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Abstract 

Set  constraints are inclusions between expressions de- 
noting sets of trees. The eficiency of their satisfiabil- 
i ty  test is a central issue in set-based program analy- 
sis, their main  application domain. W e  introduce the 
class of set constraints with intersection (the only op- 
erators forming the expressions are constructors and 
intersection) and show that i ts  satisfiability problem 
as DEXPTIME-complete. The complexity characteriza- 
tion continues to  hold f o r  negative set constraints with 
intersection (which have positive and negated inclu- 
sions). W e  reduce the satisfiability problem for  these 
constraints to  one over the interpretation domain of 
nonempty sets of trees. Set  constraints with intersec- 
tion over the domain of nonempty sets of trees enjoy 
the fundamental property of  independence of negated 
conjuncts. This allows us to  handle each negated in- 
clusion separately by the entailment algorithm that we 
devise. W e  furthermore prove that set constraints with 
intersection are equivalent t o  the class of definite set 
constraints and thereby settle the complexity question 
of the historically first class for  which the decidability 
question was solved. 

1 Introduction 

Set constraints. Set constraints denote relations 
between sets of trees. Syntactically, they are conjunc- 
tions of inclusions between expressions built over vari- 
ables, constructors (constants and function symbols 
from a given alphabet) and a choice of set operators 
that defines the specific class of set constraints. The 
main application domain is set-based program analysis 
and type inference for functional, imperative and logic 
programming languages [3, 5, 21, 25, 35, 37, 421, but 
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they are also used in order-sorted languages [41] and 
in constraint logic programming [28]. 

The satisfiability problems for the various classes of 
set constraints have been widely studied, in part for 
their significance for applications, in part for their own 
sake. Four different decidability proofs [4, 16, 8, 11 
were given for the class of positive set constraints, three 
[17, 2, 101 for the class of negative set constraints, and 
one [ll] for the class of set constraints with projection 
(which includes all above-mentioned classes). Set con- 
straints were studied from the logical and topological 
point of view [27, 13, 291 and also in domains different 
from the Herbrand universe [19, 9, 34, 36, 121. 

Definite set constraints. This was the first class 
of set constraints for which decidability was shown [20, 
221. It was introduced by Heintze and Jaffar and is 
used for the type analysis of Prolog programs [21, 18, 
231. The satisfiable constraints in this class have a 
least solution (this fact is at the origin of the attribute 
“definite”). Bachmair, Ganzinger and Waldmann [8] 
showed that the satisfiability problem for this class is 
in NEXPTIME. The relation of the class to other classes 
of set constraints has not been investigated before. Due 
to the the apparent difference in syntax, the two classes 
of definite and of positive set constraints were often 
(e.g., in [23]) considered incomparable. 

Our results. We show that definite set con- 
straints can be seen as a proper subclass of positive set 
constraints, namely positive constraints without com- 
plement and union symbols. We call them set con- 
straints with intersection (the only operators forming 
the expressions are constructors and intersection). We 
give an algorithm, in a concise presentation, which 
(1) performs the satisfiability test in exponential time, 
(2) computes which variables denote the empty set in 
the least solution, and (3) represents the least solution 
as a tree automaton. Points (2) and (3) are important 
for the application to program analysis. Our algorithm 
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is the fixpoint iteration under the operator that adds 
immediate consequences under 9 logical axioms. Each 
consequence is an inclusion between two terms from a 
set of bounded size; this is used to  show the termina- 
tion and to derive the upper bound. Using a reduction 
from a tree automata problem (as in [15]), we give an 
exponential lower bound and thus obtain that the sat- 
isfiability problem is DEXPTIME-complete. This is the 
first time that a class of set constraints (over a general 
constructor alphabet) falls into this complexity class. 
Since the classes of definite set constraints and of set 
constraints with intersection are not only equivalent in 
expressive power but also linearly inter-reducible, we 
hereby settle also the complexity question for definite 
set constraints. 

We also give an exponential satisfiability algorithm 
for the class of negative set constraints with intersec- 
tzon which is obtained from (positive) set constraints 
with intersection by allowing inclusions to  be negated. 
The idea that underlies the general schema of this algo- 
rithm is based on the following observation: Every viiri- 
able appearing in the left-hand term of a negated in- 
clusion is nonempty (i.e., must have a nonempty value 
in every solution). The first part of the algorithm in- 
fers the set of nonempty variables in a negative set 
constraint with intersection, say y (by fixpoint itera- 
tion wrt. a second set of axioms). Roughly, one part 
of y is satisfied by any valuation assigning nonempty 
sets to  nonempty variables and the empty set to  the 
other variables. All variables in the other part, T ~ ~ ,  
are nonempty. We have thus reduced the satisfiability 
problem for y to  the one for yne over the interpreta- 
tion domain of nonempty sets of trees. We establish 
that set constraints with intersection over the domain 
of nonempty sets of trees enjoy the property of inde- 
pendence of negated conjuncts.' This theorem allows 
us to  handle each negated inclusion separately by the 
entailment algorithm that we devise (as the fixpoint it- 
eration wrt. a third set of axioms). The correctness; of 
the theorem depends crucially on the assumption that 
the constructor alphabet is infinite. The interpreta- 
tion of this assumption might be that the constructor 
alphabet is never fully known, or is always extensible 
(which fits with the modularity in program analysis). 

The independence property is a fundamental prop- 
erty for constraint systems that is of further-reaching 
interest. Colmerauer has introduced it for the manipu- 
lation of inequations in the context of constraint lagic 
programming (CLP) [14]. The property also character- 

'For comparison, any class of set constraints over the domain 
of possibly empty sets of trees does not have the independence 
property: In the constraint f ( z ,y )  C 0 A z g 0 A y 0, the 
conjuncts z g 0 and y 0 are not independent from each other. 

izes (and is characterized by) the semantics of bottom- 
up and top-down computations [32]. A general study of 
the property shows its importance in various symbolic 
computation areas [31]. In constraint data bases, the 
property allows the efficient containment test between 
constraint relations [26]. The property is necessary for 
the inference of constrained functional dependencies in 
polynomial time [33]. Examples of constraint systems 
with the independence property are: universal closures 
of the definite Horn clauses of a logic programming 
language [31], term equations over finite or infinite 
trees [14], linear equations over the real numbers [30], 
various constraint classes over feature trees [7, 6 ,  393, 
infinite Boolean algebras with positive constraints [24], 
and various simple subclasses of constraints (e.g., in- 
equations over numbers where each variable always ap- 
pears on the same side of the inequation) which may 
be useful for the application considered in [33]. 

Related work. It is not clear whether one should 
compare the algorithm given by Heintze and Jaf- 
far [20, 221 with ours (the first one, for positive set con- 
straints with intersection) since it takes a different in- 
put than ours, Le., a class of set constraints with differ- 
ent (in fact, more) set operators. Also, their main moti- 
vation then was to solve the decidability question of the 
satisfiability problem. The main difficulty with their 
algorithm was, in fact, to  prove the termination; they 
do not give its complexity. Their algorithm works by 
stepwise transformations of tree grammars followed by 
a separate satisfiability test. Their syntax shares with 
ours the use of intersection variables which, roughly, 
stand for intersection terms and thus make the syn- 
tax homogeneous. They have not considered negative 
definite set constraints. 

Friihwirth, Shapiro, Vardi and Yardeni [15] charac- 
terize the membership problem in the least model of a 
logic program in a subclass of so-called proper unary- 
predicate programs by the same complexity. Their 
lower bound proof is similar to ours (and, in fact, 
inspired it); their algorithm is based on 2-way au- 
tomata transformations. Both, definite set constraints 
and proper programs, are used as approximations of 
logic programs. Definite set constraints can express 
the empty set of solutions (i.e., they can be inconsis- 
tent), whereas proper programs can not. Every defi- 
nite set constraint in solved form can be transformed 
directly into an equivalent proper program. We do not 
see, however, how a direct transformation for the case 
of general (satisfiable) positive definite set constraints 
would be possible. One obstacle is, for example, the 
fact that f(3) C f(g) A cp is generally not equivalent 
to  3 C fj A cp. The question arises whether our algo- 
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rithm (the first one) may replace theirs. This would be 
the case if every proper program could be transformed 
directly into an equivalent definite set constraint. It 
would be interesting (but not in the scope of this pa- 
per) to explore whether such a transformation exists.2 

In [12] we prove the independence property for inclu- 
sion constraints over nonempty sets of trees (the con- 
straints use no other set operators than the construc- 
tors; i.e., they consist of inclusions between Herbrand 
terms). There, we can give a polynomial entailment al- 
gorithm and thus show that the satisfiability problem 
for negative inclusion constraints over nonempty sets is 
polynomial. We did then not have the idea of solving 
the satisfiability problem over the standard interpreta- 
tion domain of possibly empty sets by reducing it to an 
interpretation domain where the independence prop- 
erty holds. In this paper, we develop the techniques 
of the independence proof in [12] further in order t o  
account for the intersection operator. In particular, in 
the proof of Lemma 1, we give an explicit construction 
of the lower bounds t i  that refers to  tree-paths p and to  
the intersection of all upper bounds T of the variable z 
(i.e., terms T such that z E T occurs). 

The only class of set constraints (over the stan- 
dard interpretation domain of possibly empty sets) that 
has been considered previously for the incorporation of 
negation is the one where all Boolean set operators (in- 
tersection, union and complement) may be used. The 
techniques used for solving the corresponding satisfia- 
bility problem in the three approaches [17,2,10] (based 
on reductions to problems over tree automata, hyper- 
graphs and the monadic class, respectively) are differ- 
ent from each other and are all incomparable with the 
technique presented in this paper. 

2 Preliminaries 

We define that set constraints with intersection are 
conjunctions of inclusions between terms built up with 
variables, constructors and intersection. The terms can 
be of arbitrary depth. For the sake of simplicity of pre- 
sentation, however, we restrict ourselves to flat terms. 
In Section 4 we show that this restriction does not af- 
fect the generality and the complexity measure. 

We assume given a ranked alphabet C fixing the 
arity n 2 0 of its function symbols f , g , a ,  b, . . . and 

2The framework of Heintze and Jaffar [23] does not yet give 
such a transformation: The analysis that applied on proper 
programs yields an accurate approximation involves so-called 
quantified set expressions. The analysis with definite set con- 
straints given in [23] is less accurate. There, for example, 
the proper program P f p(f(xp,a)). q(f(x,,b)) : -p(f(x,,b)). 
is non-accurately approximated by the definite set constraint 
K p  xp _> 1 A zP 2 1 (where 1 denotes the set of all trees). 

infinite set V of variables z,y, z ,  U ,  w, w, . . .. We use 
V ( E )  for the set of variables contained in the expression 
E.  We use t ,  8 , .  . . as meta-variables for finite trees 
(i.e., ground terms), 7, 71, 72 ,  . . , for terms of depth 5 1, 
e,&,  0 2  for intersections of terms of depth 5 1, and cp 
for positive constraints and y for negative constraints 
(conjunctions of positive and negated inclusions). 

7 ::= 2 I f(6) 

cp ::= el ce2 I cp1Acp2 

e .._ ..- T I T~ n ...  n-rn 

::= cp I el cf e2 I y1  AY^ 

We write a for the tuple ( ~ 1 ,  . . . , un) of variables and f 
for the tuple ( t l ,  . . . , tn) of trees, where n 2 0 is given 
implicitly (e.g., in z E f(o) by the arity of the function 
symbolf). Wewr i t e f i iE fo r (u1  Cwl,  ..., u n C w n } .  
As is usual, we identify a conjunction of constraints 
with the set of all conjuncts. 

We denote Terms(cp) the set of all flat terms 7 (i.e., 
terms without intersection) occurring in ’p. We intro- 
duce a fresh variable zs for each set S E Terms(cp). 
We call such a variable an intersection variable. If 
we use the notation zs we implicitly assume that 
S C Terms(cp). The algorithm and the axioms in Ta- 
ble l do not refer to  constraints cp directly but to con- 
straints cpR representing cp. The constraints cpR contain 
neither intersection nor variables from cp (but only flat 
terms over intersection variables zs). 

Definition 1 (representation) The representation 
of a constraint cp is the set cpR of inclusions of the form 
zs 2 2s’ which we obtain by first replacing in ‘p max- 
imal terms of the form 71 n . . . n T~ by qT1 ,..., T,,} ,  and 
then replacing all remaining terms T by 

Example 1 The representation of the constraint 

is the constraint over intersection variables 

Our interpretation domain is the set of all sets of 
finite trees over the ranked alphabet E. A valuation 
is a mapping assigning sets of finite trees to  variables. 
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1. the relation C is reflexive and transitive 

2. 2s qr} for T E S 

3. f(+l}, * * ’ ,Z{U*}) E Z(f(u1, ..., U*)} 

4. Z(f(U1, ..., U * ) }  E f b { U l } ,  * * - ,z(u,}) 
f(zs,, . . * ,zs,) E $9 
f ( q ,  * .  . ,Q;) E 5s’ 

~ 1 5 .  

f(zslus; , * * * , zs,us:,) E ZSLIS’ 

6. nonempty(T), T G T’ + nonempty(.r’) 

7. nonempty(ii) + nonempty(f(C)) 

8. nonempty(f(C)),f(C) E f ( U )  + C E U 
9. nonempty(.r),T G f ( f i ) , ~  C g(U) +false 

Table 1. Axioms for positive constraints cp over in- 
tersection variables IS where S s Terms(cp) 

Each valuation a can be extended in a canonical w,ay 
to a mapping a from terms to sets of finite trees. 

a(f(71, * - , 712)) = {f(tl,  ’ ’ ’ , tn) I ti E 4 T i )  
for i = 1,. . . ,n }  

a(rl n . . . n 7,) = Q ( T ~ )  n . . . n ~ ( T J  

Definition 2 (n-compatibility) We say that a val- 
uation a is n-compatible if 

a(xs) = n a(T)  
r E S  

for all intersection variables zs. 

A valuation a satisfies the constraint cp if for all con- 
juncts 81 C 6 2  in cp we have ~ ~ ( 6 1 )  C a(&). If cp is a 
constraint over intersection variables then a must also 
be n-compatible to satisfy cp. We say that cp is satisfi- 
able if it has a solution ( i . e . ,  a valuation satisfying U,). 

3 Satisfiability 

Each axiom in Table 1 translates to a basic fact. 
Axiom 2: Each set contains its intersection with other 
sets. Axioms 3 and 4: The two representations of the 
set f(E) that are possible in cpR are equal. In particu- 
lar, for n = 0, Axiom 3 yields a x{a} for all constant 
symbols a E C .  Axiom 5: Given two inclusions, the 

intersection of the two smaller sets is smaller than in- 
tersection of the two larger sets. Axioms 6 and 7 are 
used to infer the non-emptiness of terms. The expres- 
sion nonempty(C) in the hypothesis of Axiom 7 stands 
for the conjunction nonempty(u1) A . .  . A nonempty(uk) 
where IC is the arity of the function symbol f in the con- 
clusion. We obtain the empty conjunction, i.e., t r u e ,  
in the special case where IC = 0, i.e., f is a constant 
symbol. This non-emptiness information is needed in 
the Axiom 8, the decomposition rule. Note that if 
one of the variables in fi is empty, then f ( f i )  is the 
empty set regardless of the other variables’ values; then 
f(a) E f ( U )  is satisfied, while C C ij may not be satis- 
fied. Axiom 9: If each tree in some nonempty set starts 
with two different function symbols then the constraint 
is not satisfiable. 

Proposition 1 The axioms in Table 1 are valid under 
all fl-compatible interpretations over the domain of sets 
of trees. 

Proof. The proof is done by inspection of each axiom. 
0 

We next define two notions of normal form for con- 
straints cp. The first one, @, is the outcome of the 
algorithm (applied on the representation of cp) ,  from 
which the second one, cps, extracts the least solution 
(if a solution exists). 

Definition 3 (closed form) The closed form (pc of 
a constraint cp is the smallest set of constraints which 
contains cpR and is closed under consequences of axioms 
in Table 1. 

Definition 4 (solved form) The solved form cps of 
a constraint cp is the subset of (pc of all inclusions 
f(E) 5 z between a nonempty term and a variable, i.e., 

cps = { f ( ~ )  E z E cpc I nonempty(f(ii)) E cpc}. 

The solved form cps is essentially a representation of 
a tree automaton, where variables correspond to states 
and constraints to transitions. It has a canonical solu- 
tion a, which is its least one; the value of the variables 
that do not occur in cps is the empty set, and the val- 
ues of all others can be defined by the least fixed point 
solution of the corresponding regular system of equa- 
tions 

x =  U f(C) 
f(a)G-f+ 

for each variable x occurring in (ps. 

Theorem 1 (satisfiability) A constraint cp is satisfi- 
able if and only if its closed form cpc does not contain 
false. 
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Proof. The “only if” direction is clear from Proposi- 
tion 1. For the other direction, let cps be the solved 
form of cp and a its least solution. We now prove 
that a defines a solution of cpc (Claim l), that the de- 
notation of the intersection variables is the expected 
one (Claim 2), and, finally, that we obtain a solu- 
tion p of the constraint cp by setting P(u) = c ~ ( x { ~ } )  
for all variables U that occur in cp (Claim 3). In the 
following we will say that a term r is nonempty if 
nonempty(7) E c p c ,  otherwise we say that T is empty. 

Claim 1 The valuation a satisfies all constraints in 
cpc. 

Proof. There are three possible forms of constraints 
in cpc - c p s :  x C T with empty variable x, f(u) g r 
with empty f(ii), and x T with nonempty x. In 
the first case, by Axiom 6 ,  the variable x does not 
occur in pS, so a(.) = 0 and the constraint is trivially 
satisfied. In the second case, by Axiom 7, there is an 
empty variable ui in ii. From the previous case we know 
that a(ui) = 0, so a( f ( i i ) )  = @ and the constraint is 
satisfied. Below we show that a satisfies all constraints 
of the third form, that is x E r with nonempty variable 
x. Again there are three possibilities: 

e T is a variable, say r = y. Since x C y E cp“, 
we have that for any constraint r’ E x E ips, by 
transitivity r’ y E 9’. By its definition, the 
valuation a satisfies x G y. 

r is a constant symbol, say r = a. Since x C 
a E cpc and false # c p c ,  there are no constraints 
of the form f(6) E z in cpc with nonempty f(’ll) 
and f being a symbol different from a (otherwise, 
by Axioms 1 and 9, fulse E c p c ) .  Hence, no term 
with leading symbol different from a belongs to  
a ( x ) ,  and the valuation a satisfies x C a. 

0 r is a composed term, say r = f (XI,. . . , x,). 
Take any tree t E a(.). If t is of the form 
g(t1,. . . , tm) ,  then there must be a constraint 
g(u1, ..., um) & x E cps such that g ( U )  is 
nonempty and ti E a(ui) for all i. Now, if g # f, 
then again fulse E (pc. Hence t = f ( t1 , .  . . , t,) 
and f(u1,. . . ,U,) C IC E ‘ps .  Axiom 8 yields 
ui C x, E pC, and case r = y above implies ti E 
a(x,) .  It follows that t E a(f(x1 . . . , x,)) holds. 
Thus, the valuation a satisfies x C f ( x1 , .  . . ,x,). 
0 

Claim 2 The valuation Q is n-compatible. 

Proof. The inclusion a(x{,, ,..., ,I) C (Y(X{,~}) n . . . n 
a ( ~ { , ~ > )  follows directly from Axiom 2 and Claim 1. 

For the other inclusion, we will prove that for any 
tree t and any two sets S,S’ 2 Terms(cp), if t E CY(ZS) 

and t E a(xs1) then t E a(xsust). Then the claim 
follows directly. 

The proof goes by induction on the structure of t .  If 
t is a constant symbol, say t = a ,  then by the definition 
of a,  a C xs E cps and a C xy E cps.  By Axiom 5 ,  
a C xsUs’ E cps and we are done. 

Now let t = f ( t 1 , .  . . , tn).  By the definition of 
a,  there exist constraints f(zs,, . . . ,xs,) C xs and 
f ( x ~ ; ,  ..., 5s;) C xs) such that ti E a(xs,) and 
ti E a(zs’) for i = 1,. . . ,n. The induction hy- 
pothesis yields ti E a ( x ~ , ~ s ~ )  for i = 1,. . . ,n. Ax- 
iom 5 yields f(zslus; . . . ,xs,us;) xsus’ E @. 
Since ti E Q(ZS,~S’) for i = 1,. . . , n, we know that 
a ( x ~ , ~ ~ : )  # 0. ?his implies nonempty(xs,us:) E 
pc by the definition of a. Thus, Axiom 7 yields 
nonempty(f(zslvs;, . . . , xsnUs;)) E c p c ,  and, there- 
fore, ~(ZS~US; ,  . . . , ZS,US;) C  SUS E pS. Hence, by 
the definition of a,  t = f ( t 1 , .  . . , tn) E ~(xsus,). This 
completes the induction step. 0 

Claim 3 Let P be a valuation such that /?(U) = 
a(x{,}) for all variables U occurring in cp. Then is a 
solution of cp. 

Proof. By Axioms 3 and 4 we have ,B( f (~1,. . . , U,)) = 
a ( x ~ ( ~ ( ~ ,  By Claim 1, p satisfies all constraints 
r1 r2 E cp. By Claim 2, /? satisfies all constraints of 
the form r C Tin.. .nrn and 7,n.. .nrn C r in cp. This 
proves Claim 3 and completes the proof of Theorem 1. 
U 

The solution p of cp, which is induced by the least so- 
lution a of cps via the equality p ( ~ )  = a ( ~ { ~ } ) ,  is the 
least solution of cp. A variable U has the empty set as 
value under ,6 if and only if z { ~ )  does not occur in cps.  

4 Complexity 

If the input constraint of size n contains nested ex- 
pressions, we flatten it (in the standard way). We may 
hereby introduce new variables, but the total number 
of variables and the size of Terms(cp) remain linear in n. 

We define the algorithm by fixed point iteration. We 
start with the representation cpR of cp, as defined in 
Definition 1. At each iteration step, we add the direct 
consequences under the axioms in Table 1 of the set 
of constraints derived so far (we add x C x only if x 
occurs). When the fixed point is reached, the obtained 
set (pc is the closed form of cp, as defined in Defini- 
tion 3. Hence, by Theorem 1, satisfiability is tested by 
checking if cpc contains false. The solved form cps of 
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cp, as defined in Definition 4, gives the explicit repre- 
sentation of the least solution of cp. 

Upper bound. How many iteration are possible 
before the fixed point is reached? For an input q) of 
size n, the size of Terms(cp) is bounded by cn for same 
constant c. Thus, we have to  introduce 2Cn intersec- 
tion variables. The terms that occur in cpc are either 
any of these variables, or flat terms built up from these 
variables and function symbols from E. The number 
of such terms is bounded by /C l .  ( 2 c n ) k  where IC is the 
maximal arity of a function symbol in C. The con- 
straints in the closed form of cp are either inclusions 
between pairs of terms, or non-emptiness constraints 
for terms. Hence there are at most (/El2 + 1) . (2cn)2k 
constraints. The number of iterations is bounded by 
the number of constraints in cpc. 

How much time do we need in each iteration? The 
most costly operation is adding consequences of Ax- 
iom 5. This axiom involves 2 k + 2  variables. Therefore, 
checking whether there are consequences under this ax- 
iom requires 0 ( ( 2 c n ) 2 k + 2 )  time. Hence, the whole algo- 
rithm can be done in 0(2”,) time, where the constant 
c’ depends only on the ranked alphabet E. 

Lower bound. We prove the DEXPTIME-hardness 
of the satisfiability problem for set constraints with 
intersection by the reduction of the problem of .the 
emptiness of the intersection of a sequence of tree 
automata, a known DEXPTIME-complete problem 
(see [15] and [38]). 

Given a sequence of n bottom-up tree automata 
AI, . . . , A,, we introduce a fresh set variable q for each 
state q of each automaton. We assume wlog. that 
each tree automaton Ai has only one final state, which 
note qAi . w e  simulate each transition rule of the form 
f ( q 1 , .  . . , q n )  + q by a set constraint f(q1,. . . , 4,) CI q. 
It is easy to see that the intersection of the lan- 
guages recognized by the automata is empty if amd 
only if the conjunction of these constraints together 
with qAl r l  . . . rl QA, a rl b is satisfiable, where a and 
b are two different constant symbols. 

The following complexity characterization is an imcne- 
diate consequence of the analysis above. 

Theorem 2 The satisfiability problem for positive set 
constraints with intersection is DEXPTIME-complete. 

2’. x c xs,x 5 XS’ + x c XSUS’ 

xs G f(XS1,...,XS,) + 5‘. 
xs c f(xs;, . . .,xs;) 1 

xs c f(Xs1us; , . . ., XS,USL) 

7’. nonempty(f(ii)) + nonempty(ii) 

10. T T‘ + nonempty(.r) 

11. nonempty(x), cp, y E x + false if 2 ZP y 
for p # E 

Table 2. Additional axioms for C2-closure of neg- 
ative constraints y over intersection variables xs 
where S c Terms(y) 

5 Entailment, independence, negation 

The three notions that we consider in this section are 
closely connected with each other. A constraint sys- 
tem has the independence property if the constraints 
cannot express ( 2 .  e., entail) disjunctions. Formally, 
given the constraints cp and (PI, . . . , cpn,  the implication 
cp --+ cp1 V . . . V cp, is valid iff one of the n implications 
cp + cp1, . . . , cp + y n  is valid. An equivalent formula- 
tion of the property states that the satisfiability prob- 
lem of a conjunction with any number of negated con- 
straints can be reduced to “independent” sub-problems 
with exactly one negated constraint. Namely, the con- 
junction cp A lcp1 A . . . A -pn is satisfiable iff the n con- 
junctions cp A lcp1, . . . , cp A -19, are satisfiable. As a 
direct algorithmic consequence, the satisfiability prob- 
lem of the conjunction of cp with n negated constraints 
can be reduced to n entailment problems (i.e.,  the 
dual of the validity of the n implications cp + 9 1 ,  . . . , 
+ vn). 
From now on we assume that the constructor alpha- 

bet is infinite.3 Our approximation of the upper bound 
in Theorem 5 requires that the maximal arity of func- 
tion symbols occurring in the constraint is bounded by 
a constant. 

The formulation of the next results requires a series 
of technical definitions. 

3The results in [lo] might suggest that the problem becomes 
trivial under this assumption. This is not the case: The con- 
straint z C a, y~ C f(z), y~ s f(z), y~ e 0, y2 e y~ is not satisfi- 
able, while the corresponding monadic formula has a model. 
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12. f(e) c f(i j)  +) a ij 

f(e) f(f)  i+ e E 5 
f ( f )  f(ij) +) 5c U if f ( f )  occurs in cp 

13. x c t + t C x  

Table 3. Additional axioms for C3-closure of positive 
constraints cp over nonempty intersection variables 
xs where S 2 Terms(cp) 

Definition 5 (minimal upper bound) 
Given a positive constraint cp, we call f(a) a proper 
upper bound of x if x C f(ii) E cp. We say that f(G) 
is a minimal upper bound of x if ti E ij E cp for each 
proper upper bound f ( i j )  of x. 

If a constraint is closed under Axiom 5‘ in Table 2, 
then every variable that has a proper upper bound has 
a minimal upper bound. 

Definition 6 (reachability ap) If x has no proper 
upper bound in cp then x ag x. Otherwise, let f(G) 
be the minimal upper bound of x. Then z y if 
ui “ p  Y. 

We next define three notions of closed forms of con- 
straints, referring to axioms in Table 1, 2 and 3. Ax- 
iom 11 in Table 2 expresses an “occurs-check.” For 
example, the constraint y = {x g x ‘ , x  f (y ) ,y  x} 
is unsatisfiable. 

The axioms in Table 3 introduce a new type of con- 
straints, namely inclusions between finite trees t of ar- 
bitrary depth and terms T .  The restriction in the for- 
mulation of Axiom 12 is needed for algorithmic reasons. 
Without it, the closure of, for example, the constraint 
a C z A f(x) 2 x under the consequences of the axiom 
would be an infinite set of constraints. (This is not a 
problem in the case of upper bounds: A variable can 
have only one ground proper upper bound.) In order 
to understand Axiom 13, note that if Q satisfies x C t 
then a(.) = { t} .  

Definition 7 (closed forms rC2, y;;, f 3 )  

The Cz-closed form yc2 of a constraint 7 is the smallest 
set of constraints that contains y R  and is closed under 
consequences of axioms in Tables 1 and 2. 
The ne-Cz-closed form 7:: of a constraint y is the 
(positive) constraint 

7:; = { T I  2 72 I nonempty(T1) E yC2}. 

9 

The C3-closed form yc3 of a constraint y is the smallest 
set of constraints which contains y$$ and is closed un- 
der consequences of Axioms 1-5 in Table 1, Axioms 2’ 
and 5’ in Table 2, and Axioms 12 and 13 in Table 3. 

The next lemma, which employs the notions of 
closed forms defined above, expresses a necessary con- 
dition for the entailment of a constraint x y. 

Lemma 1 Let cp be a positive constraint. If false # 
cpc2 then there exists a valuation a mapping variables 
in V(cp$;) t o  nonempty sets of trees that satisfies 

cp% A x g y .  
aIecpc3 

Proof. Since cpc2 is closed under Axiom 11 in Table 2, 
the set { p  I 3y x ap y} is finite for each nonempty 
variable x. For each such pair ( x , p )  we define a tree 
t i .  If x ap y and y t E cpcs for some tree t then 
we set t i  = t .  Otherwise we define t i  by induction 
on the length of p ,  starting from the longest and then 
proceeding to  shorter paths. 

Let p be a maximal path such that x ap y and 
y t # cpc3 for any tree t .  Let a$ be a fresh constant 
symbol (here we use the assumption that C is infinite) 
and put t i  = a$. 

Now suppose t i  is defined for all paths p of length 
n, and we define it for paths of length n - 1. Let 
x ap y, and let f(G) be the minimal upper bound 
of y. Then, for i = 1 ,..., n where n = ar i t y ( f ) ,  we 
have x aP.a U( and ti’i is already defined. We put 

We define a lower bound completion plbc of cp as 
cpcs U { t i  y I x ap y}. By construction qlbc is 
closed under all axioms relevant for C3-completion, ex- 
cept transitivity. 

We define a as the least solution of the system of 
equations 

t i  = f(tg.1,. . . ,ti.”). 

x = U f ( i i ) U  U t .  
f(fKs€9:.2 tCy,yCx€cp‘bC 

We note the following facts: 

If there exists a tree t such that x C t E p c 2 ,  

then a(.) = {t};  otherwise, t; does not occur in 

If t i  does not occur in cpca, then it occurs only 
once in c p l b c .  

This is because t; # t$ for (p ,  x) # (p’, d). 

The valuation Q satisfies &;. 
The proof is analogous to  the proof of Theorem 1 
(Claims 1 and 2). 

pcz. 
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tC E c y ( % )  iffy 
The proof goes by induction on the struct>ure 

The valuation cy satisfies l\2cy61v~3 z g y. 
This follows from the fact that t', E a(y) iff 3: E 

z E cpc3 where zap y. 

of t i .  

- 

y E pC3. 

This summarizes the proof of Lemma 1. 

Example 2 The lower bound completion plbc of the 
constraint 

0 

cp = { z C g ( w ) ,  u S f ( z ) ,  
2) G f b ) ,  f k )  E 2, 

d u ,  U )  c Y 1 
contains the constraints 

al.l 
"I.} EX{%}, a;;"., C%{%}, 

f ( 4 ; J G z { u } ,  f (4fm}) G "{U}, 
9(f(a:;J f(a&?*,)) E "(2). 

c y ( . { % } )  = {g(f(aS;',,), fbSf=}))), 
f f ( q u } )  2 tf(a;;m})h 
Q(.{v} )  1 {f(af;20,)), 
+{I}) 2 tfn(a;;a}), fn(a;&) I n E NI, 
"("(Y}) 2 {g(f(a&h fb:;*})n. 

Morover, we have that 

We here write "3" because there are more lower 
bounds for these variables. Note that we have to  use 
two different constants to  obtain t${*, $ c y ( q y } ) .  

We need the notions of entailment and independence 
for constraints over the domain of nonempty sets ,for 
the satisfiability test on negative constraints over the 
domain of possibly empty sets. 

Definition 8 (entailment ++ over P+(Tc)) 
Given two positive constraints cp and cp', we write 
cp ++ cp' if every valuation over the domain P+(Tz) of 
nonempty sets of trees that satisfies cp also satisfies IQ'. 

Fkom now on, we use the metavariables S and S' 
referring to sets of terms of the given constraint. Thus, 
n S  is another notation for a term 8. 

The next result yields an algorithm for testing en- 
tailment. 

Theorem 3 (entailment) If the positive constraint 
cp is satisfiable over the domain P+(Tc), and if we set 
cp' = cp U {nonempty(z) I z E V(cp)}, then 

cp ++ n S  E nS' if and only if xs E zst E (v')'~. 

Proof. By the validity of our axioms, false $ ( c p ' ) c z ,  
Using Lemma 1, the proof then follows the one of 
Claim 3 of Theorem 1. 0 

We formulate the independence property as the in- 
dependence of negated conjuncts in a constraint y. 

Theorem 4 (independence) If the positive con- 
straint cp is satisfiable over P+(Tz),  then the constraint 

CPU U tnsi g ns;} 

cp U ns;} 

i 

is satisfiable over P+(Tc) if and only if each constraint 

is satisfiable over P+(Tc) for every i. 

Proof. If cpU {nSi zf nS;} is satisfiable for all i, then, 
by Theorem 3, zsi E zs: $! (cp')c3. By Lemma 1, 
there exists a valuation cy for which the corresponding 
valuation (defined as in Claim 3 of Theorem 1) satisfies 

0 

The following characterization of the satisfiability 
of negative constraints y is based on a decomposition 
of y and the independence property. Together with 
Theorem 3 it yields a satisfiability test for y. 

Theorem 5 (negation) Given the constraint 

U um si g ns;}. 

7 = AJ tns i  E nsrh 
i 

we set N(y) = {U E V(y) I nonempty(z{,}) E 7'') and 

v n e  = (01 s 02 E cp I V ( &  E 02)  E N ( y ) } .  

q n e  F+ nsi ~ n s , !  
Then y is satisfiable if and only if 

for all i such that XS; is nonempty in ycz. 

Proof. The "only if" direction of the proof is obvious. 
For the "if" direction, suppose vne k+ n Si g nS,l for 
all i. By the independence theorem, 

yne = pne uutnsi g ns,!} 
i 

is satisfiable over the domain of nonempty sets. If /? is a 
solution of this constraint, we update it to a solution of 
y (over the original interpretation domain) by putting 

0 

Theorem 6 The satisfiability problem for negative set 
constraints with intersection is DEXPTIME-complete. 

Proof. We apply the complexity analysis of Section 4 
to  the new sets of axioms. 0 

@ ( U )  = 0 for all v E V(y) - N(y) .  
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6 Definite set constraints 

In this section we show that set constraints with in- 
tersection are equivalent in expressive power with def- 
inite set constraints and that both classes are linearly 
inter-reduci ble. 

We need to introduce the set operation of projection. 
The projection fGt(S) of a set S on the i-th position 
with respect to  the constructor symbol f is the set of 
all subtrees of those trees in S that are labeled with f. 

Definite set constraints are conjunctions of inclusions of 
the form expl exp2, where the left-hand side expl is 
built up using set variables, constants, function appli- 
cations, projections, set union and intersection, while 
the right-hand side exp2 is built up using set variables, 
constants and function applications only.4 

To definite constraints. Constraints that are in 
the language of set constraints with intersection and 
not in the language of definite set constraints con- 
tain an inclusion with intersection on its right-hand 
side. Nested occurrences of intersection may be re- 
placed by the introduction of new variables. Unnested 
occurrences of intersection on the right-hand side of 
an inclusion may be removed according to  the rule 
exp  G exp1 n exp2 iff exp  expl and exp  G ezp2. 

From definite constraints. We have to  remove 
all occurrences of unions and projections on the left- 
hand sides of inclusions. Removing unions on the left- 
hand side is analogous to  removing intersections on the 
right-hand side. The remaining problem is to remove 
projections. Again, nested occurrences of projection 
may be replaced by the introduction of new variables. 
We remove unnested occurrences of projection using 
the equivalence 

T) C f (T, .  . .Y,. . . 

where Y occurs on the i-th position of the term 
f ( T , .  . . ,Y,. . . ,T). Here, T denotes the set of all 
terms. The symbol T is not in the signature, but it 
is sufficient to add the conjunction of the inclusions 
f ( T ,  . . . , T) 5 T and z C T for each function symbol 
f E C and each variable x that occurs in the constraint. 

The following characterization follows from the above 
reductions and Theorem 1. It continues to hold for 
negative definite set constraints. 

41n [20, 211 the relation 2 is used instead of C and left-hand 
and right-hand sides are interchanged. 

Theorem 7 The satisfiability problem for definite set 
constraints is DEXPTIME-complete. 

7 Conclusion 

We have singled out a class of set constraints by a 
simple condition on the syntax. We have given an al- 
gorithm, in a concise representation, which performs 
the satisfiability test in exponential time. The algo- 
rithm computes which variables denote the empty set 
in the least solution and presents the least solution as 
a tree automaton, which is important for its use in 
program analysis. We have proved the DEXPTIME- 
completeness of the satisfiability problem and thus 
given the first such complexity characterization for a 
general class of set constraints (i.e., over a general 
ranked alphabet). We have shown the equivalence be- 
tween this class and the class of definite set constraints 
regarding expressiveness and complexity. We could 
thus settle the complexity question of that class. We 
have then incorporated negation into our class and have 
shown that the complexity of the satisfiability problem 
remains the same. We have built on previous work of 
ours to  prove the independence property for our class of 
set constraints if the empty set is excluded as a value. 
We give an entailment algorithm which works under 
the same condition. Starting from a simple observa- 
tion, we have shown how one can reduce the original 
satisfiability problem to one where we can exploit the 
independence property and the entailment algorithm. 

This work fits into a more general line of research. 
The satisfiability problem for several classes of set con- 
straints is NEXPTIME-complete [8, 40, 10, 111. The 
question arises for which natural and useful subclasses 
faster algorithms testing satisfiability exist. Aiken, 
Kozen, Vardi, and Wimmers [l] give a detailed analy- 
sis of the complexity of subclasses of positive set con- 
strains which are obtained by restricting the ranked 
alphabet of constructor symbols (for example, positive 
set constraints over unary trees have a DEXPTIME- 
complete satisfiability problem). It is folklore that the 
problem can be solved in cubic time for atomic set con- 
straints, which are positive set constraints without any 
set operation. It is trivial to  see that the algorithm 
presented in this paper can be modified and combined 
with the polynomial entailment algorithm in [12] to 
yield a polynomial satisfiability test for negative atomic 
set constraints. Still nothing (except DEXPTIME- 
hardness) is known about set constraints with unaon. 
The problem is not dual to  the one for set constraints 
with intersection (for example, even over the domain 
of nonempty sets of trees f(3) f(y) U f (2)  is not 
equivalent to  3 G jj U 2 ) .  
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