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Abstract. We show that Constraint Logic Programming (CLP) can
serve as a conceptual basis and as a practical implementation platform
for the model checking of infinite-state systems. Our contributions are:
(1) a semantics-preserving translation of concurrent systems into CLP
programs, (2) a method for verifying safety and liveness properties on
the CLP programs produced by the translation. We have implemented
the method in a CLP system and verified well-known examples of infinite-
state programs over integers, using here linear constraints as opposed to
Presburger arithmetic as in previous solutions.

1 Introduction

Automated verification methods can today be applied to practical sys-
tems [McM93]. One reason for this success is that implicit representations of
finite sets of states through Boolean formulas can be handled efficiently via
BDD’s [BCM™90]. The finiteness is an inherent restriction here. Many systems,
however, operate on data values from an infinite domain and are intrinsically
infinite-state; i.e., one cannot produce a finite-state model without abstracting
away crucial properties. There has been much recent effort in verifying such
systems (see e.g. [ACJT96, BW98, BGP97, CJ98, HHWT97, HPR97, LPY97,
SKR98]). One important research goal is to find appropriate data structures
for implicit representations of infinite sets of states, and design model checking
algorithms that perform well on practical examples.

It is obvious that the metaphor of constraints is useful, if not unavoidable for
the implicit representation of sets of states (simply because constraints represent
a relation and states are tuples of values). The question is whether and how the
concepts and the systems for programming over constraints as first-class data
structures (see e.g. [Pod94, Wal96]) can be used for the verification of infinite-
state systems. The work reported in this paper investigates Constraint Logic
Programming (see [JM94]) as a conceptual basis and as a practical implementa-
tion platform for model checking.

We present a translation from concurrent systems with infinite state spaces
to CLP programs that preserves the semantics in terms of transition sequences.
The formalism of ‘concurrent systems’ is a widely-used guarded-command speci-
fication language with shared variables promoted by Shankar [Sha93]. Using this
translation, we exhibit the connection between states and ground atoms, between
sets of states and constrained facts, between the pre-condition operator and the



logical consequence operator of CLP programs, and, finally, between CTL prop-
erties (safety, liveness) and model-theoretic or denotational program semantics.
This connection suggests a natural approach to model checking for infinite-state
systems using CLP. We explore the potential of this approach practically by
using one of the existing CLP systems with different constraint domains as an
implementation platform. We have implemented an algorithm to compute fix-
points for CLP programs using constraint solvers over reals and Booleans. The
implementation amounts to a simple and direct form of meta-programming: the
input is itself a CLP program; constraints are syntactic objects that are passed
to and from the built-in constraint solver; the fixpoint iteration is a source-to-
source transformation for CLP programs.

We have obtained experimental results for several examples of infinite-state
programs; these examples are quickly becoming benchmarks in the community
(see e.g. [BGP97, BGP98, SKR98, SUM96, LS97]). Our experiments allow us
to see that a CLP-based tool can solve the considered verification problems
at acceptable time cost. Moreover, as CLP combines mathematical and logical
reasoning, the CLP-based setting helps to find optimizations that are natural,
directly implementable and provably correct. This is important since verifica-
tion is a hard problem (undecidable in the general infinite-state case) and often
requires a fine-tuning of the method.

Finally, the experiments show that, perhaps surprisingly, the powerful (triple-
exponential time) decision procedure for Presburger Arithmetic used in other
approaches [BGP98, SKR98, BW94] for the same verification problems is not
needed; instead, the (polynomial-time) consistency and entailment tests for lin-
ear arithmetic constraints (without disjunction) that are provided by CLP sys-
tems are sufficient.

2 Translating Concurrent Systems into CLP

We take the bakery algorithm (see [BGP97]) as an example of a concurrent
program, using the notation of [MP95]:

begin turn; :=0; turny:=0; P || P» end

where Py || P, is the parallel execution of the subprograms P; and P, and P is
defined by:

repeat
think : turni := turns + 1;
wait :  when turn; < turns or turns =0 do
critical section;
use :
turny := 0

forever

and P is defined symmetrically. The algorithm ensures the mutual exzclusion
property (at most one of two processes is in the critical section at every point



of time). The integer values of the two variables turn; and turng in reachable
states are unbounded; note that a process can enter wait before the other one
has reset its counter to 0.

The concurrent program above can be directly encoded as the concurrent
system S in Figure 1 following the scheme in [Sha93]. Each process is associated
with a control variable ranging over the control locations (i.e. program labels).
The data variables correspond to the program variables. The states of S are
tuples of control and data values, e.g. (think,think,0,3). The primed version
of a variable in an action stands for its successor value. We omit conjuncts like
phy = pa expressing that the value remains unchanged.

Control variables p;,ps: {think, wait,use}
Data variables turni,turns : int.
Intial condition p; = think A ps = think A turny = turns = 0

Events cond p; = think action p| = wait A turn] =turny+1
cond p; = wait A turn; < turns action pj = use
cond p; = wait A turns =0 action p| = use
cond p; = use action p| = think A turn} =0

symmetrically for Process 2

Fig. 1. Concurrent system S specifying the bakery algorithm

Following the scheme proposed in this paper, we translate the concurrent system
for the bakery algorithm into the CLP program shown in Figure 2 (here, p is
a dummy predicate symbol, think, wait, and use are constants, and variables
are capitalized; note that we often separate conjuncts by commas instead of
using “A”).

init + Turny = 0,Turns =0, p(think, think, Turny, Turns)
p(think, Py, Turny, Turns) < Turn=Turns+1, p(wait, Py, Turn}, Turns)

p(wait, Po, Turny, Turng) < Turny < Turns, p(use, Py, Turny, Turns)
p(wait, Po, Turny, Turng) < Turns =0, p(use, Py, Turny, Turns)
p(use, Py, Turny, Turns) <+ Turn] =0, p(think, Pa, Turn’, Turns)

. symmetrically for Process 2

Fig. 2. CLP program Pgs for the concurrent system S in Figure 1.

If the reader is not familiar with CLP, the following is all one needs to know for
this paper.! A CLP program is a logical formula, namely a universally quantified

L If the reader is familiar with CLP, note that we are proposing a paradigm shift:



conjunction of implications (as in Figure 2; it is common to call the implications
clauses and to write their conjunction as a set). Its first reading is the usual
first-order logic semantics. We give it a second reading as a non-deterministic
sequential program. The program states are atoms, i.e., applications of the pred-
icate p to values such as p(think, think, 0, 3). The successor state of a state s is
any atom s’ such that the atom s is a direct logical consequence of the atom s
under the program formula. This again is the case if and only if the implication
s « s’ is an instance of one of the implications.

For example, the state p(think, think, 0,8) has as a possible successor the
state p(wait, think, 4, 3), since p(think, think, 0, 3) + p(wait, think, 4, 3) is an
instance of the first implication for p (instantiate the variables with Py = think,
Turn; = 0, Turn, = 4 and Turng = 3).

A sequence of atoms such that each atom is a direct logical consequence of
its successor in the sequence (i.e., a transition sequence of program states) is
called a ground derivation of the CLP program.

In the following, we will always implicitly identify a state of a concur-
rent system S with the corresponding atom of the CLP program Ps;
for example, (think, think,0,3) with p(think,think,0, 3).

We observe that the transition sequences of the concurrent system S in Fig-
ure 1 are exactly the ground derivations of the CLP program Ps in Figure 2.
Moreover, the set of all predecessor states of a set of states in S is the set of its
direct logical consequences under the CLP program Ps. We will show that these
facts are generally true and use them to characterize CTL properties in terms
of the denotational (fixpoint) semantics associated with CLP programs.

We will now formalize the connection between concurrent systems and CLP
programs. We assume that for each variable z there exists another variable z’,
the primed version of z. We write x for the tuple of variables (z1,...,z,) and d
for the tuple of values (di,...,d,). We denote validity of a first-order formula 1
wrt. to a structure D and an assignment a by D,a = 9. As usual, afx — d]
denotes an assignment in which the variables in x are mapped to the values in d.
In the examples of Section 5 formulas will be interpreted over the domains of
integers and reals. Note however that the following presentation is given for any
structure D.

A concurrent system (in the sense of [Sha93]) is a triple (V, @, &) such that

— V is the tuple x of control and data variables,

— O is a formula over V called the initial condition,

— £ is a set of pairs (¢, @) called events, where the enabling condition 1) is a for-
mula over V' and the action ¢ is a formula of the form =} =e; A ...z, = e,
with expressions ey, ..., e, over V.

instead of looking at the synthesis of operational behavior from programs viewed as
executable specifications, we are interested in the analysis of operational behavior
through CLP programs obtained by a translation. The classical correspondence be-
tween denotational semantics and operational semantics (for ground derivations) is
central again.



The primed variable 2’ appearing in an action is used to represent the value
of  after the execution of an event. In the examples, we use the notation
cond ¢ action ¢ for the event (¢, #) (omitting conjuncts of the form z' = z).

The semantics of the concurrent system S is defined as a transition system
whose states are tuples d of values in D and the transition relation 7 is defined by

T = {(d,d) | D,alx = d ¥, Dax—dx —d]Eé (¢ ¢) cc}

The pre-condition operator pres of the concurrent system S is defined through
the transition relation: pres(S) = {d | exists d’ € S such that (d,d’) € 7}.

For the translation to CLP programs, we view the formulas for the enabling
condition and the action as constraints over the structure D (see [JM94]). We
introduce p for a dummy predicate symbol with arity n, and init for a predicate
with arity 0. 2

Definition 1 (Translation of concurrent systems to CLP programs)
The concurrent program S is encoded as the CLP program Ps given below, if
S=(V,0,E) and V is the tuple of variables x.

Ps ={p(x) « ¢ ANoApK) [ (h,¢) €€} U {mmit < O Ap(x)}

The direct consequence operator Tp associated with a CLP program P
(see [JM94]) is a function defined as follows: applied to a set S of atoms, it
yields the set of all atoms that are direct logical consequences of atoms in §
under the formula P. Formally,

Tp(S) = {p(d) | p(d) + p(d’) is an instance of a clause in P, p(d') € S}.

We obtain a (ground) instance by replacing all variables with values. In the next
statement we make implicit use of our convention of identifying states d and
atoms p(d).

Theorem 1 (Adequacy of the translation S — Ps)

(i) The state sequences of the transition system defined by the concurrent sys-
tem S are exactly the ground derivations of the CLP program Pgs.

(i) The pre-condition operator of S is the logical consequence operator associated
with Ps, formally: pres = Tp,.

2 Note that e.g. p(think, Pg, Turn;, Turng) < ... in the notation used in examples
is equivalent to p(P;:, Pg, Turns, Turng) < P; = think A ... in the notation used
in formal statements.



Proof. The clause p(x) < ¢ A ¢ A p(x') of Ps corresponds to the event (1, ¢).
Its instances are of the form p(d) < p(d’) where D,a[x — d,x' — d'] = ¢ A ¢.
Thus, they correspond directly to the pairs (d,d’) of the transition relation T
restricted to the event (¢, ¢). This fact can be used to show (i) by induction
on the length of a sequence of transitions or derivations and (ii) directly by
definition. |

As an aside, if we translate S into the CLP program Pg‘”t where

P£05t — {p(X) /\¢/\¢ - p(x') | <¢,¢> S g} ) {@ — p(x)}

then the post-condition operator is the logical consequence operator associated
with Ps, formally: postg = Tpgost We thus obtain the characterization of the set

of reachable states as the least fixpoint of Tpgm.

3 Expressing CTL Properties in CLP

We will use the temporal connectives: EF (exists finally), EG (exists globally),
AF (always finally), AG (always globally) of CTL (Computation Tree Logic) to
express safety and liveness properties of transition systems. Following [Eme90],
we identify a temporal property with the set of states satisfying it.

In the following, the notion of constrained facts will be important. A con-
strained fact is a clause p(x) < ¢ whose body contains only a constraint c. Note
that an instance of a constrained fact is (equivalent to) a clause of the form
p(d) + true which is the same as the atom p(d), i.e. it is a state. Given a set of
constrained facts F', we write [F]p for the set of instances of clauses in F' (also
called the ‘meaning of F” or the ‘set of states represented by F”). For example,
the meaning of

Fout = {p(P1, Py, Turn;, Turny) < P, = use, P, = use}

is the set of states [F,.:]p = {p(use, use,0,0), p(use, use, 1,0),...}.

The application of a CTL operator on a set of constrained facts F' is defined
in terms of the meaning of F. For example, EF(F) is the set of all states from
which a state in [F]p is reachable. In our examples, we will use a more intuitive
notation and write e.g. EF (p; = pe = use) instead of EF (Fpyt)-

As an example of a safety property, consider mutual exclusion for the con-
current system S in Figure 1 (“the two processes are never in the critical section
at the same time”), expressed by AG(— (p; = p2 = use)). Its complement is the
set of states EF (p; = pe = use). As we can prove, this set is equal to the least
fixpoint for the program Ps & F,,; that we obtain from the union of the CLP
Program Ps in Figure 2 and the singleton set of constrained facts Fi,,;. We can
compute this fixpoint and show that it does not contain the initial state (i.e. the
atom init).

As an example of a liveness property, starvation freedom for Process 1
(“each time Process 1 waits, it will finally enter the critical section”) is ex-
pressed by AG(p; = wait — AF(p; = use)). Its complement is the set of states



init < Turni =0,Turny =0, p(think,think, Turni, Turns)
p(think, Po, Turny, Turns) < Turni=Turns+1, p(wait, Ps, Turny, Turns)

p(wait, P, Turni, Turns) + Turni < Turna, p(use, Po, Turni, Turns)
p(wait, Po, Turni, Turns) + Turns =0, p(use, Pa, Turni, Turns)
p(wait, think, Turny, Turns) <+ Turny=Turni+1, p(wait, wait, Turny, Turny)
p(wait,wait, Turni, Turns) <+ Turns < Turni, p(wait,use, Turny, Turnz)
p(wait, wait, Turni, Turns) < Turny =0, p(wait, use, Turny, Turnz)
p(wait, use, Turni, Turns) < Turny =0, p(wait, think, Turny, Turnb)
p(think, think, Turni, Turns) < Turny=Turni+1, p(think, wait, Turni, Turns)
p(think, wait, Turni, Turns) < Turns < Turni, p(think,use, Turni, Turns)
p(think, wait, Turni, Turns) < Turny =0, p(think,use, Turni, Turns)
p(think, use, Turni, Turns) < Turny =0, p(think, think, Turni, Turns)

Fig. 3. The CLP program Ps @ F;, for the concurrent system S in Figure 1.

EF(p; = wait A EG(—p; = use)). The set of states EG(—p; = use) is equal to
the greatest fixpoint for the CLP program Ps @ Fia, in Figure 3. We obtain
Ps @ Fs44y from the CLP Program Ps by a transformation wrt. to the following
set of two constrained facts:

Fitory = { p(P1, P2, Turny, Turny) < P, = think,
p(P1, Py, Turny, Turns) < P, = wait  }.

The transformation amounts to ‘constrain’ all clauses p(label;,_,_,_) < ... in Ps
such that label; is either wait or think (i.e., clauses of the form p(use, _, _, ) « ...
are removed).

To give an idea about the model checking method that we will describe
in the next section: in an intermediate step, the method computes a set F’
of constrained facts such that the set of states [F']p is equal to the greatest
fixpoint for the CLP program Ps @ F. The method uses the set F' to form a
third CLP program Ps @& F'. The least fixpoint for that program is equal to
EF(p; = wait A EG(— p; = use)). For more details, see Corollary 2.1 below.

We will now formalize the general setting.

Definition 2 Given a CLP program P and a set of constrained facts F', we
define the CLP programs P ® F and P @ F as follows.

PeF = PUF
PoF = {p(x) < aAheApX)|pE) < aAp) P, p(x)—c €F}

Theorem 2 (CTL properties and CLP program semantics)
Given a concurrent system S and its translation to the CLP program Pg,
the following properties hold for all sets of constrained facts F'.

EF(F) = lfp(Tper)
EG(F) = gfp(Tpor)



Proof. Follows from the fixpoint characterizations of CTL properties
(see [Eme90]) and Theorem 1. O

By duality, we have that AF (= F) is the complement of gfp(Tppr) and AG(— F)
is the complement of Ifp(Tpgr). We next single out two important CTL prop-
erties that we have used in the examples in order to express mutual exclusion
and absence of individual starvation, respectively.

Corollary 2.1 (Safety and Liveness)

(i) The concurrent system S satisfies the safety property AG(—F) if and only
if the atom ‘init’ is not in the least fixpoint for the CLP program Ps & F'.

(i1) S satisfies the liveness property AG(Fy — AF(—Fy)) if and only ‘init’ is
not in the least fizpoint for the CLP program Ps & (Fy A F'), where F' is a
set of constrained facts denoting the greatest fixpoint for the CLP program
Ps @ Fs5.

For the constraints considered in the examples, the sets of constrained facts are
effectively closed under negation (denoting complement). Conjunction (denoting
intersection) can always be implemented as F' A F' = {p(x) <= c1 Acz2 | p(x) +
c1 € F, p(x) < cy € F', c1 Aco is satisfiable in D}.

4 Defining a Model Checking Method

It is important to note that temporal properties are undecidable for the general
class of concurrent systems that we consider. Thus, the best we can hope for
are ‘good’ semi-algorithms, in the sense of Wolper in [BW98]: “the determining
factor will be how often they succeed on the instances for which verification is
indeed needed” (which is, in fact, similar to the situation for most decidable
verification problems [BW98]).

A set F' of constrained facts is an implicit representation of the (possibly
infinite) set of states S if S = [F]p. From now on, we always assume that F itself
is finite. We will replace the operator Tp over sets of atoms (i.e. states) by the
operator Sp over sets of constrained facts, whose application Sp(F) is effectively
computable. If the CLP programs P is an encoding of a concurrent system, we
can define Sp as follows (note that F' is closed under renaming of variables since
clauses are implicitly universally quantified; i.e., if p(z1,...,2,) + ¢ € F then
also p(z},...,2,) < c[z}/z1,...,z)/zn] € F).

Sp(F) = {p(x) <~ c1Aecz2 | p(x) < c1 Ap(x') € P,
p(x') < c2 E€F,
c1 A ce is satisfiable in D}

If P contains also constrained facts p(x) < ¢, then these are always contained
in SP(F)



The Sp operator has been introduced to study the non-ground semantics of
CLP programs in [GDL95], where also its connection to the ground semantics is
investigated: the set of ground instances of a fixpoint of the Sp operator is the
corresponding fixpoint of the Tp operator, formally {fp(Tp) = [l fp(Sp)]p and
9fp(Tp) = [¢fp(Sp)]p. Thus, Theorem 2 leads to the characterization of CTL
properties through the Sp operator via:

EF(F) = [lfp(Spar)]p,
EG(F) = [gfp(Spor)]p-

Now, a (possibly non-terminating) model checker can be defined in a straight-
forward way. It consists of the manipulation of constrained facts as implicit
representations of (in general, infinite) sets of states. It is based on standard
fixpoint iteration of Sp operators for the specific programs P according to the
fixpoint definition of the CTL properties to be computed (see e.g. Corollary 2.1).
An iteration starts either with F' = ) representing the empty set of states, or
with F' = {p(x) + true} representing the set of all states. The computation of
the application of the Sp operator on a set of constrained facts F' consists in
scanning all pairs of clauses in P and constrained facts in F' and checking the
satisfiability of constraints; it produces a new (finite) set of constrained facts.

The iteration yields a (possibly infinite) sequence Fy, Fi, Fs, ... of sets of
constrained facts. The iteration stops at ¢ if the sets of states represented by F;
and F;y, are equal, formally [F;]p = [Fii1]p.

The fixpoint of the Sp operator is taken wrt. the subsumption ordering be-
tween sets of constrained facts. We say that F' is subsumed by F' if the set
of states represented by F' is contained in the set of states represented by F”,
formally [F]p C [F']p. Testing subsumption amounts to testing entailment of
disjunctions of constraints by constraints.

We interleave the least fixpoint iteration with the test of membership of
the state init in the intermediate results; this yields a semi-algorithm for safety
properties.

We next describe some optimizations that have shown to be useful in our ex-
periments (described in the next section). Our point here is to demonstrate that
the CLP setting, with its combination of mathematical and logical reasoning,
allows one to find these optimizations naturally.

Local subsumption. For practical reasons, one may consider replacing sub-
sumption by local subsumption as the fixpoint test. We say that F' is locally
subsumed by F' if every constrained fact in F' is subsumed by some constrained
fact in F'. Testing local subsumption amounts to testing entailment between
quadratically many combinations of constraints. Generally, the fixpoint test may
become strictly weaker but is more efficient, practically (an optimized entailment
test for constraints is available in all modern CLP systems) and theoretically.
For linear arithmetic constraints, for example, subsumption is prohibitively hard
(co-NP [Sri93]) and local subsumption is polynomial [Sri93]. An abstract study
of the complexity of local vs. full subsumption based on CLP techniques can be



found in [Mah95]; he shows that (full) subsumption is co-NP-hard unless it is
equivalent to local subsumption.

Elimination of redundant facts. We call a set of constrained facts F' irredun-
dant if no element subsumes another one. We keep all sets of constrained facts
F1, F5, ... during the least fixpoint iteration irredundant by checking whether a
new constrained fact in F;;1 that is not locally subsumed by F; itself subsumes
(and thus makes redundant) a constrained fact in F;. This technique is standard
in CLP fixpoint computations [MR89].

Strategies. We obtain different fixpoint evaluation strategies (essentially,
mixed forms of backward and forward analysis) by applying transformations
such as the magic-sets templates algorithm [RSS92] to the CLP programs Ps@F'.
Such transformations are natural in the context of CLP programs which may
also be viewed as constraint data bases (see [RSS92, Rev93]).

The application of a kind of magic-set transformation on the CLP program
P = Ps@® F, where the clauses have a restricted form (one or no predicate in the

body), yields the following CLP program P (with new predicates p and z/n\z/t)

P = {p(x) < body, p(x') | p(x) < body € P} U
{P(x') = ¢, p(x) | p(x) ¢, p(x') € P} U

{init « true}

We obtain the soundness of this transformation wrt. the verification of safety
properties by standard results [RSS92] which say that init € Ifp(Tp) if and
only if init € Ifp(Tp) (which is, init € Ifp(Sp)). The soundness continues to
hold if we replace the constraints c in the clauses p(x') < ¢, p(x) in P by con-
straints c# that are entailed by c. We thus obtain a whole spectrum of transfor-
mations through the different possibilities to weaken constraints. In our exam-
ple, if we weaken the arithmetical constraints by true, then the first iterations
amount to eliminating constrained facts p(label;, labels, _,_) < ... whose loca-
tions (labely , labels) are “definitely” not reachable from the initial state.

Abstraction. We define an approximation S}‘f of the Sp operator in the style
of the abstract interpretation framework, whose results guarantee that we obtain
conservative approximations of the fixpoints and, hence, of the CTL properties.
This approximation turns our method into a (possibly non-terminating) semi-
test for AF and AG properties, in the following direction: only a positive answer
is a definite answer.

We introduce a new widening operator {} (in the style of [CH78], but with-
out a termination guarantee) and then define S7%(F) = F{+Sp(F) (so that
[Sp(F)]p C [S}‘f(F)]D). The operator 1} is defined in terms of constrained facts.
For example, if

F={p(X,Y) < X>0,Y >0,X <V}
F'={pX,Y)+~X>0,Y >0,X <Y +1} then
FF' = {p(X,Y) « X >0,Y > 0}.



Formally, F{}F' contains each constrained fact that is obtained from some con-
strained fact p(x) < ¢1 A ... A ¢, in F' by removing all conjuncts ¢; that are
strictly entailed by some conjunct d; of some ‘compatible’ constrained atom
p(x) < di A ... ANdy, in F, where ‘compatible’ means that the conjunction
ct N...ANcep Ady A ... Ady, is satisfiable. This condition restricts the applica-
tions of the widening operator e.g to facts with the same values for the control
locations.

In contrast with the ‘standard’ widening operators in [CH78] and the refined
versions in [HPR97, BGP98], the operator {} can be directly implemented using
the entailment test between constraints; furthermore, it is applied fact-by-fact,
i.e., without requiring a preliminary computation of the convex hull of union of
polyhedra. Besides being computationally expensive, the convex hull approxi-
mation may be an important factor wrt. loss of precision. Let us consider e.g.
the two sets of constrained atoms

F={p({,X) < X >2}
F'={p(t,X) < X >2, p(¢, X) + X <0}.

When applied to F' and F’, each of the widening operators in [BGP98, CH78,
HPROI7] returns the (polyhedra denoted by the) fact p(¢, X') < true. In contrast,
our widening is precise here, i.e., it returns F'. Note that the use of constrained
facts automatically induces a partitioning over the state space wrt. the set of
control locations; such a partitioning has shown to be useful to increase the

precision of the widening operator (essentially, by reducing its applicability; see
e.g. [HPR97, BGP98]).

5 Experimentation in CLP

We have implemented the model checking procedure described above in SICStus
Prolog 3.7.1 using the CLP(Q,R) library [Hol95] and the Boolean constraint
solvers (which are implemented with BDDs). We made extensive use of the run-
time database facilities for storing and retrieving constrained facts, and of the
meta-programming facilities (e.g., the interchangeability between uninterpreted
and interpreted constraints expressions).

We have applied the implementation to several infinite-state verification
problems that are becoming benchmarks in the community (see e.g. [BGP97,
BGP98, SKR98, SUM96, L.S97]). This allowed us to evaluate the performance of
our implementation, to experiment with evaluation strategies and abstractions
through widenings, and to compare our solution with previous solutions.

We implement the solving of constraints over integers, which is needed for
model checking integer-valued concurrent systems, through a constraint solver
over reals. We thus trade the theoretical and practical gain in efficiency with an
extra abstraction. This abstraction yields yields a conservative approximation
of CTL properties (by standard fixpoint theory). In our experiments, we did
not incur a loss of precision. It would be interesting to generally characterize the



Programs | C | ET | EN | ERT | ERN | AT [AN| ART | ARN
bakery 8 0.1 18 0.1 16 - | - - -
bakery3 21| 6.3 157 | 6.1 109 | - | - - -
bakery 533354 | 1698 | 253.2 | 963 | - | - - -
ticket 6 T T T T |10|15| 1.1 13
mut-ast 20| 0.0 20 0.0 20 - |- - -

network 16 T T 0 T 0.7 3] 0.6 3
bbuffer (1)| 4 | 0.2 2 0.2 2 - - - -
bbuffer (2)| 4 | 0.0 2 0.0 2 - - - -
ubuffer 6 0 0 0 + |30]|16| 1.7 6

Fig. 4. Benchmarks for the verification of safety properties; C: number of clauses,
E: exact, A: approximation with widening, R: elimination of redundant facts,
T: execution time (in seconds), N: number of produced facts, —: not needed,
1: non-termination.

integer-valued concurrent systems for which the abstraction of integer constraints
to the reals is always precise.

We will now briefly comment on the experimental results listed in Fig. 4. All the
verification problems have been tested on a Sun Sparc Station 4, OS 5.5.1.

Mutual exclusion and starvation freedom for the bakery algorithm (see Sect.
2 and Sect. 3) can be verified without the use of widening (execution time for
starvation freedom: 0.9s). In versions of the bakery algorithm for 3 and 4 pro-
cesses (not treated in [BGP97]), a maximum operator (used in assignments of
priorities such as Turn; = maz(Turng, Turng) + 1) is encoded case-by-case in
the constraint representation. This makes the program size grow exponentially
in the number of processes. Although here the time cost seems still reasonable,
more experiments are needed to truly check scalability.

The ticket algorithm (see [BGP97]) is based on similar ideas as the bakery
algorithm. Here, priorities are maintained through two global variables and two
local variables. As in [BGP97], we needed to apply widening to prove safety. In a
second experiment we applied the magic set transformation instead and obtained
a proof in 0.6s. We proved starvation freedom in 3.0s applying widening for the
outer least fixpoint (the inner one for the greatest fixpoint terminates without
abstraction).

The algorithm mut-ast (see [LS97]) is also designed to ensure mutual exclu-
sion. We have translated the description of a network of an arbitrary, non-fixed
number of mut-ast-processes in [LS97] into a CLP-program and proved safety
using abstraction (network).

The other examples are producer-consumer algorithms. The algorithm bbuffer
(see [BGP98]) coordinates a system of two producers and two consumers con-
nected by a buffer of bounded size. We proved two invariants: the difference
between produced and consumed items is always equal to the number of items



currently present in the buffer (bbuffer(1)), and the number of free slots always
ranges between zero and the maximum size of the buffer (bbuffer(2)). The al-
gorithm ubuffer (see [BGP98]) coordinates a system with one producer and one
consumer connected by two unbounded buffers. We have proved the invariant
that the number of consumed items is always less than that of produced ones.

A prototypical version of our model checker (SICStus source code, to-
gether with the code of the verification problems considered in this section and
the outcomes of the fixpoint computations) is available at the URL address
Wwww.mpi-sb.mpg.de/” delzanno/clp.html.

6 Related Work

There have been other attempts to connect logic programming and verification,
none of which has our generality with respect to the applicable concurrent sys-
tems and temporal properties. In [FR96], Fribourg and Richardson use CLP
programs over gap-order integer constraints [Rev93] in order to compute the set
of reachable states for a ‘decidable’ class of infinite-state systems. Constraints of
the form z = y + 1 (as needed in our examples) are not gap-order constraints. In
[FO97], Fribourg and Olsen study reachability for system with integer counters.
These approaches are restricted to safety properties.

In [Rau94], Rauzy describes a CLP-style extension of the propositional u-
calculus to finite-domain constraints, which can be used for model checking for
finite-state systems. In [Urb96], Urbina singles out a class of C LP(R) programs
that he baptizes ‘hybrid systems’ without, however, investigating their formal
connection with hybrid system specifications; note that liveness properties of
timed or hybrid automata can not be directly expressed through fixpoints of
the Sp operator (because the clauses translating time transitions may loop).
In [GP97], Gupta and Pontelli describe runs of timed automata using the top-
down operational semantics of CLP-programs (and not the fixpoint semantics).
In [CP98], Charatonik and Podelski show that set-based program analysis can be
used as an always terminating algorithm for the approximation of CTL proper-
ties for (traditional) logic programs specifying extensions of pushdown processes.
In [RRR™97], a logic programming language based on tabling called XSB is used
to implement an efficient local model checker for finite-state systems specified in
a CCS-like value-passing language. The integration of tabling with constraints
is possible in principle and has a promising potential.

As described in [LLPY97], constraints as symbolic representations of states
are used in UPPAAL, a verification tool for timed systems [LPY97]. It seems that,
for reasons of syntax, it is not possible to verify safety for our examples in the
current version of UPPAAL (but possibly in an extension). Note that UPPAAL can
check bounded liveness properties only, which excludes e.g. starvation freedom.

We will next discuss work on other verification procedures for integer-valued
systems. In [BGP97, BGP98]|, Bultan, Gerber and Pugh use the Omega library
for Presburger arithmetic as their implementation platform. Their work directly
stimulated ours; we took over their examples of verification problems. The exe-



cution times (ours are about an order of magnitude shorter than theirs) should
probably not be compared since we manipulate formulas over reals instead of
integers; we thus add an extra abstraction for which in general a loss of preci-
sion is possible. In [BGL98], their method is extended to a composite approach
(using BDDs), whose adaptation to the CLP setting may be an interesting task.
In [CABN97], Chan, Anderson, Beame and Notkin incorporate an efficient rep-
resentation of arithmetic constraints (linear and non-linear) into the BDDs of
SMV [McM93]. This method uses an external constraint solver to prune states
with unsatisfiable constraints. The combination of Boolean and arithmetic con-
straints for handling the interplay of control and data variables is a promising
idea that fits ideally with the CLP paradigm and systems (where BBD-based
Boolean constraint solvers are available).

7 Conclusion and Future Work

We have explored a connection between the two fields of verification and pro-
gramming languages, more specifically between model checking and CLP. We
have given a reformulation of safety and liveness properties in terms of the well-
studied CLP semantics, based on a novel translation of concurrent systems to
CLP programs. We could define a model checking procedure in a setting where
a fixpoint of an operator on infinite sets of states and a fixpoint of the corre-
sponding operator on their implicit representations can be formally related via
well-established results on program semantics.

We have turned the theoretical insights into a practical tool. Our implemen-
tation in a CLP system is direct and natural. One reason for this is that the
two key operations used during the fixpoint iteration are testing entailment and
conjoining constraints together with a satisfiability test. These operations are
central to the CLP paradigm [JM94]; roughly, they take over the role of read
and write operations for constraints as first-class data-structures.

We have obtained experimental results for several example infinite-state sys-
tems over integers. Our tool, though prototypical, has shown a reasonable per-
formance in these examples, which gives rise to the hope that it is useful also
in further experiments. Its edge on other tools may be the fact that its CLP-
based setting makes some optimizations for specific examples more direct and
transparent, and hence experimentation more flexible. In a sense, it provides a
programming environment for model checking. We note that CLP systems such
as SICStus already provide high-level support for building and integrating new
constraint solvers (on any domain).

As for future work, we believe that more experience with practical examples is
needed in order to estimate the effect of different fixpoint evaluation strategies
and different forms of constraint weakening for conservative approximations.
We believe that after such experimentation it may be useful to look into more
specialized implementations.
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