LISA : A Specification Language Based on WS2S

Abdelwaheb Ayari! David Basin® Andreas Podelski?

'Institut fiir Informatik, Universitit Freiburg,
Am Flughafen 17, 79110 Freiburg, Germany.
Phone: (49) (761) 203-8240 Fax: 203-8242

{ayari, basin}@informatik.uni-freiburg.de

2Max-Planck-Institut fiir Informatik
Im Stadtwald, 66123, Saarbriicken, Germany.
podelski@mpi-sb.mpg.de

Abstract

We integrate two concepts from programming languages into a specification language based
on WS2S, namely high-level data structures such as records and recursively-defined datatypes
(WS2S is the weak second-order monadic logic of two successors). Our integration is based
on a new logic whose variables range over record-like trees and an algorithm for translating
datatypes into tree automata. We have implemented LISA, a prototype system based on
these ideas, which, when coupled with a decision procedure for WS2S like the MONA system,
results in a verification tool that supports both high-level specifications and complexity esti-
mations for the running time of the decision procedure.

Keywords: Specification and Verification, Monadic Second Order Logic and Tree Automata,
Feature Logic.

1 Introduction

Motivated by the success of [7], a number of research groups [12, 9, 11, 8] have implemented
verification tools based on a decision procedure for the weak monadic second-order logic with one
(WS1S) or two (WS2S) successors. Experience, cf. [4], indicates that although such tools are pow-
erful aids to verification, their usefulness is limited by two major problems. First, the specification
language is low-level; writing specifications in WS2S is an experience akin to programming in as-
sembly language. Second, the complexity of verification is very high; WS2S and related monadic
logics are amongst the most expressive decidable logics known, but one pays the price that the
decision problem requires non-elementary time, which is a strong practical limitation.

In this paper, we propose an approach that addresses both problems. Our contributions are
both theoretical and conceptual. Our theoretical contributions are (1) to define a logic whose
formulae define relations between record-like trees (“feature trees”). These relations are encoded
by WS2S formulae and, thus, recognized by tree automata. This logic forms the kernel of a
specification language whose decision procedure is based on that of WS2S. Our logic comes with
its own interpretation domain (i.e., the trees) and interpretation function. This distinguishes
it from notation (or macros) whose semantics is defined by syntactic translation (or unfolding).
(2) We describe explicitly the direct translation of the part of the logic in which one defines
datatypes to deterministic tree automata via alternating tree automata with e-transitions. We

show too that in many cases this is polynomial time computable, and doubly exponential in the
worst case.

Our conceptual contribution is to propose an approach that simultaneously addresses the
two main limitations of WS2S. The base logic of feature trees, combined with recursive types,
provides a formalism for high-level abstract specification. In particular, there is direct support for
formalizing record-like data-structures, e.g., accessing subtrees via symbolic keywords (as opposed
to consecutive numbers, ¢ la WS2S), which are supported in all modern programming languages.
Moreover, types provide a handle on the complexity of the decision procedure. Types are directly
translated to tree automata (as opposed to indirectly via an initial translation to WS2S formulae)
and, as noted above, we bound the complexity of this process.

We have motivated our combination by arguing that it alleviates many of the problems of
specification and verification with WS2S. An alternative way to approach and understand our
proposal is by comparison with standard programming languages. Early programming languages,
like the assembly language, Lisp and Fortran, provided little or no support for datatypes. The user
encoded data explicitly in memory. This is analogous to WS2S where the only primitive “type”
supported is sets of positions in the binary tree. Hence, the user must laboriously encode other
kinds of data, say k-ary trees whose nodes are labeled from some finite set, in terms of unlabeled
binary trees. As with programming in assembler, this is possible, but not recommended, and the
result falls far short of constituting a comprehensible specification. More advanced programming
languages, like ML, provide means of abstractly formalizing data using type declarations. This
is important also for structuring the program: These declarations are part of the program and
integrate a specification language into a programming language (which is also a specification lan-
guage) in a controlled and natural way. This is analogous to types in our proposal; types structure
the specification and interact with defined predicates by restricting the scope of quantification to
elements of the defined types (relativized quantification).

One important way the programming analogy breaks down is that datatypes in our specification
language (compared to datatypes in, say, ML) have the same expressiveness as the full language.
Both define tree automata and hence both are “WS2S complete” in the sense that they can define
any WS2S definable relation. However, they do differ from formulae in the full logic in succinctness
(with a non-elementary factor). Said the other way round, a specification using types may trade
verbosity with a gain in efficiency. Since we have found that one uses types often in a specification,
it is important to give the user a means to control the cost of the usage of types (to at least some
degree). Therefore we give the translation procedure of types explicitly. Translation procedures
have been proposed for various kinds of regular systems of equations over words and trees [2, 5, 6],
but none of these are applicable to type systems as rich as ours. The principle distinction is that
our type definitions support conjunctions of types, which is natural in our logic where subtree
positions (record-fields) are accessed by atomic formulae. We establish a relationship between
such type definitions and alternating top-down tree automata with e-transitions.

Although we see the contributions in this paper as theoretical and conceptual, their ultimate
validation must be empirical. We have partially implemented and tested our ideas. The base logic
and type system are implemented in a prototype system called LISA, which is currently coupled
with the MONA system of [7]. We have used L1SA to carry out several case studies, one of which
we report on here.

Related work. Our work is directly inspired by the work of Klarlund and Schwartzbach on
a system called FIDO [10]; FIDO is based on the idea that one can encode the values of any
fixed finite set and write finite-domain constraints in WS2S. FIDO deserves the credit of being
the first approach to integrating programming language concepts with MONA. Qur work started
with the study of FIDO; we observed that the only data of interest are record-modeling trees and
that, under this view, the expressiveness of FIDO’s datatypes is the full expressiveness of FIDO.
Moreover, FIDO was conceived and explicitly described as a “programming notation”; its semantics
was defined by compilation into MONA, the assembly language. We felt that this did not take the
programming-language point of view all the way. There, one abstracts away from the underlying

machine model (be it jumps or sets of positions) and defines a new calculus/logic with its own
semantics; then one can prove the compilation correct. The new logic should be small and simple;
it forms the kernel of the language, which itself may be rich in notation. Regarding trees and
datatypes in FIDO: These were used mainly to define “domains” for position variables. The type
declarations for finite-domain values in FIDO are expressed in LISA by non-recursive datatype
definitions (denoting finite sets of trees); this is yet one example indicating the advantage (in
conceptual simplicity) of having trees as the interpretation domain.

The idea to use feature trees to model records stems from [1]. The first-order logic over feature
trees is decidable in non-elementary time [3, 15]; to our knowledge, no decision procedure has
been implemented yet. The basic relation in that logic, besides the unary label relation that
corresponds to I(t,€), is the direct-subtree relation f(¢,¢'). The addition of that relation to our
logic would make the validity test undecidable. It is possible the relation f(¢: T,¢ : T") restricted
to non-recursive types T and T', although we do not give any details here.

Lisa, informally We now give an intuition for the way one would express relations over records
in our specification language. An example of a record (later modeled as a feature tree) might be:

step(status: initial,
process; : non-critical,
next: step(process: : critical,
processs: critical,
next: stop))

The record consists of identifiers (here: step, stop, initial, critical) called labels and of field selectors
(here: status, process:, processs, next) called features. It is a nested record: the value in each record
field is itself again a record (possibly without further record fields, i.e., a label only). A label does
not fix the record fields below it. Records can be graphically represented as trees whose nodes are
labeled by labels and whose arcs are labeled by features.

The record above is a solution of the LiSA formula ¢(t) below, which expresses: every sub-
record with both process; and processe being critical has the value stop in its record field nezt.

e(t) = (Vp (eritical(t, p.processy) A critical (t, p.processs) = stop(t, p.next))) (1)

The record also satisfies a LiSA description of a second kind: It belongs to the defined type
Computation of all those records that have a record of the same type Computation in their record
field next, or their label is stop. The type could be declared by the following L1SA type definition.

Computation = next: Computation | stop

In Section 5 we will see an example of a L1SA formula that combines the two kinds of description;
it is precisely this combination of a base logic of feature trees with types, that provides us with
both a high-level specification language and complexity guarantees.

2 The Logic of LISA

We now introduce the base logic of LiSA, without type definitions. We assume a fixed signature
(F, L) of binary symbols f € F called features and of binary symbols | € £ called labels. LisA
is a two-sorted first-order logic; we assume an infinite set of feature-tree variables ¢, s, ... and of
position variables p,q,r,.... We reserve the term “LISA formula” to formulae of the L1SA logic
without free position variables; thus, a L1SA formula always defines a relation over feature trees.
There are two kinds of atomic formulae.

I(t,p) “the tree t has label [at position p”
f(p1,p2) “the position pe is the feature f down from the position p;”

The interpretation domain D1 ry = (D7, Dp) consists of the domain D7 of feature trees and the
domain Dp of positions.

A feature tree t € Dy consists of nodes in Dp with labels in £; formally, ¢t C Dp x L where
(p,11) € t and (p,l2) € t implies I; = l. The domain Dp of positions is a finite subset of F*, i.e.,
consisting of strings over feature symbols. We write the concatenation of strings p and ¢ as p.g;
the empty string is €. We assume that the domain Dp is prefix-closed: p.f € Dp implies p € Dp.!
We may picture a feature tree as a tree with nodes labeled in £ and edges labeled in F; no node
has two outgoing edges with the same label.

Feature symbols f are interpreted as binary relations f over Dp X Dp, namely f(p1,p2)
iff p1.f = po. Labels | are interpreted as binary relations [over Dy X Dp, namely [(t,p) iff
(p,1) € t, i.e., the node with the path p is labeled with the symbol [in ¢. In (1) the following
abbreviation was used

Ut,p-fi-fooroofn) = Fai . 3qn. (Filp,a) Ao A ful@n—1,00) A(E,02)), for 1 <n.

3 Compiling the LISA logic into WS2S

We next describe the compilation of LiSA formulae over feature trees into WS2S formulae. To-
gether with the decision procedure for WS28S, this yields, in some sense, the operational semantics
of LISA specifications. The idea is very simple: Feature trees are encoded by tuples of position
sets, one set for each label, with the restriction that each position p € Dp occurs in at most one
of these sets.

The syntax of WS2S formulae ¢ is as follows (here z,y, z,... are first-order variables and
X,Y,Z, ... are monadic second-order variables).

pu=si(z) =y |s(z) =y | X(z) | Fzp | IX@ | ¢ | o1 A pa

Of course, other connectives and quantifiers can be added, as is standard in classical logic. The
model of WS28 has the domain D = {1,2}* of strings (or paths) p over 1 and 2. Valuations « assign
strings p € D to first-order variables x and finite sets P C D of strings to second-order variables.
The denotation of s; (written S;) is concatenation with the letter 1; i.e., for p € D, Si(p) = p.1.
The denotation of s is, analogously, concatenation with 2. The symbol € is interpreted as the
membership relation between positions z and sets of positions X. We write {1,2}* = ¢ to say
that the WS2S formula ¢ is valid: {1,2}*,a |= ¢ holds for all valuations « under the given
interpretation.

In order to clarify the terminology of “logic over trees” for WS2S, we mention that the
pair (D, a) can be encoded by a binary tree t. The set of nodes of ¢t is D. The nodes are la-
beled by n-tuples of Booleans 0 and 1 where n is the number of free variables (first-order or
second-order) of p. The i-th component of the label of the node p is 1 iff p is equal to or contained
in the value of the i-th variable, i.e., p = a(z) or p € a(X), respectively. One sometimes then
writes ¢t |= ¢ instead of D,a |= . In contrast, the L1SA logic is a logic over trees in the same
direct sense that arithmetic is a logic over numbers.

We next define the (effective) bijection [-] between formulae of LISA and WSkKS, the (weak)
monadic second-order logic over k successors (which has the domain {1, ..., k}*). The equivalence
of WSkS to WS2S is standard (¢f. also Section 4.2). Let the set of labels be £ = {l;,...,1,} and
the set of features be F = {f1,..., fr}. We assign to each tree variable ¢ of ¢ the n-tuple of the
WSKS second-order variables Pf, ..., Pt.? We assign to each position variable p of ¢ the WSkS

TWe may also require that the domain of a feature tree t is prefix-closed, i.e., (p.f,1) € t implies (p,1') € , which
amounts to giving a dummy label to “non-labeled” nodes.
?In practice, we encode labels using bit patterns over [logs (k)] second-order variables.

first-order variable p. We set

[fip,a)l = si(p)=4q for j=1,...,k,
[Li(t,p)] = Pl ANz~ Pi(D) for i=1,...,n.
[o1 A2l = 1] Afe]
[—e] = =[]
[Fzp] = 3xfe]
[AX¢] = 3PX...PX[y]

The following statement expresses the correctness of the compilation of the LISA logic that we
have defined above.

Theorem 1 The LiSA formula ¢ is valid over the domain of feature trees if and only if the WSES
formula [] is valid over the domain of strings; formally,

D Erisa @ iff {1,...,k}* Fwsks [¢]-
Proof (sketch): Given a LISA valuation a, we assign it the WSkS valuation [a] where
[@l(P?) = {p€Dp|(pl)€a(x)},
[al(p) = ap).

We can prove by structural induction over LiSA formulae ¢ that for all valuations «,

D,al=o iff {1,...,k}", [a] E [e]

and, moreover, if {1,... k}*, 8 Ewsks [¢], i.e., the WSkS-valuation § is a solution of [¢], then
8 is of the form 8 = [a].

The statement follows directly from the definitions of the mappings [-] for each atomic LISA
formula. The induction steps for A and — are evident; the one for 3 follows from the bijectivity
of the mapping between solutions of formulae ¢ of LISA logic and solutions of the corresponding
WSKS formulae [¢]. O

In order to show that LiSA is as expressive as WSkS, we need to give the translation from WSkS
formulae ¢ into L1SA formulae. This is a simple embedding. The formulae j(p) = g become s;(p, q),
and the formulae P(p) become ly(tp,p) where we have a tree variable tp corresponding to each
second-order variable P. We assign each second-order value P C {1,...,k}* the feature tree t =

{(p,lo) | p € P}.

4 LISA Types

We now build upon the kernel Lisa logic by adding a language of types. Let us begin by considering
a simple example: binary trees whose labels come from the set {a,b,c¢,d}. In a programming
language like ML, we might formalize this as:

datatype Tag =al|b|c|d;
datatype BinTree = bin of (Tag x BinTree x BinTree) | leaf;

Types specify constraints on the store of the computer; the types above constrain the contents
of members Tag to have values among the given labels and members of BinTree are trees with a
given shape and labeling.

Our type system for Lisa formalizes types as systems of recursively defined constraints over
feature trees. We formalize the above types as:

Tag = aVbVeVd (2)
BinTree = bin(data : Tag, left : BinTree, right : BinTree) V leaf

Types T denote sets of trees; hence, they are integrated into the kernel LiSA logic as unary
predicates over trees. The intended use of types is with relativized quantification. As usual, we
write Vi: T. ¢ for Vi. (T(t) = ¢) and 3t : T. p for 3t. (T(t) A p).

Operationally, types can be integrated in a theorem prover system for WSkS as follows. A
type definition T is compiled to an equivalent deterministic bottom-up tree automaton Ar, as
we describe below. The standard decision procedure for WSkS [14] works by processing formulae
bottom up, replacing subformula by tree automata; it can easily be modified such that when en-
countering the predicate application T'(¢) in a formulae, the automaton A is used. This approach
fits, for example, with the already existing library functionality of the MONA system. There, a
user can write libraries of predicates p(t) defined in WSKS, and use p(t) as atomic subformulae
in subsequent definitions or for theorem statements (i.e., WSkS formulas). Each such definition
is compiled into an automaton A,, once and for all, which is used in the decision procedure of
the MONA system like a pre-compiled module. The system can call an automaton Ap stemming
from a type definition in exactly the same way as A,. So, the difference between the two kinds of
automata Ar and A, lies in the ways they are specified (and not in their use). If the automaton is
specified by type definitions, then the compilation has a complexity different from the one of the
general WSKS decision procedure. As we will see, it is linear in the practically interesting subcase
where all types defined in one type system (which can be seen as forming one library module)
denote pairwise disjoint sets.

We now explain the details of this integration. We give the semantics of types and their
translation into tree automata. We analyze the complexity of the translation and the possible size
of the resulting automata.

4.1 Syntax and Semantics

We assume given a finite set £ of labels and a finite set F of features; we set F = {f1,..., fn}.
A type system T is a conjunction of type equations,

between pairwise different declared types T; and type bodies 6;. The syntax of the bodies 6; is
given by the grammar

9:::a(f1:Sl,...,fn:Sn)H)l/\Hg\01\/02. (3)

where a € £ and fi,..., fn € F,and Si,...,S, are declared type®. In addition, we assume given
a type A whose meaning we later define as the set whose sole member is the empty tree, that we
also denote with A. We employ the syntactic shorthand a for a(f1 : A,..., fx : A).

The syntax of LTISA formulae is extended with quantification relativized to types. The meaning
of type membership “¢ € T” for a feature tree ¢ is intuitively clear. If 7" is A then ¢ is the empty
tree, t = A. If T is defined by a(fi : S1,..., fn : Sn), then t is labeled with a at the root and it
must have a subtree t; of type S; at subtree position f;, for 1 < i < n, and must have arbitrary
trees at the other subtree positions.

Formally, the meaning of the types T4, ..., T}, is given by the least solution o of the formula
T = Nj=i L =0j; we set [Tj] = (7). The formula 7 is interpreted over the domain D

of sets of feature trees. A waluation o is a mapping o : {T\,..., T, } — 2P7. For sets My, ..., M,,

the set a(fy : My,..., fn : My) is the set of all feature trees ¢ whose roots are labeled with a and
at position f; have a subtree lying in M; for i =1,...,n; i.e.,

a(fy: My,...,fn:My)={t € Dy | (e,a) €t, and t.f1 € My,...,t.fn : My}

where t. f for a tree t and a feature f is the direct subtree ¢’ at position f (i.e., t' = {(p,a) | (f.p,a) €
t}). The operators A and V over type bodies 6 are interpreted as intersection and union, respec-
tively. Valuations are ordered by pointwise inclusion. Solutions of T are closed under arbitrary
intersection, as one can easily check by case analysis. Hence, the least solution oq always exists.

3We will use 7', S, S1, S2 ... as metavariables ranging over the types 11, ..., Trm.

Example (continued): Consider the example above defining the binary-tree type. We are
given the set of labels £ = {a, b, ¢,d, bin,leaf} and the set of features F = {data, left, right}. In
order to shorten notation for trees, we write a for the tree a(\, A, \), leaf for the tree leaf (A, A, A),
etc. We then may write the meaning of the types Tag and BinTree as follows.

[Tag] = {a, b, ¢ d}
[BinTree] = {leaf, bin(data : a,left : leaf , right : leaf), ...}

4.2 Translating LISA Types into Tree-Automata

Given the type system T declaring the types Ti,...,T,,, we show how to construct a family
A1 = (Ayp,)1 e7 of top-down alternating tree automata [5, 16, 13], such that each automaton
Ayp, accepts exactly the trees in [[7;]]. The automaton will be defined so that they only differ in
their starting states. In a preliminary step, we transform LISA types into normalized types. After

we can directly translate normalized types into tree-automata.

4.2.1 Normalized Types

The type A is a normalized type. Type defined by equations are translated to normalized types
as follows.

We restrict the syntax of bodies # in declarations of normalized types by setting the set of
features to Fo = {l, r}, where I stands for left and r stands for right. We require that each
label a comes with both features; i.e., the general form a(f; : Si,..., fn : Sn) is restricted to
a(l: Sy,r:Sy), which we shorten to a(Sy,S2). We furthermore apply the operators A and V only
to types T' (as opposed to general type bodies).

6:::(]/(5]752)|S]/\SQ|S]VSQ. (4)

We translate types to normalized types in three steps. First, we flatten the type declarations. We
associate recursively with each part of a disjunction (respectively, conjunction) of a declaration
body a new type name and then we replace its occurrences with the associated name. For example,
for T =aVb(fi:S1), we add new type declarations Ry = a and Ry = b(f; : S1) and we replace
the above declaration with T'= Ry V R».

Second, we transform the type declaration into one over the set Fo = {/, 7} of only two features.
Let F = {f1,..., fv} and assume that in every disjunct, all N features occur; we can add conjuncts
of the form f: T, where T denotes the set of all trees, or of the form f: A. We introduce a new
label d (the dummy label). For a formula of the form a(f; : S1,..., fn : Sn), we add O(N?) new
normalized types, namely for 1 < i < N, we replace each occurrence of the expression f; : S; with
the expression Sif", and we add ¢ new normalized type declarations,

sft = d(T,sfy)

Sf = d(T,s)
sf = d(s;,T).

Thus, we translated a(fi : Si,..., fv : Sn) into the conjunction a A Sif‘ AN S;{,’V. We flatten the
conjunction; i.e, we introduce a sequence of type declarations whose body is a binary conjunction.

We must next say in what sense the above translation preserves the meaning of types. We
associate general trees in Dy with binary trees (and vice versa) in the way given above. Let Tj
be the normalized version of type T}, for j = 1,...,m. Note that the trees in [T] are binary trees
whose nodes can have the dummy label. Let trans([T;]) be the set of general trees associated
with the binary trees that are obtained from the trees in [T}] by replacing the dummy label with
any original label. We can prove the following statement by induction over the structure of types.

Lemma 1 The translation of LISA types into normalized types preserves the meaning of types in

that trans([T,]) = [7,]-

When we prove later the correctness of the compilation of normalized types into top-down alter-
nating tree automaton, we need the following facts.

Lemma 2

1. [a(S1,82)] = {a(t1,t2) [t1 € [Si], t2 € [S2]]}.
2. [S1V S]] = [S1] U[S.].
3. [[S1 A S]] = [Si] N [[Sa].

Example (continued): Consider the type BinTree of example (2). The flattening step leads
to:

T, = bin(data : Tag, left : BinTree, right : BinTree), Ty = leaf (A, X), and BinTree = Ty V T>.

3

In order to transform T into a normalized type, we introduce the new types B, @, R, U, S, S, Ei,
E2 and E3

Ty =BAR, B=bin(T,T), R=QAU,

Q:d(T{l(],T), U:SQ/\E?,

So=d(T,81), Si=d(BinTree, T),

E3 = d(T, Eg), EQ = d(Tl El) E1 = (BinTree, T)

3

4.2.2 Alternating Top-down Tree Automata

Our presentation of alternating top-down tree automata extends Vardi’s presentation in [16] to
a setting that is more general in two aspects: (1) we have (binary) trees instead of strings, and
(2) we allow e—transitions. Furthermore, we formulate an original acceptance condition which
is simpler than the existing ones (for several kinds of automata, alternating or nondeterministic,
over trees or over strings).

For a set X, let B (X) be the set of positive Boolean formulae over X, built using the con-
nectives A and V. We use & as a symbol that stands for either A or V. Below we will instantiate
X with both the set @ of states and the set Q2 of pairs of states.

Definition 1 An alternating top-down tree automaton with e—transitions is a tuple
A= (%,0,q,9,0,F), where ¥ is the alphabet set, Q) is the set of states, qo the initial state,
F the set of final states, & is the transition function

5:Q x ¥ — BT(Q?)

and 6. is the e-transition function

0= 1 Q = BY(Q).

Each unary state expression u € BT(Q) is a Boolean unary function on trees,
u: Ty, — {true, false},
and each binary state expression b € BT (Q?) is a Boolean binary function on trees,

b:Ts x Ts, — {true, false},

defined in the following mutually recursive way (note that a state ¢ € @ is a special case of a
unary state expression).

(ur @ u2)(t) = wui(t) ®us(t)
qg(A) = true ifge F
qg(A) = false ifgg F
q(t) = u(t) if d:(q) =
qla(ty,t2)) = b(t1,t2) if §(q,a) = b
(@1, q2)(t1,t2) a1 (t1) A q2(t2)
(b1 ® b2)(t1,t2) = bi(t1,t2) ® ba(tr,t2)

We say that an automaton A starting from a state q accepts a tree t if q(t) evaluates to true; i.e.,

La(q) ={t € Tx | q(t) = true}.

In case ¢ is the initial state gq, we simply say that A accepts t; we set Ly = La(qp). Sometimes
we say that an automaton recognizes a tuples of sets of trees, referring (explicitly or implicitly) to
a tuple of initial states.

4.2.3 From Normalized Types to Alternating Top-down Tree Automata

Given a type system T defining the types Ty, ..., T),, we define a family A+ of top-down alter-
nating tree automata 4, = (X, @, q, 0, d., F), where the set of states is @ = {qx, g1y, - - -, g1, }
.e., to each type T, including A, we associate the state gr. The starting state is ¢ € @, the
alphabet ¥ is the label set £ and the set of final states is F' = {gx}. The transition functions are
given by:

o(gr,a) = (gs,,qs,) T =a(51,5,)

(55(QT) =4dqs, \ qS, itT = Sl V SQ

0:(gr) = qs, Nqs, ifT =5 NS5
The construction is correct in the following sense.
Lemma 3 The automaton At given above recognizes T i.e., La, = [T, for every T in T.

Proof: by induction over the structure of normalized types. If 7' = A then [T] = {A\}. By
construction of Ay, T is associated with the state ¢gx. By Definition 1, g(\) = true. Thus,
A € La, . Since no transition leads to the state gy, A is the only tree in LA

Suppose T = a(51,52). We first prove La, C [T]. Ift € La, then qT(t) = {rue. Since
gr can be reached only by applying the transition §(g,a) = (qgl,qg2>, t is of the form a(ty,t2).
Thus, gs,(t;)) = true, and hence #; € L4, . By induction hypothesis #; € [[S;] and thus, by

Lemma 2, we have t € [[T]. Conversely, 1f t € [T], then again by Lemma 2, ¢ is of the form
a(ti,t2) where ¢; € [S;]]. By induction hypothesis, ¢; € L4, , which means that gs, (t;) = true.

Since 6(qr,a) = (qs,, 4s,), qr(t) = gs,(t1) A gs,(t2) = true and thus t € Ly,
The cases T =S, A Sy and T = 5, V .Sy are similar. O

4.2.4 Alternating Top-down into Bottom-up

A nondeterministic top-down tree automaton is a special case of an alternating top-down tree
automaton where all state expressions e (occurring in the range of the transition functions) are
built up with disjunction V only (i.e., without conjunction A). This observation forms the basis
of our transformation.

Let A = (%,Q,q0,9,0-, F) be a top-down alternating tree automaton with e-transitions. We
will now gradually transform A into an equivalent nondeterministic top-down tree automaton

A= (X,Q',F',§,68.,q)) with e-transitions. Let BY(X) and B"(X) be the set of disjuncts and
conjuncts over the set X, respectively. The main idea is that Q' = B*(Q). Let, for a state ¢ and
a label a,

V A ai;) = DNF(5(g.a))

where DNF(e) refers to the disjunctive normal form of an expression e € BT(X). We obtain
an equivalent automaton if we modify the transition function § to the function §' : Q x ¥ —

BY((BMNQ))?), where
§'(g,a) = \/(/\ ;. /\ a5;)-

i
Similarly, we can translate . into a function §. : @ — BY(B"(Q)) mapping states to disjunctions
of conjunctions of states and again obtain an equivalent automaton. We set

0.(q) = DNF(6.(q))-

We next extend ¢’ and d. to functions on the set B”(Q) of conjunctions of states in the canonical

way; i.e.,
(N a) = \(Naij \ i)
k J J

i
where

\/ A\(dj. 4i;) = DNF(/\ 6(qk,a))
i 7 k

and similarly

5(\) = DNF(\ 5-(a1)):
k k
We hence, define the nondeterministic top-down tree automaton A’ = (£,Q’, F',¢',d.,q.) where
Q' = BMQ) is the set of all conjuncts of states ¢ € @ (thus, if we identify a conjunction with the
set of its conjuncts, Q' = 29), ' and &' are defined above, F’ is the set of all conjuncts of states
q € F (or, F' = 2F) and ¢}, is the conjunction gy (or, go = {qo})-

Theorem 2 The alternating top-down tree automaton A with e-transitions and the nondetermin-
istic top-down tree automaton A' with e-transitions are equivalent; i.e., Lo = L.

Proof: by the definition of the acceptance condition; the only ingredient is the fact that DNF(e)
and e are logically equivalent for expressions e € B*({true, false}). |

The transformation of a nondeterministic top-down tree automaton A’ with e-transitions into
a deterministic bottom-up tree automaton is almost standard (see, for example, [6]; we only have
to extend the e-elimination procedure for the string case to the tree case).

Example (continued): Consider the type system 7 containing the types BinTree and Tag of
example (2). The family of bottom-up tree automaton A7 that recognizes T is A7 = (Ay)ge{ Tag, BinTree}
where 4, = (£, Q, {A},0,{q}) with ¥ = {a,b, ¢, d, bin, leaf , dummy}, Q = { Tag, BinTree, X\, T,U, 51}
and ¢ is defined by the following transitions.

a,b,c.d dumm

(AN A) = Tag, () A) Leof BinTree, (Tag, U) Lim, BinTree, (BinTree, S,) " —= U,
(BinTree, T) d“ﬂnﬁy S1, (AN X T and (T, T) e

10

4.2.5 The Size of the Automaton

How big are the automata obtained by our construction? By the construction given above, for
a types system 7 with n equations we get a bottom-up tree automaton of the size 2°("). This
automaton may be nondeterministic though and determinizing it may give rise to another expo-
nential factor.

This is the upper bound for the general case of LiSA types. One can now look for natural
syntactic restrictions on type definitions with better bounds. We will define a semantic property
that is sufficient to guarantee that there exists a tree automaton recognizing the declared types in
which the number of states is linear in the number of types. This property encompasses a large
and natural class of types, including those given in this paper and those typically encountered in
type declarations.

Let 7 be a system of nonempty types and k& = |F|. We say T is disjoint, if all its types are
pairwise disjoint, i.e., [T N [T'] = 0, for all distinct 7' and 7" in 7. For any such type system
the following holds:

Lemma 4 If T is disjoint, then each type T € T has a body that can be transformed into a finite
disjunction of formulae 6 of the form either X\ or a(f1 : S1, ..., fn: Sn)-

We omit the straightforward but tedious proof of this lemma. A consequence of lemma 4, is the
following

Lemma 5 If T is disjoint, then there is a deterministic bottom-up k-ary tree automaton A1 that
recognizes T and it has at most |T| states.

A deterministic bottom-up k-ary tree automaton A can be transformed into a deterministic
bottom-up binary tree automaton A’ whose number of states is linear in the number of the states
of A. Hence, for a disjoint type system 7 we can build a deterministic bottom-up binary tree
automaton A that recognizes T and whose number of states is linear in the size of T.

Although disjointness is semantically defined, we define below a sufficient syntactic character-
ization for disjointness, that can be checked in linear time.

Definition 2 Let T be a type with body 6. We define root(T') as the set of all labels that can label
the root of an element of T. For T =0, root(T) = root(8) and root() is defined by,

0 iff =\
{a} if0=a
root(d) = ¢ L ifo=f:8S

root(61) U root(0s) if 6 = 61 V 6,
root(f1) N root(fs) if 6 = 61 A0

Lemma 6 If the types in T have disjoint roots then T is disjoint.

Example (continued): Consider the type system 7 containing the types BinTree and Tag
of example (2). The root of Tag is the set root(Tag) = {a, b, ¢, d} and the root of the type
BinTree is the set root(BinTree) = {bin, leaf }. The roots of both types are disjoint, it follows
that 7 is disjoint (this fact is obvious for this example). In 7 we have three features tag, left and
right that we associate with the projections on the first, second and third component respectively.
The deterministic 3-ary bottom-up tree automaton A = (A;),e{BinTree, Tag} that recognizes T is
defined by A, = ({a, b, ¢, d, bin, leaf}, {A, BinTree, Tag}, q, §, {\}) with

0 ={(\ A A) @byl Tag, (A, A\, \) Lealt BinTree, (Tag, BinTree, BinTree) bin, BinTree}.

11

5 Example

We conclude by illustrating some of the features of LiSA with an example, which is also considered
by Klarlund and Schwartzbach: the correctness of the following toy mutual exclusion algorithm.

Turn: Integer range 1..2 := 1;
Proc(i) is: loop
a: Non_critical_section._i
b: loop exit when Turn = i; end loop;
c: Critical_section_i;
d: Turn := 1 + 1 mod 2
end loop;
Proc(0) || Proc(1)

This algorithm consists of two processes that execute the program, whose lines are numbered
a through d. The variable Turn resides in shared memory. We begin our specification by declaring
the following datatypes®.

Turn = 1 | 2;

Pc =a | b | c| d;

State = state(pcl:Pc, pc2:Pc, turn:Turn);
Comp = node(val: State, next:Comp) | done;

The type Comp formalizes trees that represent sequences of states. Each state has features pointing
to the program counters (each storing a program line) and the value of the Turn variable.

Not all elements of Comp represent valid executions. Hence we define Lisa predicates® that
further constrain the members of Comp.

The predicate Init describes the start state of both processes.

pred Init(X::State) = a(X,pcl) & a(X,pc2) & 1(X,turn);

The state X satisfies Init, if 1) it is a tree of type State and 2) its subtrees at the positions pc1
and pc2 are labeled with the program line a and the subtree at the position turn is labeled with
the turn value 1.

For the transition function, we first declare how a process can execute. The predicate Stepl
is a large conjunction that describes the possible transitions.

pred Stepl(X::State, Y::State) =
a(X,pcl) => b(Y,pcl) & X.turn == Y.turn &
b(X,pcl) => ((1(X,turn)=>c(Y,pcl))&(2(X,turn)=>b(Y,pcl))&(X.turn==Y.turn))&
c(X,pcl) => d(Y,pcl) & X.turn == Y.turn &
d(X,pcl) => a(¥,pcl) & 2(Y,turn) &
X.pc2 == Y.pc2;

For example, the first conjunct states that the first process can advance from state X where pc1 is
at line a, to state Y where pc1 is at line b, and the value of the turn variable remains unchanged.
The predicate Step2 is declared similarly.

pred Step2(X::State, Y::State) =
a(X,pc2) => b(Y,pc2) & X.turn == Y.turn &
b(X,pc2) => ((1(X,turn)=>b(Y,pc2))&(2(X,turn)=>c(Y,pc2))&(X.turn==Y.turn))&
c(X,pc2) => d(Y,pc2) & X.turn == Y.turn &
d(X,pc2) => a(Y,pc2) & 1(Y,turn) &
X.pcl == Y.pcl;

4We use the ASCII syntax: | for V, & for A, => for the implication and == for the equality.
5A predicate (defined with pred in LISA) is equivalent to (i.e., syntactically interchangeable with) a formula in
one or several free variables (tree variables in the case of LISA).

12

A transition of the system is a step by either process (i.e., we assume an interleaving semantics).
pred Trans(X::State, Y::State) = Stepl(X,Y) | Step2(X,Y) ;

Finally, a computation is Valid when the first state satisfies Init and all pairs stand in the
transition relation.®

pred Valid(X::Comp) = Init(X.val) &
all p: (node(X,p) & node(X,next.p)) =>Trans(X.p.val, X.p.next.val);

Given these definitions, we now define what mutual exclusion means: no two processes are
simultaneously in their critical section, line c.

pred Mutex(X::Comp) = all p: “(c(X,p.val.pcl)& c(X,p.val.pc2));

With this, we can formalize the question of whether all valid computations have the mutual
exclusion property.

all X::Comp: Valid(X) => Mutex(X);

LL1sA is an implemented system and is integrated with MONA. For this example, L1SA translates
the defined predicates and types and produces about 2 pages of formulae in WS2S. These are input
to MONA, which takes 2 seconds to process the result, and to report

Formula with free variables X0 X1 X2 X3 X4 X5 is a tautology
Dfa has 1 states and 1 BDD-nodes

thereby verifying that the program does indeed enforce mutual exclusion.

This example illustrates how types and LISA formulae interact. There is a natural decompo-
sition of specifications into types, which express simple properties about the shapes and values of
data, and predicates (e.g., Mutex), which express more complicated constraints. Again, recall that
both are equally expressive; the tradeoff is one of conciseness and complexity of the translation.
We can also express predicates like Valid and Mutex as types, but the results would be rather
cumbersome (a blowup in size traded in for a better complexity bound with respect to the larger
types) and not very natural.

6 Discussion and Further Work

Up to now, it has been taken for granted that a specification and verification tool based on
WS2S also algorithmically had to be based on WS2S semantically. This is the first time that a
programming language (i.e., with its own semantics) is built on top of WS2S.

Our contribution is also to provide a new way for users to estimate the complexity of their
specification, namely the size of the resulting compiled tree automaton. Type compilation has a
double-exponential upper bound that in many practical cases is linear. Hence, the more a system
can be specified with types, the more accurately one can bound the complexity. Of course, for the
part of the system specified in the kernel logic, non-elementary blowups (an exponential blowup
with each quantifier alternation) are, of course, still possible. There are interesting practical
tradeoffs here: as noted in the introduction, all tree-automata can be described using types and
hence it follows that there are certain problems that can be more naturally (and, in particular,
with a non-elementary savings of space) described in the kernel Lisa logic.

LISA may be the first programming language compiled into tree automata via WS2S, but it is
certainly not the last. The language is still primitive, and one can think of extensions that further
help in structuring specifications. For example, we plan to replace the primitive pred construct
with more powerful means of decomposing specifications into modules that support abstraction
and specification reuse.

6X.f is the tree such that a(X.£,p) iff a(X,p.£) for all labels a and for all positions p.

13

Acknowledgments. This work would not have been possible without the preliminary work by
Nils Klarlund and Michael Schwartzbach on FiDO. We thank both of them for fruitful discussions.
Part of the implementation of L1SA was done while the first author was invited by BRICS where
he received technical support and encouragement. We thank Harald Ganzinger and Luca Vigano
for comments on this draft as well as the anonymous CSL referees.

References

[1]
2]
3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

H. Ait-Kaci, A. Podelski, and G. Smolka. A feature constraint system for logic programming with
entailment. Theoretical Computer Science (TCS), 122:263-283, 1994.

D. Arden. Delayed logic and finite state machines. In Proceedings of the 2nd Annual Symposium on
Switching Circuit Theory and Logical Design, pages 133-151, 1961.

R. Backofen and G. Smolka. A complete and recursive feature theory. Research Report RR-92-30,
German Research Center for Artificial Intelligence (DFKI), Stuhlsatzenhausweg 3, 6600 Saarbriicken
11, Germany, July 1992.

D. A. Basin and N. Klarlund. Hardware verification using monadic second-order logic. In Computer-
Aided Verification (CAV ’95), volume 939 of LNCS, pages 31 41. Springer-Verlag, 1995.

J. A. Brzozowski and E. Leiss. On equations for regular languages, finite automata, and sequential
networks. Theoretical Computer Science, 10:19 35, 1980.

F. Gécseg and M. Steinby. Tree Automata. Akademiai Kiado, Budapest, 1984.

J. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. In Tools and Algorithms for the Construction and Analysis
of Systems, First International Workshop, TACAS 95, LNCS 1019, 1996.

P. Kelb, T. Margaria, M. Mendler, and C. Gsottberger. Mosel: A flexible toolset for monadic second

order logic. In Proc. CAV’97, 9th Int. Conference on Computer Aided Verification, Haifa (Israel),
June 1997. Springer Verlag.

Kesten, Maler, Marcus, Pnueli, and Shahar. Symbolic model checking with rich assertional languages.
In Proc. CAV’97, 9th Int. Conference on Computer Aided Verification, Haifa (Israel), June 1997.
Springer Verlag.

N. Klarlund, M. Nielsen, and K. Sunesen. A case study in automated verification based on trace
abstractions. In Formal Systems Specification; The RPC-Memory Specification Case Study, volume
1169 of Lecture Notes in Computer Science. Springer, 1996.

Z. Manna and the STeP group. Step: The stanford temporal prover. In TAPSOFT’95: Theory and
Practice of Software Development, volume 915 of LCNS, pages 793-794. Springer-Verlag, 1995.

F. Morawietz and T. Cornell. On the recognizibility of relations over a tree definable in a monadic
second order tree description language. Research Report SFB 340-Report 85, Sonderforschungsbereich
340 of the Deutsche Forschungsgemeinschaft, Februar 1997.

G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-318, 1985.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a decision
problem of second-order logic. Mathematical Systems Theory, 2(1):57-81, August 1967. Published
by Springer-Verlag NY Inc.

S. Vorobyov. An improved lower bound for the elementary theories of trees. In Automated Deduction
CADE-13, volume 1104 of LNAI, pages 275 287. Springer-Verlag, 1996.

M. Y.Vardi. An automata-theoretic approach to linear-temporal logic. In Logics for Concurrency:
Structure versus Automata. LNCS, 1043:238 266, 1996.

14

