ]-ap(sendaPlanaQ%aC)'
( <_Q1>07Q%:Q1_17C’1:C+17P(S7P7Q%7Q27C’1)'
( <_Q2>07Q;:Q2_17C’1:C+17P(S7P7Q17Q;7C’1)'

Fig. 17. CLP-program for producers and consumers connected via an unbounded buffer.

graph of a program, all information involving manipula-
tion of indexes of arrays. All remaining information will
be abstracted away. In many cases the resulting system
can be translated into a simple CLP program, as we will
show with the help of a non trivial example: the insertion
sorting algorithms

Insertion sorting. The procedure written in C of Fig. 18
implements the insertion sorting algorithm. It takes an
array A and its right bound n as parameters and sorts
the elements of A in increasing order. Our aim is to check
that the procedure can not access the array A outside the
interval [0,n—1] (in C array indexing starts from 0). As
anticipate before, the first step consists of extracting all
information involving array indexes. The ‘simple’ CLP
of Fig. 19(right) shows the resulting abstract flow graph.
In the abstract flow graph we use the locations entryA1,
entryA2 and entryA3 to keep track of the accesses to
the array A in the original code. Note that the abstract
flow graph has more possible states than the original
program (e.g.,the condition A[;] > z in the guard of the
while is abstracted away). In other words, a property of
the abstract graph is a conservative approximation for a
property of the original program.

The requirement that the program does not violate
the array bounds can be formulated as the safety prop-
erty AG(—(bounds are violated)). The potential viola-
tions for insertion sorting are given in Fig. 19(right).
Since both the program and the properties are expressed
using simple constraints, the analysis over the reals
will give accurate results. A plain fixpoint computation
(needed to check safety) will not terminate. Our model
checker, however, proves the procedure correct by using
the acceleration rule 2 of Fig. 10. Note that the use of ac-
curate accelerations allow the detection of possible errors
in the abstract graph (i.e., errors in the manipulation of
array indexes in the original program).

7.3 Parameterized systems

We conclude the section dedicated to the examples pre-
senting the analysis of parameterized systems called
broadcast protocols.

Broadcast protocols [EN98] are systems composed of
a finite but arbitrarily large number of processes that
communicate by rendezvous (two processes exchange a
message) or by broadcast (a process sends a message to
all other processes).
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void InsertionSort(int* A, int n) {

init: int i, k, x;
for: for(k = 1; k < n; k++) {
entryAl: x = A[k];

i=k-1;
while: while (i >= 0 && Afi] > x) {
entryA2: Ali + 1] = Afi];

i——;

}

entryA3: Al + 1] = x;
}

end: }

Fig. 18. Insertion sorting (left: program location).

System variables: p(Location, K, N,I).

I'Ir;lz::lzllit(i}oc;rlczhtlon. it <+ p(init, K,N,I). plentryAl,K,N,I) « K > N
p(init, K,N,I)  « p(for,K1,N,I), K1=1. p(e”t’”yil’K’ N,I) « K < -1
p(for,K,N,I) « p(entryAl,K,N,I), K <N — 1. plentryA3, K, N, I) < I > N —1
plentryAl, K, N, I) « p(while, K,N,I1), I1 =K —1. plentryA3, K, N,I) I < -2
p(while, K,N,I)  « p(entryA2,K,N,I), I > 0. p(e”t’”yf’K’ N,I) = I'<-1
plentryA2, K, N, T) « p(while, K, N,I1), I1=1-1. plentryA2, K, N, I) I < —2.
p(while, K,N,I)  + p(entryA3,K,N,I), I < —1. plentryA2, K, N,I) « I > N —1
p(entryA3, K, N,I) < p(for,K1,N,I), Kl1=K +1. plentryA2, K,N,I) < I = N
p(for,K,N,I) < p(end,K,N,I), K >N.

Fig. 19. Left: CLP program for insertion sorting. Right: potential violations of array bounds.

write-invalidate??
read??

write-invalidate??

read
read??

write-invalidate??

write-invalidate!!

read
write

Fig. 20. MESI-protocol.

We consider the cache coherence protocol presented
in [EN98]. Several processors interact with the main
memory through a one-line cache. When a processor
requires to copy the contents of its cache in the main
memory all other processors must invalidate the con-
tents of their local cache. We model this system as a
collection of identical processes each described as in Fig.
20. In the states I and S, processes cannot write the con-
tent of the cache to the main memory, whereas only one
process at a time can be in state E and can copy the
cache line in main memory (action write). When a pro-
cess in state S sends the broadcast write-invalidate!!
to all other processes, and then moves to state E, the
other processes react and move to the state I. The ac-

tion write-invalidate?? denotes the reception of the
broadcast. Reading from the cache is preceded by the
broadcast message read!!, as well. The remaining tran-
sitions denote internal actions of processes. The protocol
must ensure mutual exclusion between readers and writ-
ers.

We model this protocol as the CLP program of Fig.
21. We use four variables I, S, E, and M to count the
number of processes in the corresponding state. Each
action corresponds to a re-allocation of the counters.
Specifically, the second rule correspond to the read!!
broadcast action, (i.e. one process sends the broadcast
while being in state I, the other processes move to S),
the third rule corresponds to the write-invalidate!!
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init ~p',S" E'\M"), I>1,8
o(1,8,E, M) « p(I', ', E',M"), I > 1, 5"
p(I,S,E,M) + p(I',S",E',M') S>1,8
p(I7S7E7M) <_p(I7S7E’7M’)7 EZ]‘ E
o(I1,S, B, M) « p(I,5,E,M), S>1.
p(1,S,E,M) « p(I,5,E,M), M >1.

E=0,M=0.

=S+E+M+1 I'=1-1,E' =0,M' =0.
=0, I’—S+M+E—1,M’—0,E’—0.
E—-1,M =

M +1.

Fig. 21. Integer-system for the M.E.S.I. protocol 20.

broadcast, and the remaining rule to the read and
write internal actions (only with write there is a re-
allocation of processes). Note that, in the initial configu-
ration, the number of processes in state I is unspecified
(I > 1).°> The safety properties proved in [EN98] are:
AG(—(S > 1AM > 1)) (readers and writes cannot ac-
cess simultaneously the cache), AG(=(M + E > 1)) (at
most one process can stay in M or E). These properties
can be expressed as upwards closed sets. The reachability
problem is decidable in this case [ACJT96, EFM99]. Up-
wards closed sets are fully characterized by the following
class of constraints:

¢ u=

where c is a positive integer constant. Note that the con-
straints arising from the translation of broadcast proto-
col to CLP programs and the above properties are not
simple constraints. However, in this case the relaxation
int-real of the Sp operator is still accurate. In fact, it
is easy to see that a ¢-constraint is always satisfiable
(both over N and R). Futhermore, when P is a broad-
cast protocol, the class of ¢-constrained facts is closed
under application of Sp (see [DEP99]).

On the other hand the termination test (two sets of
¢-constraints have the same denotations) over the reals
is weaker than the termination test over the integers. For
instance, p(z,y) < z+y > land p(z,y) <« = > 1Ay > 1
have the same denotations over N but not over R. Thus,
the detection of a fixpoint (though guaranteed even in
case of analisys over R) might be delayed when using a
model checker over reals.

Our model checker automatically proves both prop-
erties after few iterations (without use of accelerations).
The state space for this type of verification problems suf-
fers from a dramatic explosion even for small constants
occurring in the initial set of unsafe states. A detailed
account of efficient techniques for handling the state-
explosion problem is given in [DEP99].

T1+...+xy>c| AP | true,

Performance. The execution times obtained for all ex-
amples described in this section are listed in Fig. 22.
In Fig. 22, we also list the execution times for other

5 Broadcast protocols can be viewed as an extension of Petri
Nets where tokens can be dynamically re-distributed among the
places.

examples: selection, matriz multiplication, and circular
are programs extracted from C-programs that imple-
ment the selection sorting, row*column matrix multi-
plication and a shifting of elements in a circular ar-
ray, respectively. Finally, the example csm is a param-
eterized system describing the central server model of
[DEP99]. All examples can be found at the address:
www.mpi-sb.mpg.de/ " delzanno/clp.html. All the verifi-
cation problems have been tested on a Sun Sparc Sta-
tion 4, OS 5.5.1.

8 Related Work

There have been other attempts to connect logic pro-
gramming and verification, none of which has our gen-
erality with respect to the applicable concurrent sys-
tems and temporal properties. In [FV94], Fribourg and
Veloso-Pexoto define the notion of automata with con-
straints and study their properties (e.g. language in-
clusion) through a representation as CLP programs.
In [FR96], Fribourg and Richardson use CLP programs
over gap-order integer constraints [Rev93] in order to
compute the set of reachable states for a ‘decidable’
class of infinite-state systems. Constraints of the form
z =y+1 (as needed in our examples) are not gap-order
constraints. In [FO97], Fribourg and Olsen study reach-
ability for system with integer counters via a translation
to CLP programs with integer constraints. They also
propose a number of optimizations (e.g. fusion of tran-
sitions for Petri Nets) in order to accelerate the fixpoint
computation. These approaches are restricted to safety
properties.

In [Rau94], Rauzy describes a CLP-style extension
of the propositional p-calculus to finite-domain con-
straints, which can be used for model checking for finite-
state systems. In [Urb96], Urbina singles out a class
of CLP(R) programs that he baptizes ‘hybrid systems’
without, however, investigating their formal connection
with hybrid system specifications; note that liveness
properties of timed or hybrid automata can not be di-
rectly expressed through fixpoints of the Sp operator
(because the clauses translating time transitions may
loop). In [GP97], Gupta and Pontelli describe runs of
timed automata using the top-down operational seman-
tics of CLP-programs (and not the fixpoint semantics).



18

Giorgio Delzanno and Andreas Podelski: Constraint-based Deductive Model Checking

Programs C ET EN ERT ERN AT AN ART ARN
bakery 8 0.1 18 0.1 13 - - - -
bakery3 21 6.3 157 6.1 109 - - - -
bakery4 53 335.4 1698 253.2 963 - - - -
ticket 6 T T T T 0.9 15 1.0 13
bbuffer (1) 4 0.2 2 0.2 2 - - - -
bbuffer (2) 4 0.0 2 0.0 2 - - - -
ubuffer 6 T T T T 3.0 16 1.7 6
insertion 9 T T T T 0.5 19 0.6 17
selection 8 0.2 16 0.2 16 - - - -
matriz mul. | 29 1.5 80 2.1 78 - - - -
circular 10 0.1 13 0.1 12 - - - -
mest 4 0.0 2 0.0 2 - - - -
csm 9 38.2 27 58 25 - - - -

Fig. 22. Benchmarks for the verification of safety: C=number of clauses, E=exact, A=approximation with widening, R=elimination of
redundant facts, T=execution time, N=number of produced facts, T=non-termination, —=not needed. The execution time is given in

seconds.

In [CP98], Charatonik and Podelski show that set-based
analysis of logic programs can be used as an always ter-
minating algorithm for the approximation of CTL prop-
erties for pushdown processes; (traditional) logic pro-
grams as considered in [CP98] are not suitable for trans-
lating general concurrent systems. In [RRRT97], a logic
programming language based on tabling called XSB is
used to implement an efficient local model checker for
finite-state systems specified in a CCS-like value-passing
language (see also [DDR199]). The integration of tabling
with constraints is possible in principle and has a promis-
ing potential.

As described in [LLPY97], constraints as symbolic
representations of states are used in UPPAAL, a verifica-
tion tool for timed systems [LPY97]. It seems that, for
reasons of syntax, it is not possible to verify safety for our
examples in the current version of UPPAAL (but possibly
in an extension). Note that UPPAAL can check bounded
liveness properties only, which excludes e.g. starvation
freedom.

We will next discuss work on other verification pro-
cedures for integer-valued systems. In [BGP97,BGP9§],
Bultan, Gerber and Pugh use the Omega library [Pug91]
for Presburger arithmetic as their implementation plat-
form. Their work directly stimulated ours; we took over
their examples of verification problems. The execution
times (ours are about an order of magnitude shorter than
theirs) should probably not be compared since we manip-
ulate formulas over reals instead of integers; we thus add
an extra abstraction for which in general a loss of pre-
cision is possible. In [BGL98], their method is extended
to a composite approach (using BDDs), whose adapta-
tion to the CLP setting may be an interesting task. In
[CABN97], Chan, Anderson, Beame and Notkin incorpo-
rate an efficient representation of arithmetic constraints
(linear and non-linear) into the BDDs of SMV [McM93].
This method uses an external constraint solver to prune
states with unsatisfiable constraints. The combination

of Boolean and arithmetic constraints for handling the
interplay of control and data variables is a promising
idea that fits ideally with the CLP paradigm and sys-
tems (where BBD-based Boolean constraint solvers are
available).

In [BF99], Bérard and Fribourg show that the relax-
ation int-real for the computation of pre* and post® of
Petri Nets and Timed Automata with Counters is accu-
rate. They consider counter regions formulas that here
we called simple constraints. Proposition 2 generalizes
their result in the following sense: is formulated for a
wider class of systems (all systems that can be translated
to simple CLP programs); it also states the accuracy of
the termination test (i.e. the subsumption test between
sets of facts) for the model checking procedure.

Our accelrations rules are related to Boigelot and
Wolper’s loop-first technique [BW94] for deriving ‘pe-
riodic sets’ as representation of infinite sets of integer-
valued states for reachability analysis. As a difference,
Boigelot and Wolper analyze cycles and nested cycles in
the control graph to detect meta-transitions before and
independently of their (forward) model checking proce-
dure, whereas we construct new loops (which roughly are
meta-transitions) during our model checking procedure
and consider them only if we detect that they possibly
lead to an infinite loop. It will be interesting to formu-
late their ‘widening’ in our setup and possibly extend it;
note that a set is ‘periodic’ if it can be represented by
an equational constraint with existential variables, e.g.
Jyzx 2y. Mixed int-reals costraint solvers might be
useful (if not necessary) for manipulationg this type of
constraints.

In [DEP99], Delzanno, Esparza, and Podelski discuss
in the details the theoretical complexity of the analysis
of broadcast protocols over integer arithmetics. In this
paper we show that the relaxation int-real of the pre-
decessor operator for broadcast protocols gives accurate
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results, though the number of iterations may increase
since the termination test over the reals becomes weaker.

This paper is an extension of the paper we presented
at TACAS’99 [DP99].

9 Conclusion and Future Work

We have explored a connection between the two fields
of verification and programming languages, more specif-
ically between model checking and CLP. We have given
a reformulation of safety and liveness properties in terms
of the well-studied CLP semantics, based on a novel
translation of concurrent systems to CLP programs. We
could define a model checking procedure in a setting
where a fixpoint of an operator on infinite sets of states
and a fixpoint of the corresponding operator on their
implicit representations can be formally related via well-
established results on program semantics.

We have turned the theoretical insights into a practi-
cal tool. Our implementation in a CLP system is direct
and natural. One reason for this is that the two key
operations used during the fixpoint iteration are test-
ing entailment and conjoining constraints together with
a satisfiability test. These operations are central to the
CLP paradigm [JM94]; roughly, they take over the role
of read and write operations for constraints as first-class
data-structures.

We have obtained experimental results for several
example infinite-state systems over integers. Our tool,
though prototypical, has shown a reasonable perfor-
mance in these examples, which gives rise to the hope
that it is useful also in further experiments. Its edge on
other tools may be the fact that its CLP-based setting
makes some optimizations for specific examples more di-
rect and transparent, and hence experimentation more
flexible. We note that some CLP systems, such as SICS-
tus, provide support for building and integrating ad hoc
constraint solvers.

As for future work, we believe that more experience
with practical examples is needed in order to estimate
the effect of different fixpoint evaluation strategies and
different forms of constraint weakening for conservative
approximations. We believe that after such experimen-
tation it may be useful to look into more specialized
implementations.
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A Preliminaries on CLP

A CLP program [JM94] is nothing but a logic program
where a given set of formulas (called constraints) are
interpreted over a fixed domain. This way, specialized
constraint solvers can be used to make resolution-based
methods (for first order logic) more efficient.

Formally, a CLP program is a first order theory con-
sisting of a universally quantifed conjunction of formulas
called clauses. A clause has the form A < Bi A...AB,
where n > 0, and A (the head) and By, ..., B,’s (that
form the body) are atomic formulas. A constraint is a
finite conjunction of atomic formulas (e.g., occurring in
the body of a clause) built on a given set of constraint
constructors. As anticipated before, constraints will be
interpreted over a fixed domain and handled via a spe-
cialized inference engine called constraint solver. As an
example, consider the two clauses maz(X,Y, X) «+ X >
Y and maz(X,Y,Y) + X <Y.In a CLP language de-
fined over the domain of numbers, instead of giving a
specification for X <Y and X > Y, we can use a spe-
cialized solver for arithmetics to check their satisfiability.

In the following we will use D to denote the con-
straint domain of the CLP language taken into consid-
eration. We say that a constraint ¢ with variable in V
is solvable in D, namely D |= cf, if there exists a val-
uation @ : V ~» D, such that cf evaluates to true in
D. A constraint ¢ entails a constraint d if for each val-
uation 6, D = ¢f — df. Furthermore, given a program
P we will indicate by [P]p the set of formulas obtained
by instantiating the variables of P with values from D.5
In the following we will use t to denote a list of terms
i, tn.

A.1 Operational semantics

A clause p(t1,...,tn) < B can be viewed as a defi-
nition for the predicate p. A goal, i.e., a conjunction
p1(s1) A ...pm(sm) of atomic formulas, can be viewed
then as procedure invocations. The invocation of a pro-
cedure (resolution step) is solved as follows: i) replace
a literal p(si,...,sn) in the current goal with s; =
ti1A...Asp, =ty A B (= denotes equality); i7) check that
the constraint contained in the resulting goal-formula is
satisfiable in D (using the constraint solver). Note that
clauses can be selected non-deterministically. A deriva-
tion is then a sequence of goal formulas obtained via

6 For simplicity, we assume that all constants are interpreted
over D.

resolution steps. A successful computation is finite and
ends with a constraint formula (the answer to the goal),
meaning that the goal is a logical consequence of the
program whenever the resulting constraint is satisfied.
A ground resolution step is defined as follows: replace a
(ground) literal A with the body of a ground (instance
of a) clause whose head matches A. A ground derivation
is a derivation obtained via ground resolution steps.

A successful ground computation is then a sequence
of ground goals terminated by the empty goal, meaning
that the goal is a logical consequence of the program.

A.2 Fizpoint semantics

The least model of a CLP program, defining its declar-
ative semantics, can be defined as the fixpoint of an op-
erator that computes the direct logical consequences of
the program and of a given set of atomic formulas. In the
following we will present its definition for the ground and
for the non-ground case.

The ground direct consequence operator [JM94] is de-
fined over collections of atomic formulas as follows:

biel, i:1..n, n>0}.

Tp is monotonic and continuos w.r.t. set inclusion. The
least fixpoint of Tp coincides with the least Herbrand
model of P [JM94], and characterizes the set of atomic
goals for which there exists a successful derivation.

The non-ground direct consequences operator Sp is
defined over a collections of facts, i.e., of clauses of the
form p(x) < c¢ where ¢ is a constraint. A fact is an
implicit representation of a set of ground atoms. Its def-
inition is as follows:

SP(I) :{p(x) (—C|p(X) <_C,7bla"'abn epP

(i —c)el,i:l.n, n>0
DiEc+ d AN (e Aa; = b))}

The Sp operator finds a practical application in deduc-
tive databases where it is used for the bottom-up eval-
uation of queries, as opposite to the above mentioned
top-down evaluation typical of logic programming sys-
tems.

The Sp operator is monotonic and continuous w.r.t.
set inclusion of collections of facts [GDL95]. In [GDL95,
JM94], the following properties are proved, under the as-
sumption that the constraint domain D is solution com-
pact:

([Ip) = [Sp(I )]D for a set of facts I,
Tp) = Ui Tp(0),

) = Uwzo ( )
- Ifp(Tp) = [Ifp(SP)]D,
— Nizo Tp(B) = gfp(T

p), for a > w.
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Here, B (the Herbrand base) is the collection of all
ground atomic formulas. In order to obtain a similar
property for the greatest fixpoint of Sp, we need two
extensions: ¢) we allow constraints to be infinite con-
junctions; i) we order collections of facts wrt. their de-
notations, i.e., I C J iff [I]p C [J]p. The lower bound
for two collections of facts I and J is obtained then as
follows:

INT={ px)x=t ANx=s AcAd|
p(t) «—c€el, p(s)«deJ}.
Note that [I A J]p = [I]p N [J]p. The operator Sp is
monotonic w.r.t. C. Furthermore, it holds that
— 9fp(Sp) = NiLy Sp(Bs) for o > w,
— [9fp(Sp)]D = gfp(Tp).

where Bg is such that [Bs]p = B, e.g, Bs is the collec-
tions of facts p(x) < true with p a predicate and x a
vector of variables. Finally, note that hypothesis i is only
necessary when ¢fp(Sp) can not be computed in a finite
number of steps.
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