
Set constraints with intersection

Witold Charatonik* Andreas Podelski
Max-Planck-Institut fur Informatik

Im Stadtwald, D-66123 Saarbrucken, Germany
(wito1d;podelski)Qmpi-sb .mpg. de

Abstract

Set constraints are inclusions between expressions de-
noting sets of trees. The eficiency of their satisfiabil-
i ty test is a central issue in set-based program analy-
sis, their main application domain. W e introduce the
class of set constraints with intersection (the only op-
erators forming the expressions are constructors and
intersection) and show that i ts satisfiability problem
as DEXPTIME-complete. The complexity characteriza-
tion continues to hold f o r negative set constraints with
intersection (which have positive and negated inclu-
sions). W e reduce the satisfiability problem for these
constraints to one over the interpretation domain of
nonempty sets of trees. Set constraints with intersec-
tion over the domain of nonempty sets of trees enjoy
the fundamental property of independence of negated
conjuncts. This allows us to handle each negated in-
clusion separately by the entailment algorithm that we
devise. W e furthermore prove that set constraints with
intersection are equivalent t o the class of definite set
constraints and thereby settle the complexity question
of the historically first class for which the decidability
question was solved.

1 Introduction

Set constraints. Set constraints denote relations
between sets of trees. Syntactically, they are conjunc-
tions of inclusions between expressions built over vari-
ables, constructors (constants and function symbols
from a given alphabet) and a choice of set operators
that defines the specific class of set constraints. The
main application domain is set-based program analysis
and type inference for functional, imperative and logic
programming languages [3, 5, 21, 25, 35, 37, 421, but

*On leave from University of Wroclaw, Poland. Partially sup
ported by KBN grant 8 S503 022 07.

they are also used in order-sorted languages [41] and
in constraint logic programming [28].

The satisfiability problems for the various classes of
set constraints have been widely studied, in part for
their significance for applications, in part for their own
sake. Four different decidability proofs [4, 16, 8, 11
were given for the class of positive set constraints, three
[17, 2, 101 for the class of negative set constraints, and
one [ll] for the class of set constraints with projection
(which includes all above-mentioned classes). Set con-
straints were studied from the logical and topological
point of view [27, 13, 291 and also in domains different
from the Herbrand universe [19, 9, 34, 36, 121.

Definite set constraints. This was the first class
of set constraints for which decidability was shown [20,
221. It was introduced by Heintze and Jaffar and is
used for the type analysis of Prolog programs [21, 18,
231. The satisfiable constraints in this class have a
least solution (this fact is at the origin of the attribute
“definite”). Bachmair, Ganzinger and Waldmann [8]
showed that the satisfiability problem for this class is
in NEXPTIME. The relation of the class to other classes
of set constraints has not been investigated before. Due
to the the apparent difference in syntax, the two classes
of definite and of positive set constraints were often
(e.g., in [23]) considered incomparable.

Our results. We show that definite set con-
straints can be seen as a proper subclass of positive set
constraints, namely positive constraints without com-
plement and union symbols. We call them set con-
straints with intersection (the only operators forming
the expressions are constructors and intersection). We
give an algorithm, in a concise presentation, which
(1) performs the satisfiability test in exponential time,
(2) computes which variables denote the empty set in
the least solution, and (3) represents the least solution
as a tree automaton. Points (2) and (3) are important
for the application to program analysis. Our algorithm

1043-6871/97 $10.00 0 1997 IEEE 362

is the fixpoint iteration under the operator that adds
immediate consequences under 9 logical axioms. Each
consequence is an inclusion between two terms from a
set of bounded size; this is used to show the termina-
tion and to derive the upper bound. Using a reduction
from a tree automata problem (as in [15]), we give an
exponential lower bound and thus obtain that the sat-
isfiability problem is DEXPTIME-complete. This is the
first time that a class of set constraints (over a general
constructor alphabet) falls into this complexity class.
Since the classes of definite set constraints and of set
constraints with intersection are not only equivalent in
expressive power but also linearly inter-reducible, we
hereby settle also the complexity question for definite
set constraints.

We also give an exponential satisfiability algorithm
for the class of negative set constraints with intersec-
tzon which is obtained from (positive) set constraints
with intersection by allowing inclusions to be negated.
The idea that underlies the general schema of this algo-
rithm is based on the following observation: Every viiri-
able appearing in the left-hand term of a negated in-
clusion is nonempty (i.e., must have a nonempty value
in every solution). The first part of the algorithm in-
fers the set of nonempty variables in a negative set
constraint with intersection, say y (by fixpoint itera-
tion wrt. a second set of axioms). Roughly, one part
of y is satisfied by any valuation assigning nonempty
sets to nonempty variables and the empty set to the
other variables. All variables in the other part, T ~ ~ ,
are nonempty. We have thus reduced the satisfiability
problem for y to the one for yne over the interpreta-
tion domain of nonempty sets of trees. We establish
that set constraints with intersection over the domain
of nonempty sets of trees enjoy the property of inde-
pendence of negated conjuncts.' This theorem allows
us to handle each negated inclusion separately by the
entailment algorithm that we devise (as the fixpoint it-
eration wrt. a third set of axioms). The correctness; of
the theorem depends crucially on the assumption that
the constructor alphabet is infinite. The interpreta-
tion of this assumption might be that the constructor
alphabet is never fully known, or is always extensible
(which fits with the modularity in program analysis).

The independence property is a fundamental prop-
erty for constraint systems that is of further-reaching
interest. Colmerauer has introduced it for the manipu-
lation of inequations in the context of constraint lagic
programming (CLP) [14]. The property also character-

'For comparison, any class of set constraints over the domain
of possibly empty sets of trees does not have the independence
property: In the constraint f (z ,y) C 0 A z g 0 A y 0, the
conjuncts z g 0 and y 0 are not independent from each other.

izes (and is characterized by) the semantics of bottom-
up and top-down computations [32]. A general study of
the property shows its importance in various symbolic
computation areas [31]. In constraint data bases, the
property allows the efficient containment test between
constraint relations [26]. The property is necessary for
the inference of constrained functional dependencies in
polynomial time [33]. Examples of constraint systems
with the independence property are: universal closures
of the definite Horn clauses of a logic programming
language [31], term equations over finite or infinite
trees [14], linear equations over the real numbers [30],
various constraint classes over feature trees [7, 6 , 393,
infinite Boolean algebras with positive constraints [24],
and various simple subclasses of constraints (e.g., in-
equations over numbers where each variable always ap-
pears on the same side of the inequation) which may
be useful for the application considered in [33].

Related work. It is not clear whether one should
compare the algorithm given by Heintze and Jaf-
far [20, 221 with ours (the first one, for positive set con-
straints with intersection) since it takes a different in-
put than ours, Le., a class of set constraints with differ-
ent (in fact, more) set operators. Also, their main moti-
vation then was to solve the decidability question of the
satisfiability problem. The main difficulty with their
algorithm was, in fact, to prove the termination; they
do not give its complexity. Their algorithm works by
stepwise transformations of tree grammars followed by
a separate satisfiability test. Their syntax shares with
ours the use of intersection variables which, roughly,
stand for intersection terms and thus make the syn-
tax homogeneous. They have not considered negative
definite set constraints.

Friihwirth, Shapiro, Vardi and Yardeni [15] charac-
terize the membership problem in the least model of a
logic program in a subclass of so-called proper unary-
predicate programs by the same complexity. Their
lower bound proof is similar to ours (and, in fact,
inspired it); their algorithm is based on 2-way au-
tomata transformations. Both, definite set constraints
and proper programs, are used as approximations of
logic programs. Definite set constraints can express
the empty set of solutions (i.e., they can be inconsis-
tent), whereas proper programs can not. Every defi-
nite set constraint in solved form can be transformed
directly into an equivalent proper program. We do not
see, however, how a direct transformation for the case
of general (satisfiable) positive definite set constraints
would be possible. One obstacle is, for example, the
fact that f(3) C f(g) A cp is generally not equivalent
to 3 C fj A cp. The question arises whether our algo-

363

rithm (the first one) may replace theirs. This would be
the case if every proper program could be transformed
directly into an equivalent definite set constraint. It
would be interesting (but not in the scope of this pa-
per) to explore whether such a transformation exists.2

In [12] we prove the independence property for inclu-
sion constraints over nonempty sets of trees (the con-
straints use no other set operators than the construc-
tors; i.e., they consist of inclusions between Herbrand
terms). There, we can give a polynomial entailment al-
gorithm and thus show that the satisfiability problem
for negative inclusion constraints over nonempty sets is
polynomial. We did then not have the idea of solving
the satisfiability problem over the standard interpreta-
tion domain of possibly empty sets by reducing it to an
interpretation domain where the independence prop-
erty holds. In this paper, we develop the techniques
of the independence proof in [12] further in order t o
account for the intersection operator. In particular, in
the proof of Lemma 1, we give an explicit construction
of the lower bounds t i that refers to tree-paths p and to
the intersection of all upper bounds T of the variable z
(i.e., terms T such that z E T occurs).

The only class of set constraints (over the stan-
dard interpretation domain of possibly empty sets) that
has been considered previously for the incorporation of
negation is the one where all Boolean set operators (in-
tersection, union and complement) may be used. The
techniques used for solving the corresponding satisfia-
bility problem in the three approaches [17,2,10] (based
on reductions to problems over tree automata, hyper-
graphs and the monadic class, respectively) are differ-
ent from each other and are all incomparable with the
technique presented in this paper.

2 Preliminaries

We define that set constraints with intersection are
conjunctions of inclusions between terms built up with
variables, constructors and intersection. The terms can
be of arbitrary depth. For the sake of simplicity of pre-
sentation, however, we restrict ourselves to flat terms.
In Section 4 we show that this restriction does not af-
fect the generality and the complexity measure.

We assume given a ranked alphabet C fixing the
arity n 2 0 of its function symbols f , g , a , b, . . . and

2The framework of Heintze and Jaffar [23] does not yet give
such a transformation: The analysis that applied on proper
programs yields an accurate approximation involves so-called
quantified set expressions. The analysis with definite set con-
straints given in [23] is less accurate. There, for example,
the proper program P f p(f(xp,a)). q(f(x,,b)) : -p(f(x,,b)).
is non-accurately approximated by the definite set constraint
K p xp _> 1 A zP 2 1 (where 1 denotes the set of all trees).

infinite set V of variables z,y, z , U , w, w, We use
V (E) for the set of variables contained in the expression
E. We use t , 8 , . . . as meta-variables for finite trees
(i.e., ground terms), 7, 71, 72 , . . , for terms of depth 5 1,
e,&, 0 2 for intersections of terms of depth 5 1, and cp
for positive constraints and y for negative constraints
(conjunctions of positive and negated inclusions).

7 ::= 2 I f(6)

cp ::= el ce2 I cp1Acp2

e .._ ..- T I T~ n ... n-rn

::= cp I el cf e2 I y1 AY^

We write a for the tuple (~ 1 , . . . , un) of variables and f
for the tuple (t l , . . . , tn) of trees, where n 2 0 is given
implicitly (e.g., in z E f(o) by the arity of the function
symbolf). Wewr i t e f i iE fo r (u1 Cwl, ..., u n C w n } .
As is usual, we identify a conjunction of constraints
with the set of all conjuncts.

We denote Terms(cp) the set of all flat terms 7 (i.e.,
terms without intersection) occurring in ’p. We intro-
duce a fresh variable zs for each set S E Terms(cp).
We call such a variable an intersection variable. If
we use the notation zs we implicitly assume that
S C Terms(cp). The algorithm and the axioms in Ta-
ble l do not refer to constraints cp directly but to con-
straints cpR representing cp. The constraints cpR contain
neither intersection nor variables from cp (but only flat
terms over intersection variables zs).

Definition 1 (representation) The representation
of a constraint cp is the set cpR of inclusions of the form
zs 2 2s’ which we obtain by first replacing in ‘p max-
imal terms of the form 71 n . . . n T~ by qT1 ,..., T,,} , and
then replacing all remaining terms T by

Example 1 The representation of the constraint

is the constraint over intersection variables

Our interpretation domain is the set of all sets of
finite trees over the ranked alphabet E. A valuation
is a mapping assigning sets of finite trees to variables.

364

1. the relation C is reflexive and transitive

2. 2s qr} for T E S

3. f(+l}, * * ’ ,Z{U*}) E Z(f(u1, ..., U*)}

4. Z(f(U1, ..., U *) } E f b { U l } , * * - ,z(u,})
f(zs,, . . * ,zs,) E $9
f (q , * . . ,Q;) E 5s’

~ 1 5 .

f(zslus; , * * * , zs,us:,) E ZSLIS’

6. nonempty(T), T G T’ + nonempty(.r’)

7. nonempty(ii) + nonempty(f(C))

8. nonempty(f(C)),f(C) E f (U) + C E U
9. nonempty(.r),T G f (f i) , ~ C g(U) +false

Table 1. Axioms for positive constraints cp over in-
tersection variables IS where S s Terms(cp)

Each valuation a can be extended in a canonical w,ay
to a mapping a from terms to sets of finite trees.

a(f(71, * - , 712)) = {f(tl, ’ ’ ’ , tn) I ti E 4 T i)
for i = 1,. . . ,n }

a(rl n . . . n 7,) = Q (T ~) n . . . n ~ (T J

Definition 2 (n-compatibility) We say that a val-
uation a is n-compatible if

a(xs) = n a(T)
r E S

for all intersection variables zs.

A valuation a satisfies the constraint cp if for all con-
juncts 81 C 6 2 in cp we have ~ ~ (6 1) C a(&). If cp is a
constraint over intersection variables then a must also
be n-compatible to satisfy cp. We say that cp is satisfi-
able if it has a solution (i . e . , a valuation satisfying U,).

3 Satisfiability

Each axiom in Table 1 translates to a basic fact.
Axiom 2: Each set contains its intersection with other
sets. Axioms 3 and 4: The two representations of the
set f(E) that are possible in cpR are equal. In particu-
lar, for n = 0, Axiom 3 yields a x{a} for all constant
symbols a E C . Axiom 5: Given two inclusions, the

intersection of the two smaller sets is smaller than in-
tersection of the two larger sets. Axioms 6 and 7 are
used to infer the non-emptiness of terms. The expres-
sion nonempty(C) in the hypothesis of Axiom 7 stands
for the conjunction nonempty(u1) A . . . A nonempty(uk)
where IC is the arity of the function symbol f in the con-
clusion. We obtain the empty conjunction, i.e., t r u e ,
in the special case where IC = 0, i.e., f is a constant
symbol. This non-emptiness information is needed in
the Axiom 8, the decomposition rule. Note that if
one of the variables in fi is empty, then f (f i) is the
empty set regardless of the other variables’ values; then
f(a) E f (U) is satisfied, while C C ij may not be satis-
fied. Axiom 9: If each tree in some nonempty set starts
with two different function symbols then the constraint
is not satisfiable.

Proposition 1 The axioms in Table 1 are valid under
all fl-compatible interpretations over the domain of sets
of trees.

Proof. The proof is done by inspection of each axiom.
0

We next define two notions of normal form for con-
straints cp. The first one, @, is the outcome of the
algorithm (applied on the representation of cp) , from
which the second one, cps, extracts the least solution
(if a solution exists).

Definition 3 (closed form) The closed form (pc of
a constraint cp is the smallest set of constraints which
contains cpR and is closed under consequences of axioms
in Table 1.

Definition 4 (solved form) The solved form cps of
a constraint cp is the subset of (pc of all inclusions
f(E) 5 z between a nonempty term and a variable, i.e.,

cps = { f (~) E z E cpc I nonempty(f(ii)) E cpc}.

The solved form cps is essentially a representation of
a tree automaton, where variables correspond to states
and constraints to transitions. It has a canonical solu-
tion a, which is its least one; the value of the variables
that do not occur in cps is the empty set, and the val-
ues of all others can be defined by the least fixed point
solution of the corresponding regular system of equa-
tions

x = U f(C)
f(a)G-f+

for each variable x occurring in (ps.

Theorem 1 (satisfiability) A constraint cp is satisfi-
able if and only if its closed form cpc does not contain
false.

365

Proof. The “only if” direction is clear from Proposi-
tion 1. For the other direction, let cps be the solved
form of cp and a its least solution. We now prove
that a defines a solution of cpc (Claim l), that the de-
notation of the intersection variables is the expected
one (Claim 2), and, finally, that we obtain a solu-
tion p of the constraint cp by setting P(u) = c ~ (x { ~ })
for all variables U that occur in cp (Claim 3). In the
following we will say that a term r is nonempty if
nonempty(7) E c p c , otherwise we say that T is empty.

Claim 1 The valuation a satisfies all constraints in
cpc.

Proof. There are three possible forms of constraints
in cpc - c p s : x C T with empty variable x, f(u) g r
with empty f(ii), and x T with nonempty x. In
the first case, by Axiom 6 , the variable x does not
occur in pS, so a(.) = 0 and the constraint is trivially
satisfied. In the second case, by Axiom 7, there is an
empty variable ui in ii. From the previous case we know
that a(ui) = 0, so a(f (i i)) = @ and the constraint is
satisfied. Below we show that a satisfies all constraints
of the third form, that is x E r with nonempty variable
x. Again there are three possibilities:

e T is a variable, say r = y. Since x C y E cp“,
we have that for any constraint r’ E x E ips, by
transitivity r’ y E 9’. By its definition, the
valuation a satisfies x G y.

r is a constant symbol, say r = a. Since x C
a E cpc and false # c p c , there are no constraints
of the form f(6) E z in cpc with nonempty f(’ll)
and f being a symbol different from a (otherwise,
by Axioms 1 and 9, fulse E c p c) . Hence, no term
with leading symbol different from a belongs to
a (x) , and the valuation a satisfies x C a.

0 r is a composed term, say r = f (XI,. . . , x,).
Take any tree t E a(.). If t is of the form
g(t1,. . . , tm) , then there must be a constraint
g(u1, ..., um) & x E cps such that g (U) is
nonempty and ti E a(ui) for all i. Now, if g # f,
then again fulse E (pc. Hence t = f (t1 , . . . , t,)
and f(u1,. . . ,U,) C IC E ‘ps . Axiom 8 yields
ui C x, E pC, and case r = y above implies ti E
a(x,) . It follows that t E a(f(x1 . . . , x,)) holds.
Thus, the valuation a satisfies x C f (x1 , . . . ,x,).
0

Claim 2 The valuation Q is n-compatible.

Proof. The inclusion a(x{,, ,..., ,I) C (Y(X{,~}) n . . . n
a (~ { , ~ >) follows directly from Axiom 2 and Claim 1.

For the other inclusion, we will prove that for any
tree t and any two sets S,S’ 2 Terms(cp), if t E CY(ZS)

and t E a(xs1) then t E a(xsust). Then the claim
follows directly.

The proof goes by induction on the structure of t . If
t is a constant symbol, say t = a , then by the definition
of a, a C xs E cps and a C xy E cps. By Axiom 5 ,
a C xsUs’ E cps and we are done.

Now let t = f (t 1 , . . . , tn). By the definition of
a, there exist constraints f(zs,, . . . ,xs,) C xs and
f (x ~ ; , ..., 5s;) C xs) such that ti E a(xs,) and
ti E a(zs’) for i = 1,. . . ,n. The induction hy-
pothesis yields ti E a (x ~ , ~ s ~) for i = 1,. . . ,n. Ax-
iom 5 yields f(zslus; . . . ,xs,us;) xsus’ E @.
Since ti E Q(ZS,~S’) for i = 1,. . . , n, we know that
a (x ~ , ~ ~ :) # 0. ?his implies nonempty(xs,us:) E
pc by the definition of a. Thus, Axiom 7 yields
nonempty(f(zslvs;, . . . , xsnUs;)) E c p c , and, there-
fore, ~(ZS~US; , . . . , ZS,US;) C SUS E pS. Hence, by
the definition of a, t = f (t 1 , . . . , tn) E ~(xsus,). This
completes the induction step. 0

Claim 3 Let P be a valuation such that /?(U) =
a(x{,}) for all variables U occurring in cp. Then is a
solution of cp.

Proof. By Axioms 3 and 4 we have ,B(f (~1,. . . , U,)) =
a (x ~ (~ (~ , By Claim 1, p satisfies all constraints
r1 r2 E cp. By Claim 2, /? satisfies all constraints of
the form r C Tin.. .nrn and 7,n.. .nrn C r in cp. This
proves Claim 3 and completes the proof of Theorem 1.
U

The solution p of cp, which is induced by the least so-
lution a of cps via the equality p (~) = a (~ { ~ }) , is the
least solution of cp. A variable U has the empty set as
value under ,6 if and only if z { ~) does not occur in cps.

4 Complexity

If the input constraint of size n contains nested ex-
pressions, we flatten it (in the standard way). We may
hereby introduce new variables, but the total number
of variables and the size of Terms(cp) remain linear in n.

We define the algorithm by fixed point iteration. We
start with the representation cpR of cp, as defined in
Definition 1. At each iteration step, we add the direct
consequences under the axioms in Table 1 of the set
of constraints derived so far (we add x C x only if x
occurs). When the fixed point is reached, the obtained
set (pc is the closed form of cp, as defined in Defini-
tion 3. Hence, by Theorem 1, satisfiability is tested by
checking if cpc contains false. The solved form cps of

366

cp, as defined in Definition 4, gives the explicit repre-
sentation of the least solution of cp.

Upper bound. How many iteration are possible
before the fixed point is reached? For an input q) of
size n, the size of Terms(cp) is bounded by cn for same
constant c. Thus, we have to introduce 2Cn intersec-
tion variables. The terms that occur in cpc are either
any of these variables, or flat terms built up from these
variables and function symbols from E. The number
of such terms is bounded by /C l . (2 c n) k where IC is the
maximal arity of a function symbol in C. The con-
straints in the closed form of cp are either inclusions
between pairs of terms, or non-emptiness constraints
for terms. Hence there are at most (/El2 + 1) . (2cn)2k
constraints. The number of iterations is bounded by
the number of constraints in cpc.

How much time do we need in each iteration? The
most costly operation is adding consequences of Ax-
iom 5. This axiom involves 2 k + 2 variables. Therefore,
checking whether there are consequences under this ax-
iom requires 0 ((2 c n) 2 k + 2) time. Hence, the whole algo-
rithm can be done in 0(2”,) time, where the constant
c’ depends only on the ranked alphabet E.

Lower bound. We prove the DEXPTIME-hardness
of the satisfiability problem for set constraints with
intersection by the reduction of the problem of .the
emptiness of the intersection of a sequence of tree
automata, a known DEXPTIME-complete problem
(see [15] and [38]).

Given a sequence of n bottom-up tree automata
AI, . . . , A,, we introduce a fresh set variable q for each
state q of each automaton. We assume wlog. that
each tree automaton Ai has only one final state, which
note qAi . w e simulate each transition rule of the form
f (q 1 , . . . , q n) + q by a set constraint f(q1,. . . , 4,) CI q.
It is easy to see that the intersection of the lan-
guages recognized by the automata is empty if amd
only if the conjunction of these constraints together
with qAl r l . . . rl QA, a rl b is satisfiable, where a and
b are two different constant symbols.

The following complexity characterization is an imcne-
diate consequence of the analysis above.

Theorem 2 The satisfiability problem for positive set
constraints with intersection is DEXPTIME-complete.

2’. x c xs,x 5 XS’ + x c XSUS’

xs G f(XS1,...,XS,) + 5‘.
xs c f(xs;, . . .,xs;) 1

xs c f(Xs1us; , . . ., XS,USL)

7’. nonempty(f(ii)) + nonempty(ii)

10. T T‘ + nonempty(.r)

11. nonempty(x), cp, y E x + false if 2 ZP y
for p # E

Table 2. Additional axioms for C2-closure of neg-
ative constraints y over intersection variables xs
where S c Terms(y)

5 Entailment, independence, negation

The three notions that we consider in this section are
closely connected with each other. A constraint sys-
tem has the independence property if the constraints
cannot express (2 . e., entail) disjunctions. Formally,
given the constraints cp and (PI, . . . , cpn, the implication
cp --+ cp1 V . . . V cp, is valid iff one of the n implications
cp + cp1, . . . , cp + y n is valid. An equivalent formula-
tion of the property states that the satisfiability prob-
lem of a conjunction with any number of negated con-
straints can be reduced to “independent” sub-problems
with exactly one negated constraint. Namely, the con-
junction cp A lcp1 A . . . A -pn is satisfiable iff the n con-
junctions cp A lcp1, . . . , cp A -19, are satisfiable. As a
direct algorithmic consequence, the satisfiability prob-
lem of the conjunction of cp with n negated constraints
can be reduced to n entailment problems (i.e., the
dual of the validity of the n implications cp + 9 1 , . . . ,
+ vn).
From now on we assume that the constructor alpha-

bet is infinite.3 Our approximation of the upper bound
in Theorem 5 requires that the maximal arity of func-
tion symbols occurring in the constraint is bounded by
a constant.

The formulation of the next results requires a series
of technical definitions.

3The results in [lo] might suggest that the problem becomes
trivial under this assumption. This is not the case: The con-
straint z C a, y~ C f(z), y~ s f(z), y~ e 0, y2 e y~ is not satisfi-
able, while the corresponding monadic formula has a model.

367

12. f(e) c f(i j) +) a ij

f(e) f(f) i+ e E 5
f (f) f(ij) +) 5c U if f (f) occurs in cp

13. x c t + t C x

Table 3. Additional axioms for C3-closure of positive
constraints cp over nonempty intersection variables
xs where S 2 Terms(cp)

Definition 5 (minimal upper bound)
Given a positive constraint cp, we call f(a) a proper
upper bound of x if x C f(ii) E cp. We say that f(G)
is a minimal upper bound of x if ti E ij E cp for each
proper upper bound f (i j) of x.

If a constraint is closed under Axiom 5‘ in Table 2,
then every variable that has a proper upper bound has
a minimal upper bound.

Definition 6 (reachability ap) If x has no proper
upper bound in cp then x ag x. Otherwise, let f(G)
be the minimal upper bound of x. Then z y if
ui “ p Y.

We next define three notions of closed forms of con-
straints, referring to axioms in Table 1, 2 and 3. Ax-
iom 11 in Table 2 expresses an “occurs-check.” For
example, the constraint y = {x g x ‘ , x f (y) ,y x}
is unsatisfiable.

The axioms in Table 3 introduce a new type of con-
straints, namely inclusions between finite trees t of ar-
bitrary depth and terms T . The restriction in the for-
mulation of Axiom 12 is needed for algorithmic reasons.
Without it, the closure of, for example, the constraint
a C z A f(x) 2 x under the consequences of the axiom
would be an infinite set of constraints. (This is not a
problem in the case of upper bounds: A variable can
have only one ground proper upper bound.) In order
to understand Axiom 13, note that if Q satisfies x C t
then a(.) = { t} .

Definition 7 (closed forms rC2, y;;, f 3)

The Cz-closed form yc2 of a constraint 7 is the smallest
set of constraints that contains y R and is closed under
consequences of axioms in Tables 1 and 2.
The ne-Cz-closed form 7:: of a constraint y is the
(positive) constraint

7:; = { T I 2 72 I nonempty(T1) E yC2}.

9

The C3-closed form yc3 of a constraint y is the smallest
set of constraints which contains y$$ and is closed un-
der consequences of Axioms 1-5 in Table 1, Axioms 2’
and 5’ in Table 2, and Axioms 12 and 13 in Table 3.

The next lemma, which employs the notions of
closed forms defined above, expresses a necessary con-
dition for the entailment of a constraint x y.

Lemma 1 Let cp be a positive constraint. If false #
cpc2 then there exists a valuation a mapping variables
in V(cp$;) t o nonempty sets of trees that satisfies

cp% A x g y .
aIecpc3

Proof. Since cpc2 is closed under Axiom 11 in Table 2,
the set { p I 3y x ap y} is finite for each nonempty
variable x. For each such pair (x , p) we define a tree
t i . If x ap y and y t E cpcs for some tree t then
we set t i = t . Otherwise we define t i by induction
on the length of p , starting from the longest and then
proceeding to shorter paths.

Let p be a maximal path such that x ap y and
y t # cpc3 for any tree t . Let a$ be a fresh constant
symbol (here we use the assumption that C is infinite)
and put t i = a$.

Now suppose t i is defined for all paths p of length
n, and we define it for paths of length n - 1. Let
x ap y, and let f(G) be the minimal upper bound
of y. Then, for i = 1 ,..., n where n = ar i t y (f) , we
have x aP.a U(and ti’i is already defined. We put

We define a lower bound completion plbc of cp as
cpcs U { t i y I x ap y}. By construction qlbc is
closed under all axioms relevant for C3-completion, ex-
cept transitivity.

We define a as the least solution of the system of
equations

t i = f(tg.1,. . . ,ti.”).

x = U f (i i) U U t .
f(fKs€9:.2 tCy,yCx€cp‘bC

We note the following facts:

If there exists a tree t such that x C t E p c 2 ,

then a(.) = {t}; otherwise, t; does not occur in

If t i does not occur in cpca, then it occurs only
once in c p l b c .

This is because t; # t$ for (p , x) # (p’, d).

The valuation Q satisfies &;.
The proof is analogous to the proof of Theorem 1
(Claims 1 and 2).

pcz.

368

tC E c y (%) iffy
The proof goes by induction on the struct>ure

The valuation cy satisfies l\2cy61v~3 z g y.
This follows from the fact that t', E a(y) iff 3: E

z E cpc3 where zap y.

of t i .

-

y E pC3.

This summarizes the proof of Lemma 1.

Example 2 The lower bound completion plbc of the
constraint

0

cp = { z C g (w) , u S f (z) ,
2) G f b) , f k) E 2,

d u , U) c Y 1
contains the constraints

al.l
"I.} EX{%}, a;;"., C%{%},

f (4 ; J G z { u } , f (4fm}) G "{U},
9(f(a:;J f(a&?*,)) E "(2).

c y (. { % }) = {g(f(aS;',,), fbSf=}))),
f f (q u }) 2 tf(a;;m})h
Q(.{v}) 1 {f(af;20,)),
+{I}) 2 tfn(a;;a}), fn(a;&) I n E NI,
"("(Y}) 2 {g(f(a&h fb:;*})n.

Morover, we have that

We here write "3" because there are more lower
bounds for these variables. Note that we have to use
two different constants to obtain t${*, $ c y (q y }) .

We need the notions of entailment and independence
for constraints over the domain of nonempty sets ,for
the satisfiability test on negative constraints over the
domain of possibly empty sets.

Definition 8 (entailment ++ over P+(Tc))
Given two positive constraints cp and cp', we write
cp ++ cp' if every valuation over the domain P+(Tz) of
nonempty sets of trees that satisfies cp also satisfies IQ'.

Fkom now on, we use the metavariables S and S'
referring to sets of terms of the given constraint. Thus,
n S is another notation for a term 8.

The next result yields an algorithm for testing en-
tailment.

Theorem 3 (entailment) If the positive constraint
cp is satisfiable over the domain P+(Tc), and if we set
cp' = cp U {nonempty(z) I z E V(cp)}, then

cp ++ n S E nS' if and only if xs E zst E (v')'~.

Proof. By the validity of our axioms, false $ (c p ') c z ,
Using Lemma 1, the proof then follows the one of
Claim 3 of Theorem 1. 0

We formulate the independence property as the in-
dependence of negated conjuncts in a constraint y.

Theorem 4 (independence) If the positive con-
straint cp is satisfiable over P+(Tz), then the constraint

CPU U tnsi g ns;}

cp U ns;}

i

is satisfiable over P+(Tc) if and only if each constraint

is satisfiable over P+(Tc) for every i.

Proof. If cpU {nSi zf nS;} is satisfiable for all i, then,
by Theorem 3, zsi E zs: $! (cp')c3. By Lemma 1,
there exists a valuation cy for which the corresponding
valuation (defined as in Claim 3 of Theorem 1) satisfies

0

The following characterization of the satisfiability
of negative constraints y is based on a decomposition
of y and the independence property. Together with
Theorem 3 it yields a satisfiability test for y.

Theorem 5 (negation) Given the constraint

U um si g ns;}.

7 = AJ tns i E nsrh
i

we set N(y) = {U E V(y) I nonempty(z{,}) E 7'') and

v n e = (01 s 02 E cp I V (& E 02) E N (y) } .

q n e F+ nsi ~ n s , !
Then y is satisfiable if and only if

for all i such that XS; is nonempty in ycz.

Proof. The "only if" direction of the proof is obvious.
For the "if" direction, suppose vne k+ n Si g nS,l for
all i. By the independence theorem,

yne = pne uutnsi g ns,!}
i

is satisfiable over the domain of nonempty sets. If /? is a
solution of this constraint, we update it to a solution of
y (over the original interpretation domain) by putting

0

Theorem 6 The satisfiability problem for negative set
constraints with intersection is DEXPTIME-complete.

Proof. We apply the complexity analysis of Section 4
to the new sets of axioms. 0

@ (U) = 0 for all v E V(y) - N(y) .

369

6 Definite set constraints

In this section we show that set constraints with in-
tersection are equivalent in expressive power with def-
inite set constraints and that both classes are linearly
inter-reduci ble.

We need to introduce the set operation of projection.
The projection fGt(S) of a set S on the i-th position
with respect to the constructor symbol f is the set of
all subtrees of those trees in S that are labeled with f.

Definite set constraints are conjunctions of inclusions of
the form expl exp2, where the left-hand side expl is
built up using set variables, constants, function appli-
cations, projections, set union and intersection, while
the right-hand side exp2 is built up using set variables,
constants and function applications only.4

To definite constraints. Constraints that are in
the language of set constraints with intersection and
not in the language of definite set constraints con-
tain an inclusion with intersection on its right-hand
side. Nested occurrences of intersection may be re-
placed by the introduction of new variables. Unnested
occurrences of intersection on the right-hand side of
an inclusion may be removed according to the rule
exp G exp1 n exp2 iff exp expl and exp G ezp2.

From definite constraints. We have to remove
all occurrences of unions and projections on the left-
hand sides of inclusions. Removing unions on the left-
hand side is analogous to removing intersections on the
right-hand side. The remaining problem is to remove
projections. Again, nested occurrences of projection
may be replaced by the introduction of new variables.
We remove unnested occurrences of projection using
the equivalence

T) C f (T, . . .Y,. . .

where Y occurs on the i-th position of the term
f (T , . . . ,Y,. . . ,T). Here, T denotes the set of all
terms. The symbol T is not in the signature, but it
is sufficient to add the conjunction of the inclusions
f (T , . . . , T) 5 T and z C T for each function symbol
f E C and each variable x that occurs in the constraint.

The following characterization follows from the above
reductions and Theorem 1. It continues to hold for
negative definite set constraints.

41n [20, 211 the relation 2 is used instead of C and left-hand
and right-hand sides are interchanged.

Theorem 7 The satisfiability problem for definite set
constraints is DEXPTIME-complete.

7 Conclusion

We have singled out a class of set constraints by a
simple condition on the syntax. We have given an al-
gorithm, in a concise representation, which performs
the satisfiability test in exponential time. The algo-
rithm computes which variables denote the empty set
in the least solution and presents the least solution as
a tree automaton, which is important for its use in
program analysis. We have proved the DEXPTIME-
completeness of the satisfiability problem and thus
given the first such complexity characterization for a
general class of set constraints (i.e., over a general
ranked alphabet). We have shown the equivalence be-
tween this class and the class of definite set constraints
regarding expressiveness and complexity. We could
thus settle the complexity question of that class. We
have then incorporated negation into our class and have
shown that the complexity of the satisfiability problem
remains the same. We have built on previous work of
ours to prove the independence property for our class of
set constraints if the empty set is excluded as a value.
We give an entailment algorithm which works under
the same condition. Starting from a simple observa-
tion, we have shown how one can reduce the original
satisfiability problem to one where we can exploit the
independence property and the entailment algorithm.

This work fits into a more general line of research.
The satisfiability problem for several classes of set con-
straints is NEXPTIME-complete [8, 40, 10, 111. The
question arises for which natural and useful subclasses
faster algorithms testing satisfiability exist. Aiken,
Kozen, Vardi, and Wimmers [l] give a detailed analy-
sis of the complexity of subclasses of positive set con-
strains which are obtained by restricting the ranked
alphabet of constructor symbols (for example, positive
set constraints over unary trees have a DEXPTIME-
complete satisfiability problem). It is folklore that the
problem can be solved in cubic time for atomic set con-
straints, which are positive set constraints without any
set operation. It is trivial to see that the algorithm
presented in this paper can be modified and combined
with the polynomial entailment algorithm in [12] to
yield a polynomial satisfiability test for negative atomic
set constraints. Still nothing (except DEXPTIME-
hardness) is known about set constraints with unaon.
The problem is not dual to the one for set constraints
with intersection (for example, even over the domain
of nonempty sets of trees f(3) f(y) U f (2) is not
equivalent to 3 G jj U 2) .

370

References [14] A. Colmerauer. Equations and inequations on finite
and infinite trees. In Proceedings of the 2nd Interna-

A. Aiken, D. Kozen, M. Vardi, and E. L. Wimmers
The complexity of set constraints. In 1993 Conferenct:
on Computer Science Logic, LNCS 832, pages 1-17.
Springer-Verlag, Sept. 1993.
A. Aiken, D. Kozen, and E. L. Wimmers. Decidabil-
ity of systems of set constraints with negative con-
straints. Information and Computation, 122(1):30-44:
Oct. 1995.
A. Aiken and B. Murphy. Static type inference in a d y
namically typed language. In Eighteenth Annual ACM
Symposium on Principles of Programming Languages,
pages 279-290, January 1991.
A. Aiken and E. L. Wimmers. Solving systems of
set constraints (extended abstract). In Seventh An,.
nual IEEE Symposium on Logic in Computer Science,
pages 329-340, 1992.
A. Aiken, E. L. Wimmers, and T. Lakshman. Soft
typing with conditional types. In Twenty-First An-
nual ACM Symposium on Principles of Programming
Languages, Portland, Oregon, Jan. 1994.
H. Ait-Kaci and A. Podelski. Entailment and dis-
entailment of order-sorted feature constraints. In
A. Voronkov, editor, Proceedings of the Fourth Inter-
national Conference on Logic Programming and Au-
tomated Reasoning, Springer LNAI 698, pages 1-18.
Springer-Verlag, July 1993.
H. Kit-Kaci, A. Podelski, and G. Smolka. A feature-
based constraint system for logic programming with
entailment. Theoretical Computer Science, 122(1--
2):263-283, Jan. 1994.
L. Bachmair, H. Ganzinger, and U. Waldmann. Set
constraints are the monadic class. In Eighth An-
nual IEEE Symposium on Logic in Computer Science,
pages 75-83, 1993.
W. Charatonik. Set constraints in some equational
theories. In 1st International Conference Constraints
in Computational Logics, LNCS 845, pages 304-319.
Springer-Verlag, 1994. Also to appear in Information
and Computation.
W. Charatonik and L. Pacholski. Negative set con-
straints with equality. In Ninth Annual IEEE Sym-
posium on Logic in Computer Science, pages 128-136,
1994.
W. Charatonik and L. Pacholski. Set constraints with
projections are in NEXPTIME. In Proceedings G$
the 35th Symp. on Foundations of Computer Science,
pages 642-653, 1994.
W. Charatonik and A. Podelski. The independence
property of a class of set constraints. In Conference o:n
Principles and Practice of Constraint Programming,
LNCS 1118, pages 76-90. Springer-Verlag, 1996.
A. Cheng and D. Kozen. A complete Gentzen-style ax-
iomatization for set constraints. In ICALP: Annual In.-
temational Colloquium on Automata, Languages and
Programming, LNCS 1099, 1996.

37 1

- -
tional Conference on Fifth Generation Computer Sys-
tems, pages 85-99, 1984.

[15] T. Friihwirth, E. Shapiro, M. Vardi, and E. Yardeni.
Logic programs as types for logic programs. In Sizth
Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 300-309, July 1991.

[16] R. Gilleron, S. Tison, and M. Tommasi. Solving sys-
tems of set constraints using tree automata. In 10th
Annual Symposium on Theoretical Aspects of Com-
puter Science, LNCS 665, pages 505-514. Springer-
Verlag, 1993.

[17] R. Gilleron, S. Tison, and M. Tommasi. Solving sys-
tems of set constraints with negated subset relation-
ships. In Proceedings of the 34th Symp. on Founda-
tions of Computer Science, pages 372-380, 1993. A
full version Technical report IT 24 7, Laboratoire d 'In-
formatique Fondamentale d e Lille.

[18] N. Heintze. Set based program analysis. PhD thesis,
School of Computer Science, Carnegie Mellon Univer-
sity, 1992.

[19] N. Heintze. Set based analysis of arithmetic. Draft
manuscript, July 1993.

[20] N. Heintze and J . Jaffar. A decision procedure for a
class of set constraints (extended abstract). In Fifth
Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 42-51, 1990.

[21] N. Heintze and J. Jaffar. A finite presentation theorem
for approximating logic programs. In Seventeenth An-
nual ACM Symposium on Principles of Programming
Languages, pages 197-209, January 1990.

[22] N. Heintze and J. J a a r . A decision procedure for a
class of set constraints. Technical report, School of
Computer Science, Carnegie Mellon University, Feb.
1991. 42 pages.

[23] N. Heintze and J. Jaffar. Set constraints and set-based
analysis. In Proceedings of the Workshop on Principles
and Practice of Constraint Programming, LNCS 874,
pages 281-298. Springer-Verlag, 1994.

[24] R. Helm, K. Marriott, and M. Odersky. Constraint-
based query optimization for spatial databases. In
Tenth ACM Symposium on the Principles of Database
Systems, pages 181-191, Denver, CO, May 1991.

[25] N. D. Jones and S. S. Muchnick. Flow analysis and
optimization of lisp-like structures. In Sizth Annual
ACM Symposium on Principles of Programming Lan-
guages, pages 244-256, January 1979.

[26] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Con-
straint query languages. Journal of Computer and Sys-
tem Sciences, 51:26-52, 1995. (Preliminary version in
Proc. 9th ACM PODS, 299-313, 1990.).

[27] D. Kozen. Logical aspects of set constraints. In 1993
Conference on Computer Science Logic, LNCS 832,
pages 175-188. Springer-Verlag, Sept. 1993.

[28] D. Kozen. Set constraints and logic programming (ab-
stract). In 1st International Conference Constraints
in Computational Logics, LNCS 845. Springer-Verlag,
1994. Also to appear in Information and Computation.

[29] D. Kozen. Rational spaces and set constraints. In
TAPSOFT: 6th International Joint Conference on
Theory an# Practice of Software Development, LNCS
915, pages 42-61. Springer-Verlag, 1995.

[30] J, Lassez and K. McAloon. Applications of a canoni-
cal form for generalized linear constraints. In Proceed-
ings of the International Conference on 5th Genera-
tion Computer Systems, pages 703-710, Tokyo, Japan,
Dec. 1988.

131) J. L. Lassez and K. McAloon. A constraint sequent
calculus. In Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 52-61, June 1990.

[32] M. J. Maher. A logic programming view of CLP. In
D. S. Warren, editor, Proceedings of the 10th Interna-
tional Conference on Logic Programming, pages 737-
753, Budapest, Hungary, June 1993. The MIT Press.

[33] M. J. Maher. Constrained dependencies. In U. Mon-
tanari, editor, Proceedings of the First International
Conference on Principles and Practice of Constraint
Programming (CP’95), Lecture Notes in Computer
Science, pages 170-185, Cassis, France, 19-22 Sept.
1995. Springer-Verlag.

[34] D. A. McAllester, R. Givan, C. Witty, and D. Kozen.
Tarskian set constraints. In Proceedings, llth An-
nual IEEE Symposium on Logic in Computer Scd-
ence, pages 138-147, New Brunswick, New Jersey,
July 1996. IEEE Computer Society Press.

[35] P. Mishra and U. Reddy. Declaration-free type check-
ing. In Twelfth Annual ACM Symposium on the Prin-
ciples of Programming Languages, pages 7-21, 1985.

[36] M. Muller, 3. Niehren, and A. Podelski. Inclusion con-
straints over non-empty sets of trees. To appear in M.
Dauchet, editor, Proceedings of the 9th International
Joint Conference on Theory and Practice of Software
Development (TAPSOFT), Springer LNCS, Springer-
Verlag, April 1997.

[37] J. C. Reynolds. Automatic computation of data set
definitions. Information Processing, 68:456-461, 1969.

[38] H. Seidl. Haskell overloading is DEXPTIME-
complete. Information Processing Letters, 52:57-60,
1994.

[39] G. Smolka and R. Treinen. Records for Logic Program-
ming. Journal of Logic Programming, 18(3):229-258,
Apr. 1994.

[40] K. Stefansson. Systems of set constraints with nega-
tive constraints are NEXPTIME-complete. In Ninth
Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 137-141, 1994.

[41] T. E. Uribe. Sorted unification using set constraints.
In 1 l th International Conference on Automated De-
duction, LNAI 607, pages 163-177. Springer-Verlag,
1992.

[42] J. Young and P. O’Keefe. Experience with a type eval-
uator. In D. Bj~rner, A. P. Ershov, and N. D. Jones,
editors, Partial Evaluation and Mixed Computation,
pages 573-581. North-Holland, 1988.

372

