Büchi Complementation

BA \mathcal{B} \longrightarrow BA $\overline{\mathcal{B}}$

BA: Büchi Automaton

Expensive: If \mathcal{B} has n states, \mathcal{B} has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).

Complicated: Direct approaches are rather involved. Consider indirect approach: detour over alternating automata.
Büchi Complementation

Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).
Büchi Complementation

If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).

Complicated: Direct approaches are rather involved.
Büchi Complementation

Expensive: If B has n states, \overline{B} has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).

Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.
Transition Modes (1)

Existential: some run is accepting

- $q_0 \rightarrow q_{1a} \rightarrow q_{2a} \rightarrow q_{3a} \rightarrow q_{4a} \rightarrow q_{5a} \rightarrow \cdots$
- $q_0 \rightarrow q_{1b} \rightarrow q_{2b} \rightarrow q_{3b} \rightarrow q_{4b} \rightarrow q_{5b} \rightarrow \cdots$
- $q_0 \rightarrow q_{1c} \rightarrow q_{2c} \rightarrow q_{3c} \rightarrow q_{4c} \rightarrow q_{5c} \rightarrow \cdots$
- $q_0 \rightarrow q_{1d} \rightarrow q_{2d} \rightarrow q_{3d} \rightarrow q_{4d} \rightarrow q_{5d} \rightarrow \cdots$
- $q_0 \rightarrow q_{1e} \rightarrow q_{2e} \rightarrow q_{3e} \rightarrow q_{4e} \rightarrow q_{5e} \rightarrow \cdots$
Transition Modes (1)

Existential: some run is accepting

\[
q_0 \rightarrow q_{1a} \rightarrow q_{2a} \rightarrow q_{3a} \rightarrow q_{4a} \rightarrow q_{5a} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1b} \rightarrow q_{2b} \rightarrow q_{3b} \rightarrow q_{4b} \rightarrow q_{5b} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1c} \rightarrow q_{2c} \rightarrow q_{3c} \rightarrow q_{4c} \rightarrow q_{5c} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1d} \rightarrow q_{2d} \rightarrow q_{3d} \rightarrow q_{4d} \rightarrow q_{5d} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1e} \rightarrow q_{2e} \rightarrow q_{3e} \rightarrow q_{4e} \rightarrow q_{5e} \rightarrow \cdots
\]

Universal: every run is accepting

\[
q_0 \rightarrow q_{1a} \rightarrow q_{2a} \rightarrow q_{3a} \rightarrow q_{4a} \rightarrow q_{5a} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1b} \rightarrow q_{2b} \rightarrow q_{3b} \rightarrow q_{4b} \rightarrow q_{5b} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1c} \rightarrow q_{2c} \rightarrow q_{3c} \rightarrow q_{4c} \rightarrow q_{5c} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1d} \rightarrow q_{2d} \rightarrow q_{3d} \rightarrow q_{4d} \rightarrow q_{5d} \rightarrow \cdots
\]

\[
q_0 \rightarrow q_{1e} \rightarrow q_{2e} \rightarrow q_{3e} \rightarrow q_{4e} \rightarrow q_{5e} \rightarrow \cdots
\]
Transition Modes (2)

Alternating: in **some** set of runs **every** run is accepting

- $q_0 \rightarrow q_{1a} \rightarrow q_{2a} \rightarrow q_{3a} \rightarrow q_{4a} \rightarrow q_{5a} \rightarrow \cdots$
- $q_0 \rightarrow q_{1b} \rightarrow q_{2b} \rightarrow q_{3b} \rightarrow q_{4b} \rightarrow q_{5b} \rightarrow \cdots$
- $q_0 \rightarrow q_{1c} \rightarrow q_{2c} \rightarrow q_{3c} \rightarrow q_{4c} \rightarrow q_{5c} \rightarrow \cdots$
- $q_0 \rightarrow q_{1d} \rightarrow q_{2d} \rightarrow q_{3d} \rightarrow q_{4d} \rightarrow q_{5d} \rightarrow \cdots$
- $q_0 \rightarrow q_{1e} \rightarrow q_{2e} \rightarrow q_{3e} \rightarrow q_{4e} \rightarrow q_{5e} \rightarrow \cdots$
- $q_0 \rightarrow q_{1f} \rightarrow q_{2f} \rightarrow q_{3f} \rightarrow q_{4f} \rightarrow q_{5f} \rightarrow \cdots$
- $q_0 \rightarrow q_{1g} \rightarrow q_{2g} \rightarrow q_{3g} \rightarrow q_{4g} \rightarrow q_{5g} \rightarrow \cdots$
- $q_0 \rightarrow q_{1h} \rightarrow q_{2h} \rightarrow q_{3h} \rightarrow q_{4h} \rightarrow q_{5h} \rightarrow \cdots$
- $q_0 \rightarrow q_{1i} \rightarrow q_{2i} \rightarrow q_{3i} \rightarrow q_{4i} \rightarrow q_{5i} \rightarrow \cdots$
Special case: \mathcal{A} in existential mode

\mathcal{A} accepts iff \exists run $\rho : \rho$ fulfills acceptance condition of \mathcal{A}
Special case: A in existential mode

- A accepts iff \exists run $\rho : \rho$ fulfills acceptance condition of A

- \bar{A} accepts iff \forall run $\rho : \neg(\rho$ fulfills acceptance condition of $A)$
Special case: A in existential mode

- A accepts iff \exists run $\rho : \rho$ fulfills acceptance condition of A

- \bar{A} accepts iff \forall run $\rho : \neg(\rho$ fulfills acceptance condition of $A)$
 iff \forall run $\rho: \rho$ fulfills dual acceptance condition of A
Alternation and Complementation

Special case: \(A \) in existential mode

- \(A \) accepts iff \(\exists \) run \(\rho \) : \(\rho \) fulfills acceptance condition of \(A \)

- \(\overline{A} \) accepts iff \(\forall \) run \(\rho \) : \(\neg(\rho \) fulfills acceptance condition of \(A \)\)

\(\Rightarrow \) complementation \(\overset{\approx}{=} \) dualization of:

- transition mode
- acceptance condition
Special case: \mathcal{A} in existential mode

- \mathcal{A} accepts iff $\exists \text{ run } \rho : \rho$ fulfills acceptance condition of \mathcal{A}
- $\overline{\mathcal{A}}$ accepts iff $\forall \text{ run } \rho : \neg(\rho$ fulfills acceptance condition of \mathcal{A}) iff $\forall \text{ run } \rho : \rho$ fulfills dual acceptance condition of \mathcal{A}

\Rightarrow complementation \cong dualization of:
- transition mode
- acceptance condition

Want acceptance condition that is closed under dualization.
Outline

1. Weak Alternating Parity Automata
2. Infinite Parity Games
3. Proof of the Complementation Theorem
4. Büchi Complementation Algorithm
1 Weak Alternating Parity Automata
 ■ Definitions and Examples
 ■ Dual Automaton

2 Infinite Parity Games

3 Proof of the Complementation Theorem

4 Büchi Complementation Algorithm
Example \(((b^* a)^\omega) \)

Büchi automaton \(\mathcal{B} \):

![Büchi automaton diagram](image-url)
Example \(((b^*a)^\omega)\)

Büchi automaton \(\mathcal{B}\):

![Büchi automaton \(\mathcal{B}\)](image)

Equivalent WAPA \(\mathcal{A}\):

![Equivalent WAPA \(\mathcal{A}\)](image)
Definition (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

\[\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \]

where

- \(Q \) finite set of states
- \(\Sigma \) finite alphabet
- \(q_{in} \) initial state

(Thomas and Löding, ~2000)
Weak Alternating Parity Automaton

Definition (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

\[\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \]

where

- \(Q \) finite set of states
- \(\Sigma \) finite alphabet
- \(q_{in} \) initial state
- \(\pi : Q \rightarrow \mathbb{N} \) parity function

(Thomas and Löding, ~2000)
Definition (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- Q: finite set of states
- Σ: finite alphabet
- $\delta : Q \times \Sigma \rightarrow \mathbb{B}^+(Q)$: transition function
- q_{in}: initial state
- $\pi : Q \rightarrow \mathbb{N}$: parity function

($\mathbb{B}^+(Q)$: set of all positive Boolean formulae over Q
(built only from elements in $Q \cup \{\land, \lor, T, \bot\}$))

(Thomas and Löding, ~2000)
Example (a^ω)

\[
\begin{align*}
\delta : Q \times \Sigma &\rightarrow \mathbb{B}^+(Q) \\
\langle q_0, a \rangle &\mapsto q_0 \lor (q_1 \land q_2) \\
\langle q_1, a \rangle &\mapsto (q_0 \land q_1) \lor (q_1 \land q_2) \\
\langle q_2, a \rangle &\mapsto q_2
\end{align*}
\]
Example

\(q^0 \)

\[a \]

\[q^1 \]

\[a \]

\[q^2 \]

\[a \]

\(\delta : Q \times \Sigma \rightarrow \mathbb{B}^+(Q) \)

\(\langle q^0, a \rangle \mapsto q^0 \lor (q^1 \land q^2) \)

\(\langle q^1, a \rangle \mapsto (q^0 \land q^1) \lor (q^1 \land q^2) \)

\(\langle q^2, a \rangle \mapsto q^2 \)

Definition (Minimal Models)

\(\text{Mod} \downarrow(\theta) \subseteq 2^Q \): set of minimal models of \(\theta \in \mathbb{B}^+(Q) \), i.e. the set of minimal subsets \(M \subseteq Q \) s.t. \(\theta \) is satisfied by

\[q \mapsto \begin{cases}
\text{true} & \text{if } q \in M \\
\text{false} & \text{otherwise}
\end{cases} \]

Example

\(\text{Mod} \downarrow(q^0 \lor (q^1 \land q^2)) = \{ \{q^0\}, \{q^1, q^2\} \} \)
Example (a^ω)

Run Graph (1)
Run Graph (1)

Example \((a^\omega)\)

- Accepting run:
 - \(q_0, 0\)
 - \(q_0, 1\)
 - \(q_0, 2\)
 - \(q_0, 3\)
 - \(q_0, 4\)
 - \(q_0, 5\)
 - \(q_0, 6\)
 - \(q_0, 7\)
 - \(q_0, 8\)
 - \(q_0, 9\)
 - \(q_0, 10\)

- Rejecting run:
 - \(q_0, 0\)
 - \(q_1, 2\)
 - \(q_1, 3\)
 - \(q_1, 4\)
 - \(q_2, 2\)
 - \(q_2, 3\)
 - \(q_2, 4\)
 - \(q_2, 5\)
 - \(q_2, 6\)
 - \(q_2, 7\)
 - \(q_2, 8\)
 - \(q_2, 9\)
 - \(q_2, 10\)
Example (a^ω)

Accepting run:
- $q_0, 0 \rightarrow q_0, 1 \rightarrow \ldots$

Rejecting run:
- $q_0, 0 \rightarrow q_1, 1 \rightarrow q_2, 2 \rightarrow \ldots$
Example \((a^\omega) \)

Run Graph (1)

Accepting run:
- \(q_0, 0 \) to \(q_0, 2 \)

Rejecting run:
- \(q_0, 0 \) to \(q_1, 2 \)
- \(q_1, 2 \) to \(q_2, 2 \)

State transitions:
- \(q_0 \) to \(q_0 \) on \(a \)
- \(q_0 \) to \(q_1 \) on \(a \)
- \(q_1 \) to \(q_1 \) on \(a \)
- \(q_1 \) to \(q_2 \) on \(a \)
- \(q_2 \) to \(q_2 \) on \(a \)
Example (a^ω)

Accepting run: $q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \cdots$

Rejecting run: $q_0, 0 \rightarrow q_1, 2 \rightarrow q_1, 3 \rightarrow q_1, 4 \rightarrow q_1, 5 \rightarrow \cdots$
Run Graph (1)

Example \((a^\omega)\)

Accepting run:

\(q_0, 0\), \(q_0, 1\), \(q_0, 2\), \(q_0, 3\), \(q_0, 4\), \(q_0, 5\) \(\ldots\)

Rejecting run:

\(q_0, 0\), \(q_1, 2\), \(q_1, 3\), \(q_1, 4\), \(q_2, 2\), \(q_2, 3\), \(q_2, 4\) \(\ldots\)
Example (a^ω)

Run Graph (1)

Accepting run:

$q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \ldots$

Rejecting run:

$q_0, 0 \rightarrow q_1, 1 \rightarrow q_1, 2 \rightarrow q_1, 3 \rightarrow q_1, 4 \rightarrow q_2, 5 \rightarrow \ldots$

$q_0, 0 \rightarrow q_0, 1$
Run Graph (1)

Example (a^\omega)

- **Accepting run:**
 - $q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \ldots$

- **Rejecting run:**
 - $q_0, 0 \rightarrow q_0, 1 \rightarrow q_1, 2 \rightarrow q_2, 2 \rightarrow \ldots$
Example (a^ω)

Accepting run:
$q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \ldots$

Rejecting run:
$q_0, 0 \rightarrow q_0, 1 \rightarrow q_1, 2 \rightarrow q_1, 3 \rightarrow q_2, 2 \rightarrow q_2, 3 \rightarrow q_1, 4 \rightarrow q_1, 5 \rightarrow q_2, 4 \rightarrow q_2, 5 \rightarrow \ldots$
Run Graph (1)

Example (a^ω)

\[a q_0 2 q_1 a q_2 a \]

Accepting run:
\[q_0, 0, q_0, 1, q_0, 2, q_0, 3, q_0, 4, q_0, 5, \ldots \]

Rejecting run:
\[q_0, 0, q_0, 1, q_1, 2, q_1, 3, q_1, 4, q_2, 2, q_2, 3, q_2, 4, \ldots \]
Example (a^ω)

Run Graph (1)
Definition (Run)

A run of a WAPA \(\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \) on a word \(a_0 a_1 a_2 \ldots \in \Sigma^\omega \) is a directed acyclic graph

\[
R := \langle V, E \rangle
\]
Definition (Run)

A run of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ on a word $a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- $V \subseteq Q \times \mathbb{N}$ with $\langle q_{in}, 0 \rangle \in V$
Definition (Run)

A run of a WAPA $A = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ on a word $a_0 a_1 a_2 \ldots \in \Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- $V \subseteq Q \times \mathbb{N}$ with $\langle q_{in}, 0 \rangle \in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.

$\Rightarrow R$ is a directed acyclic graph.
Definition (Run)

A run of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ on a word $a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- $V \subseteq Q \times \mathbb{N}$ with $\langle q_{in}, 0 \rangle \in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.
- E contains only edges of the form $\langle \langle p, i \rangle, \langle q, i + 1 \rangle \rangle$.
Definition (Run)

A run of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\text{in}}, \pi \rangle$ on a word $a_0a_1a_2 \ldots \in \Sigma^\omega$
is a directed acyclic graph

$$ R := \langle V, E \rangle $$

where

- $V \subseteq Q \times \mathbb{N}$ with $\langle q_{\text{in}}, 0 \rangle \in V$
- V contains only vertices reachable from $\langle q_{\text{in}}, 0 \rangle$.
- E contains only edges of the form $\langle \langle p, i \rangle, \langle q, i + 1 \rangle \rangle$.
- For every vertex $\langle p, i \rangle \in V$ the set of successors is a minimal model of $\delta(p, a_i)$

$$ \{ q \in Q \mid \langle \langle p, i \rangle, \langle q, i + 1 \rangle \rangle \in E \} \in \text{Mod}_{\downarrow}(\delta(p, a_i)) $$
Definition (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^\omega$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

- An infinite path ρ in R satisfies the acceptance condition of \mathcal{A} iff the smallest occurring parity is even, i.e.
 \[
 \min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\} \text{ is even.}
 \]
Definition (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^\omega$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

- An infinite path ρ in R satisfies the acceptance condition of \mathcal{A} iff the smallest occurring parity is even, i.e.
 \[
 \min\{\pi(q) \mid \exists i \in \mathbb{N}: \langle q, i \rangle \text{ occurs in } \rho\} \text{ is even.}
 \]

- R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition.
Definition (Acceptance)

Let \(\mathcal{A} \) be a WAPA, \(w \in \Sigma^\omega \) and \(R = \langle V, E \rangle \) a run of \(\mathcal{A} \) on \(w \).

- An infinite path \(\rho \) in \(R \) satisfies the acceptance condition of \(\mathcal{A} \) iff the smallest occurring parity is even, i.e.
 \[
 \min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\}
 \]
 is even.

- \(R \) is an accepting run iff every infinite path \(\rho \) in \(R \) satisfies the acceptance condition.

- \(\mathcal{A} \) accepts \(w \) iff there is some accepting run of \(\mathcal{A} \) on \(w \).
Acceptance

Example (a^ω)

![Diagram](image-url)

Accepting run:

$q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \cdots$

Rejecting run:

$q_0, 0 \rightarrow q_0, 1 \rightarrow q_1, 2 \rightarrow q_1, 3 \rightarrow q_1, 4 \rightarrow q_1, 5 \rightarrow \cdots$

$q_2, 2 \rightarrow q_2, 3 \rightarrow q_2, 4 \rightarrow q_2, 5 \rightarrow \cdots$
Acceptance

Example \(a^\omega\)

Accepting run:

\[
\begin{align*}
q_0, 0 &\rightarrow q_0, 1 \\
q_0, 1 &\rightarrow q_0, 2 \\
q_0, 2 &\rightarrow q_0, 3 \\
q_0, 3 &\rightarrow q_0, 4 \\
q_0, 4 &\rightarrow q_0, 5 \\
\end{align*}
\]

\[
\begin{align*}
q_0, 0 &\rightarrow q_0, 1 \\
q_0, 1 &\rightarrow q_1, 2 \\
q_1, 2 &\rightarrow q_1, 3 \\
q_1, 3 &\rightarrow q_1, 4 \\
q_1, 4 &\rightarrow q_1, 5 \\
\end{align*}
\]

Rejecting run:
Acceptance

Example (a^ω)

Accepting run:

$$q_0, 0 \rightarrow q_0, 1 \rightarrow q_0, 2 \rightarrow q_0, 3 \rightarrow q_0, 4 \rightarrow q_0, 5 \rightarrow \ldots$$

Rejecting run:

$$q_0, 0 \rightarrow q_0, 1 \rightarrow q_1, 2 \rightarrow q_1, 3 \rightarrow q_1, 4 \rightarrow q_1, 5 \rightarrow \ldots$$

$$q_0, 0 \rightarrow q_0, 1 \rightarrow q_2, 2 \rightarrow q_2, 3 \rightarrow q_2, 4 \rightarrow q_2, 5 \rightarrow \ldots$$
Acceptance

Alternate: in some set of runs every run is accepting

$q_0 \rightarrow q_{1a} \rightarrow q_{2a} \rightarrow q_{3a} \rightarrow q_{4a} \rightarrow q_{5a} \rightarrow \cdots$
$q_0 \rightarrow q_{1b} \rightarrow q_{2b} \rightarrow q_{3b} \rightarrow q_{4b} \rightarrow q_{5b} \rightarrow \cdots$
$q_0 \rightarrow q_{1c} \rightarrow q_{2c} \rightarrow q_{3c} \rightarrow q_{4c} \rightarrow q_{5c} \rightarrow \cdots$
$q_0 \rightarrow q_{1d} \rightarrow q_{2d} \rightarrow q_{3d} \rightarrow q_{4d} \rightarrow q_{5d} \rightarrow \cdots$
$q_0 \rightarrow q_{1e} \rightarrow q_{2e} \rightarrow q_{3e} \rightarrow q_{4e} \rightarrow q_{5e} \rightarrow \cdots$
$q_0 \rightarrow q_{1f} \rightarrow q_{2f} \rightarrow q_{3f} \rightarrow q_{4f} \rightarrow q_{5f} \rightarrow \cdots$
$q_0 \rightarrow q_{1g} \rightarrow q_{2g} \rightarrow q_{3g} \rightarrow q_{4g} \rightarrow q_{5g} \rightarrow \cdots$
$q_0 \rightarrow q_{1h} \rightarrow q_{2h} \rightarrow q_{3h} \rightarrow q_{4h} \rightarrow q_{5h} \rightarrow \cdots$
$q_0 \rightarrow q_{1i} \rightarrow q_{2i} \rightarrow q_{3i} \rightarrow q_{4i} \rightarrow q_{5i} \rightarrow \cdots$
Infininitely many a’s

Example \(((b^*a)\omega)\)
INFINITELY MANY a’S

Example: $((b^a)\omega)$

Run on b^ω: $q_0, 0$
Infinitely many a's

Example \(((b^*a)^\omega) \)

Run on \(b^\omega \):

- \(q_0, 0 \) to \(q_0, 1 \)
- \(q_1, 1 \) to \(q_0, 1 \)

Diagram:

- \(q_0 \):
 - \(a \) to state 2
 - \(b \) to state 1
- \(q_1 \):
 - \(b \) to state 1
 - \(a \) to state 0
- \(q_2 \):
 - \(a \) to state 0
 - \(b \) to state 1
INFINITELY MANY a’S

EXAMPLE \(((b^*a)^\omega)\)

Run on \(b^\omega\):

\[
\begin{align*}
q_0,0 & \xrightarrow{b} q_0,1 & q_0,1 & \xrightarrow{b} q_0,2 \\
q_1,1 & \xrightarrow{b} q_1,2 & q_1,1 & \xrightarrow{b} q_1,2
\end{align*}
\]
Infinitely many a's

Example ($(b^*a)^\omega$)

Run on b^ω:
Infinitely many a’s

Example $((b^*a)\omega)$

Run on b^ω:

Run on $(ba)^\omega$:
INFINITELY MANY a’S

Example $((b^*a)\omega)$

Run on b^ω:

Run on $(ba)^\omega$:
Inﬁnitely many a’s

Example ((b^*a)^\omega)

Run on b^\omega:

Run on (ba)^\omega:
Example \(((b^* a)^\omega) \)

Run on \(b^\omega\):

- \(q_0, 0\) → \(q_0, 1\) → \(q_0, 2\) → \(q_0, 3\) → \(q_0, 4\) → \(q_0, 5\) → \(q_0, 6\) → \(...\)
- \(q_1, 1\) → \(q_1, 2\) → \(q_1, 3\) → \(q_1, 4\) → \(q_1, 5\) → \(q_1, 6\) → \(...\)

Run on \((ba)^\omega\):

- \(q_0, 0\) → \(q_0, 1\) → \(q_0, 2\) → \(q_0, 3\) → \(...\)
- \(q_1, 1\) → \(q_1, 2\) → \(q_1, 3\) → \(...\)
- \(q_2, 2\) → \(q_2, 3\) → \(...\)
INFINITELY MANY a’S

EXAMPLE \(((b^* a)^\omega) \)

Run on \(b^\omega \):

Run on \((ba)^\omega \):
Definition (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\text{in}}, \pi \rangle$ is

$\overline{\mathcal{A}} := \langle Q, \Sigma, \overline{\delta}, q_{\text{in}}, \overline{\pi} \rangle$
Definition (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\text{in}}, \pi \rangle$ is

$$\overline{\mathcal{A}} := \langle Q, \Sigma, \overline{\delta}, q_{\text{in}}, \overline{\pi} \rangle$$

where

- $\overline{\delta}(q, a)$ is obtained from $\delta(q, a)$ by exchanging \wedge, \vee and \top, \bot

for all $q \in Q$ and $a \in \Sigma$
Definition (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\text{in}}, \pi \rangle$ is

$$\overline{\mathcal{A}} := \langle Q, \Sigma, \overline{\delta}, q_{\text{in}}, \overline{\pi} \rangle$$

where

- $\overline{\delta}(q, a)$ is obtained from $\delta(q, a)$ by exchanging \wedge, \vee and \top, \bot
- $\overline{\pi}(q) := \pi(q) + 1$

for all $q \in Q$ and $a \in \Sigma$
Example \(((b^*a)^\omega) \)

WAPA \(A \):

\[
\begin{align*}
\delta(q_0, a) &= q_0 \\
\delta(q_0, b) &= q_0 \land q_1 \\
\delta(q_1, a) &= q_2 \\
\delta(q_1, b) &= q_1 \\
\delta(q_2, a) &= q_2 \\
\delta(q_2, b) &= q_2
\end{align*}
\]
Example $((b^* a)^\omega)$

WAPA \mathcal{A}:

Dual $\overline{\mathcal{A}}$:

$\delta(q_0, a) = q_0$
$\delta(q_0, b) = q_0 \land q_1$
$\delta(q_1, a) = q_2$
$\delta(q_1, b) = q_1$
$\delta(q_2, a) = q_2$
$\delta(q_2, b) = q_2$

$\overline{\delta}(q_0, a) = q_0$
$\overline{\delta}(q_0, b) = q_0 \lor q_1$
$\overline{\delta}(q_1, a) = q_2$
$\overline{\delta}(q_1, b) = q_1$
$\overline{\delta}(q_2, a) = q_2$
$\overline{\delta}(q_2, b) = q_2$
Main statement of this talk:

Theorem (Complementation)

The dual \overline{A} of a WAPA A accepts its complement, i.e.

$$\mathcal{L}(\overline{A}) = \Sigma^\omega \setminus \mathcal{L}(A)$$

(Thomas and Löding, ~2000)
Outline

1. Weak Alternating Parity Automata
2. Infinite Parity Games
3. Proof of the Complementation Theorem
4. Büchi Complementation Algorithm
Automaton vs. Pathfinder

player A finds accepting run R

player P finds rejecting path in R
Automaton vs. Pathfinder

player A
Automaton vs. Pathfinder

player A

find accepting run R
Automaton vs. Pathfinder

player A
find accepting run R

player P
Automaton vs. Pathfinder

player A
find accepting run R

player P
find rejecting path in R
Infinite Parity Game (1)

Example \((a^\omega)\)

\[
A: \quad w = a^\omega
\]

\[
q_0 \quad 2
\]

\[
q_1 \quad 1
\]

\[
q_2 \quad 0
\]
Infinite Parity Game (1)

Example \((a^\omega)\)

Game \(G_{A,w}:\)

\(q_0, 0\)

\[w = a^\omega\]
Example (a^ω)

Game $G_{A,w}$:

- $q_0, 0$ to $\{q_0\}, 0$
- $\{q_1, q_2\}, 0$
Infinite Parity Game (1)

Example (a^ω)

Game $G_{A,w}$:

- Initial state: $q_0, 0$
- Accepting states: $\{q_0\}, 0$ and $q_0, 1$
- Transitions:
 - From $q_0, 0$ to $\{q_0\}, 0$ on a
 - From $\{q_1, q_2\}, 0$ to $q_0, 0$ on a
 - From $q_0, 1$ to $q_2, 0$ on a

$w = a^\omega$
Infinite Parity Game (1)

Example (a^ω)

Game $G_{A,w}$:

- A: $q_0, 2 \rightarrow a \rightarrow q_1, 1 \rightarrow a \rightarrow q_2, 0 \rightarrow a \rightarrow \cdots$
- $w = a^\omega$

- $\{q_0\}, 0 \rightarrow q_0, 1$
- $\{q_1, q_2\}, 0 \rightarrow q_1, 1$
- $q_2, 1$

Game $G_{A,w}$
Example \((a^\omega)\)

Game \(G_{\mathcal{A},w}\):

\[
\begin{align*}
& q_0, 0 \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \rightarrow \{q_1, q_2\}, 1 \\
& \quad \downarrow \quad \downarrow \quad \downarrow \\
& \quad q_1, 1 \rightarrow \{q_1, q_2\}, 0 \\
& \quad \downarrow \\
& \quad q_2, 1
\end{align*}
\]
Example \(a^\omega\)

Game \(G_{A,w}\):

\[
\begin{align*}
\{q_0, 0\} & \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \\
\{q_1, q_2\}, 0 & \rightarrow q_1, 1 \rightarrow \{q_1, q_2\}, 1 \\
q_2, 1 & \rightarrow \{q_0, q_1\}, 1
\end{align*}
\]
Infinite Parity Game (1)

Example (a^ω)

Game $G_{A,w}$:
Infinite Parity Game (1)

Example \(a^\omega\)

Game \(G_{A,w}\):

- \(q_0, 0 \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \rightarrow q_0, 2 \rightarrow \ldots\)
- \(q_1, 1 \rightarrow \{q_1, q_2\}, 1 \rightarrow q_1, 2 \rightarrow \ldots\)
- \(q_2, 1 \rightarrow \{q_2\}, 1 \rightarrow q_2, 2 \rightarrow \ldots\)

- \(\{q_1, q_2\}, 0 \rightarrow q_1, 1 \rightarrow \{q_0, q_1\}, 1 \rightarrow q_1, 2 \rightarrow \ldots\)

- \(A: w = a^\omega\)
Definition (Game)

A game for a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0 a_1 a_2 \ldots \in \Sigma^\omega$ is a directed graph

$$G_{\mathcal{A}, w} := \langle V_A \cup V_P, E \rangle$$

(Thomas and Löding, ∼ 2000)
Definition (Game)

A game for a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed graph

$$G_{\mathcal{A},w} := \langle V_{\mathcal{A}} \cup V_P, E \rangle$$

where

- $V_{\mathcal{A}} := Q \times \mathbb{N}$ (decision nodes of player A)

(Thomas and Löding, ∼ 2000)
Definition (Game)

A game for a WAPA \(\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \) and \(w = a_0 a_1 a_2 \ldots \in \Sigma^\omega \) is a directed graph

\[
G_{\mathcal{A}, w} := \langle V_{\mathcal{A}} \cup V_P, E \rangle
\]

where

- \(V_{\mathcal{A}} := Q \times \mathbb{N} \) (decision nodes of player \(A \))
- \(V_P := 2^Q \times \mathbb{N} \) (decision nodes of player \(P \))

(Thomas and L"oding, \(\sim 2000 \))
Infinite Parity Game (2)

Definition (Game)

A game for a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed graph

$$G_{\mathcal{A}, w} := \langle V_A \cup V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$

(Thomas and Löding, ~2000)
Definition (Game)

A game for a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0 a_1 a_2 \ldots \in \Sigma^\omega$ is a directed graph

$$G_{\mathcal{A}, w} := \langle V_A \cup V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$

s.t. the only contained edges are

- $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ \iff $M \in \text{Mod}_\downarrow(\delta(q, a_i))$

for $q \in Q$, $M \subseteq Q$, $i \in \mathbb{N}$

(Thomas and Löding, \sim 2000)
Infinite Parity Game (2)

Definition (Game)

A game for a WAPA $A = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w = a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed graph

$$G_{A,w} := \langle V_A \cup V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$

s.t. the only contained edges are

- $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \text{Mod}_\downarrow(\delta(q, a_i))$
- $\langle \langle M, i \rangle, \langle q, i + 1 \rangle \rangle$ iff $q \in M$

for $q \in Q$, $M \subseteq Q$, $i \in \mathbb{N}$

(Thomas and Löding, ~2000)
Definition (Play)

A play γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

Example

```
q_0, 0  ->  \{q_0\}, 0  ->  q_0, 1  \{q_0\}, 1  ->  q_0, 2  \ldots
\{q_1, q_2\}, 0  ->  q_1, 1  \{q_1, q_2\}, 1  ->  q_1, 2  \ldots
q_1, 1  ->  \{q_0, q_1\}, 1
q_2, 1  \{q_2\}, 1  ->  q_2, 2  \ldots
```
Playing a Game

Definition (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{\text{in}}, 0 \rangle$.

Definition (Winner)

The **winner** of a play γ is

- player A iff the smallest parity of occurring V_A-nodes is **even**
- player P **odd**

Example

```
q_0, 0 → \{q_0\}, 0 → q_0, 1 → \{q_0\}, 1 → q_0, 2 → \ldots
q_1, 1 → \{q_0, q_1\}, 1 → q_1, 2 → \ldots
q_1, 1 → \{q_1, q_2\}, 0 → q_2, 1 → \{q_2\}, 1 → q_2, 2 → \ldots
```
Playing a Game

Definition (Play)

A play γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{\text{in}}, 0 \rangle$.

Definition (Winner)

The winner of a play γ is

- player A iff the smallest parity of occurring V_A-nodes is even
- player P odd

$X \in \{A, P\}$: a player, \overline{X}: its opponent

Definition (Strategy)

A strategy $f_X : V_X \rightarrow V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.
Playing a Game

Definition (Play)

A play γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

Definition (Winner)

The winner of a play γ is

- player A iff the smallest parity of occurring V_A-nodes is even
- player P iff the smallest parity of occurring V_A-nodes is odd

$X \in \{A, P\}$: a player, \overline{X}: its opponent

Definition (Strategy)

- A strategy $f_X : V_X \rightarrow V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.
- f_X is a winning strategy iff player X wins every play γ that is played according to f_X.
Strategies

Example

Winning strategy for player A (so far):

q_0, 0 \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \rightarrow q_0, 2 \rightarrow \ldots

\{q_1, q_2\}, 0 \rightarrow q_1, 1 \rightarrow \{q_1, q_2\}, 1 \rightarrow \{q_0, q_1\}, 1 \rightarrow q_1, 2 \rightarrow \ldots

q_2, 1 \rightarrow \{q_2\}, 1 \rightarrow q_2, 2 \rightarrow \ldots

parities

\ldots \quad q_0 \mapsto 2

\ldots \quad q_1 \mapsto 1

\ldots \quad q_2 \mapsto 0
Strategies

Example

Winning strategy for player A (so far):

- \(q_0, 0 \) \rightarrow \{ q_0 \}, 0 \rightarrow \{ q_0 \}, 1 \rightarrow q_0, 2 \rightarrow \cdots \rightarrow q_0 \leftarrow 2

- \{ q_1, q_2 \}, 0 \rightarrow q_1, 1 \rightarrow \{ q_0, q_1 \}, 1 \rightarrow q_1, 2 \rightarrow \cdots \rightarrow q_1 \leftarrow 1

- q_2, 1 \rightarrow \{ q_2 \}, 1 \rightarrow q_2, 2 \rightarrow \cdots \rightarrow q_2 \leftarrow 0

Parities:

- \(q_0 \leftarrow 2 \)
- \(q_1 \leftarrow 1 \)
- \(q_2 \leftarrow 0 \)
Example

Winning strategy for player A (so far):

\[
q_0, 0 \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \rightarrow q_0, 2 \rightarrow \ldots \rightarrow q_1, 1 \rightarrow \{q_0, q_1\}, 1 \rightarrow q_0, 2 \rightarrow \ldots
\]

Not a winning strategy for player A:

\[
q_0, 0 \rightarrow \{q_0\}, 0 \rightarrow q_0, 1 \rightarrow \{q_0\}, 1 \rightarrow q_0, 2 \rightarrow \ldots \rightarrow q_1, 1 \rightarrow \{q_0, q_1\}, 1 \rightarrow q_0, 2 \rightarrow \ldots
\]
Outline

1. Weak Alternating Parity Automata
2. Infinite Parity Games
3. Proof of the Complementation Theorem
 - Lemma 1
 - Lemma 2
 - Lemma 3
 - Sublemma
 - Putting it All Together
4. Büchi Complementation Algorithm
Lemma 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^\omega$.

Player A has a winning strategy in $G_{A,w}$ iff \mathcal{A} accepts w.

Explanation (oral):
Player A wins every play γ played according to f_A.

There is a run graph R in which every path ρ is accepting.
Lemma 1

Let A be a WAPA and $w \in \Sigma^\omega$.

Lemma 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

Explanation (oral):

Player A wins every play γ played according to f_A.

$$G_{A,w}:$$

- p, i
- $\{q, q', q''\}, i$
- $q, i + 1$
- $q', i + 1$
- $q'', i + 1$
- \(\ldots\)
Lemma 1

Let A be a WAPA and $w \in \Sigma^\omega$.

Lemma 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

Explanation (oral):

Player A wins every play γ played according to f_A.

There is a run graph R in which every path ρ is accepting.
Lemma 2

Let A be a WAPA and $w \in \Sigma^\omega$.

Lemma 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)
Lemma 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^\omega$.

Lemma 2
Player P has a winning strategy in $G_{\mathcal{A},w}$ iff \mathcal{A} does not accept w.

(POINTED OUT BY JAN LEIKE)

EXPLANATION (oral):

Player P wins every play γ played according to f_P.

$G_{\mathcal{A},w}$:

p, i

$\{.., q', ..\}, i$ \rightarrow $q', i + 1$

\ldots

$\{.., q'', ..\}, i$ \rightarrow $q'', i + 1$

\ldots

p, i

$\{.., q, ..\}, i$ \rightarrow $q, i + 1$

\ldots
Lemma 2

Let A be a WAPA and $w \in \Sigma^\omega$.

Lemma 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

Explanation (oral):

Player P wins every play γ played according to f_P.

Every run graph R contains a rejecting path ρ.

$G_{A,w}$:

- p, i $\{\ldots, q, \ldots\}, i$ $q, i + 1$
- \ldots

R:

- p, i $q, i + 1$
- \ldots

R':

- p, i $q', i + 1$
- \ldots

R'':

- p, i $q'', i + 1$
- \ldots
Let $\theta \in B^+(Q)$ be a formula over Q.

Sublemma

$S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}\downarrow(\theta)$: $S \cap M \neq \emptyset$.

Proof:

W.l.o.g. θ is in DNF, i.e. $\theta = \bigvee_{M \in \text{Mod}\downarrow(\theta)} \bigwedge q \in M q$

Then θ is in CNF, i.e. $\theta = \bigwedge_{M \in \text{Mod}\downarrow(\theta)} \bigvee q \in M q$

Thus $S \subseteq Q$ is a model of θ iff it contains at least one element from each disjunct of θ.

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

Sublemma

$S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

Proof:

- W.l.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \text{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$
Sublemma

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

Sublemma

$S \subseteq Q$ is a model of $\bar{\theta}$ iff for all $M \in \text{Mod}_\downarrow(\theta)$: $S \cap M \neq \emptyset$.

Proof:

- W.l.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \text{Mod}_\downarrow(\theta)} \bigwedge_{q \in M} q$$

- Then $\bar{\theta}$ is in CNF, i.e.

$$\bar{\theta} = \bigwedge_{M \in \text{Mod}_\downarrow(\theta)} \bigvee_{q \in M} q$$
Sublemma

Let \(\theta \in \mathbb{B}^+(Q) \) be a formula over \(Q \).

\[S \subseteq Q \text{ is a model of } \overline{\theta} \iff \text{ for all } M \in \text{Mod}_\downarrow(\theta): S \cap M \neq \emptyset. \]

Proof:

- **W.l.o.g.** \(\theta \) is in DNF, i.e.
 \[
 \theta = \bigvee_{M \in \text{Mod}_\downarrow(\theta)} \bigwedge q_{q \in M}
 \]

- **Then** \(\overline{\theta} \) is in CNF, i.e.
 \[
 \overline{\theta} = \bigwedge_{M \in \text{Mod}_\downarrow(\theta)} \bigvee q_{q \in M}
 \]

- **Thus** \(S \subseteq Q \) is a model of \(\overline{\theta} \) iff it contains at least one element from each disjunct of \(\theta \).
Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0a_1a_2 \ldots \in \Sigma^\omega$.

Lemma 3

Player A has a winning strategy in $G_{\mathcal{A},w}$

iff player P has a winning strategy in $G_{\overline{\mathcal{A}},w}$.
Lemma 3

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0a_1a_2\ldots \in \Sigma^\omega$.

Lemma 3

Player A has a winning strategy in $G_{\mathcal{A},w}$ if and only if player P has a winning strategy in $G_{\overline{\mathcal{A}},w}$.

Proof:

\Rightarrow Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

\ldots

\Leftarrow Construct a winning strategy f_A for player A in $G_{\mathcal{A},w}$.

\ldots
Lemma 3 (2)

⇒ Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{A},w}$:
Lemma 3 (2)

⇒ Construct a winning strategy f_P for player P in $G_{A,w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{A,w}$:

- f_A: winning strategy for player A in $G_{A,w}$
Lemma 3 (2)

⇒ Construct a winning strategy \overline{f}_P for player P in $G_{A,w}$.

- f_A: winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t.
 $S \in \text{Mod}_{\downarrow}(\delta(p, a_i))$ (otherwise don’t care).

At position $\langle S, i \rangle \in V_P$ in $G_{\overline{A},w}$:

- $\ldots \quad \ldots \quad \ldots$

\[p, i \rightarrow S, i \rightarrow \ldots \]

\[\ldots \quad \ldots \quad \ldots \]

in $G_{\overline{A},w}$:

- \ldots

\[p, i \rightarrow \ldots \]

\[\ldots \quad \ldots \quad \ldots \]

in $G_{A,w}$:

- \ldots

\[p, i \rightarrow \ldots \]

\[\ldots \quad \ldots \quad \ldots \]
Lemma 3 (2)

⇒ Construct a winning strategy $\overline{f_P}$ for player P in $G_{A,w}$.

- f_A: winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \text{Mod}_{\downarrow}(\delta(p, a_i))$ (otherwise don’t care).
- $f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
Lemma 3 (2)

⇒ Construct a winning strategy \(\bar{f}_P \) for player \(P \) in \(G_{A,w} \).

At position \(\langle S, i \rangle \in V_P \)

- \(f_A \): winning strategy for player \(A \) in \(G_{A,w} \)

- Assume there is \(\langle p, i \rangle \in V_A \) occurring in a play \(\gamma \) in \(G_{A,w} \) played according to \(f_A \) s.t. \(S \in \text{Mod}_\downarrow(\delta(p, a_i)) \) (otherwise don’t care).

- \(f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_\downarrow(\delta(p, a_i)) \) (sublemma)

- \(\quad \Rightarrow \quad \) There exists a \(q \in S \cap M \).
Lemma 3 (2)

Construct a winning strategy \overline{f}_P for player P in $G_{A,w}$.

- f_A: winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \text{Mod}_\downarrow(\delta(p, a_i))$ (otherwise don’t care).
- $f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_\downarrow(\delta(p, a_i))$
 (sublemma)
- \Rightarrow There exists a $q \in S \cap M$.
- Define $\overline{f}_P(\langle S, i \rangle) := \langle q, i + 1 \rangle$
Lemma 3 (2)

⇒ Construct a winning strategy $\overline{f_P}$ for player P in $G_{A,w}$.

- f_A: winning strategy for player A in $G_{A,w}$.
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \text{Mod}_\downarrow(\delta(p, a_i))$ (otherwise don’t care).
- $f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_\downarrow(\delta(p, a_i))$ (sublemma)
- \Rightarrow There exists a $q \in S \cap M$.
- Define $\overline{f_P}(\langle S, i \rangle) := \langle q, i + 1 \rangle$

- $\forall \overline{\gamma}$: play in $G_{A,w}$ played according to $\overline{f_P}$
- $\exists \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A-nodes.
Lemma 3 (2)

⇒ Construct a winning strategy \overline{f}_P for player P in $G_{\overline{A},w}$.

- f_A: winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \text{Mod}_{\downarrow}(\delta(p, a_i))$ (otherwise don’t care).
- $f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
 (sublemma)
- \Rightarrow There exists a $q \in S \cap M$.
- Define $\overline{f}_P(\langle S, i \rangle) := \langle q, i + 1 \rangle$
- $\forall \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to \overline{f}_P
- $\exists \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A-nodes.
 - Player A wins γ in $G_{A,w}$.
Lemma 3 (2)

Construct a winning strategy \(f_P \) for player \(P \) in \(G_{\overline{A},w} \).

At position \(\langle S, i \rangle \in V_P \) in \(G_{\overline{A},w} \):

- Assume there is \(\langle p, i \rangle \in V_A \) occurring in a play \(\gamma \) in \(G_{\overline{A},w} \) played according to \(f_A \) s.t. \(S \in \text{Mod}_\downarrow(\delta(p, a_i)) \) (otherwise don’t care).

- Define \(f_A(\langle p, i \rangle) = \langle M, i \rangle \Rightarrow M \in \text{Mod}_\downarrow(\delta(p, a_i)) \) (sublemma)

- There exists a \(q \in S \cap M \).

- Define \(\overline{f_P}(\langle S, i \rangle) := \langle q, i + 1 \rangle \)

- \(\forall \overline{\gamma} \): play in \(G_{\overline{A},w} \) played according to \(\overline{f_P} \)

- \(\exists \gamma \): play in \(G_{\overline{A},w} \) played according to \(f_A \) s.t. \(\overline{\gamma} \) and \(\gamma \) contain the same \(V_A \)-nodes.

 - Player \(A \) wins \(\gamma \) in \(G_{\overline{A},w} \).
 - \(\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1 \)
Lemma 3 (2)

⇒ Construct a winning strategy \(\overline{f}_P \) for player \(P \) in \(G_{A,w} \).

- \(f_A \): winning strategy for player \(A \) in \(G_{A,w} \).
- Assume there is \(\langle p, i \rangle \in V_A \) occurring in a play \(\gamma \) in \(G_{A,w} \) played according to \(f_A \) s.t. \(S \in \text{Mod}_{\downarrow}(\delta(p, a_i)) \) (otherwise don’t care).

- Define \(\overline{f}_P(\langle S, i \rangle) := \langle q, i + 1 \rangle \)

- \(\forall \overline{\gamma} \): play in \(G_{A,w} \) played according to \(\overline{f}_P \)

- \(\exists \gamma \): play in \(G_{A,w} \) played according to \(f_A \) s.t. \(\overline{\gamma} \) and \(\gamma \) contain the same \(V_A \)-nodes.
 - Player \(A \) wins \(\gamma \) in \(G_{A,w} \).
 - \(\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1 \)

\[\Rightarrow \] Player \(P \) wins \(\overline{\gamma} \) in \(G_{A,w} \).

\[\Rightarrow \] Assume there is \(\langle p, i \rangle \in V_A \) occurring in a play \(\gamma \) in \(G_{A,w} \) played according to \(f_A \) s.t. \(S \in \text{Mod}_{\downarrow}(\delta(p, a_i)) \) (otherwise don’t care).

- Define \(\overline{f}_P(\langle S, i \rangle) := \langle q, i + 1 \rangle \)

- \(\forall \overline{\gamma} \): play in \(G_{A,w} \) played according to \(\overline{f}_P \)

- \(\exists \gamma \): play in \(G_{A,w} \) played according to \(f_A \) s.t. \(\overline{\gamma} \) and \(\gamma \) contain the same \(V_A \)-nodes.
 - Player \(A \) wins \(\gamma \) in \(G_{A,w} \).
 - \(\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1 \)

\[\Rightarrow \] Player \(P \) wins \(\overline{\gamma} \) in \(G_{A,w} \).
Lemma 3 (3)

Construct a winning strategy \(f_A \) for player A in \(G_{A,w} \).

At position \(\langle p, i \rangle \in V_A \)

\[
\begin{array}{c}
\vdots \\
p, i \\
\vdots \\
\end{array}
\]

in \(G_{A,w} \):

\[
\begin{array}{c}
\vdots \\
\vdots \\
\end{array}
\]

\(\pi(q) = \pi(q) - 1 \)
Lemma 3 (3)

Construct a winning strategy f_A for player A in $G_{A, w}$.

At position $\langle p, i \rangle \in V_A$

- f_A: winning strategy for player A in $G_{A, w}$
- f_P: winning strategy for player P in $G_{\overline{A}, w}$
Lemma 3 (3)

Construct a winning strategy f_A for player A in $G_{A, w}$.

At position $\langle p, i \rangle \in V_A$ in $G_{A, w}$:

- $\overline{f_P}$: winning strategy for player P in $G_{A, w}$
- $M^* := \{ q \in Q \mid \exists S \in \text{Mod}_\downarrow (\overline{\delta}(p, a_i)) : \overline{f_P}(\langle S, i \rangle) = \langle q, i+1 \rangle \}$
Lemma 3 (3)

⇐ Construct a winning strategy \(f_A \) for player \(A \) in \(G_{A,w} \).

At position \(\langle p, i \rangle \in V_A \) in \(G_{A,w} \):

- In \(G_{A,w} \):
 - \(p, i \)
 - \(S, i \)
 - \(S', i \)
 - \(S'', i \)
 - \(M^* \)

- In \(G_{\overline{A},w} \):
 - \(\ldots \)
 - \(q, i + 1 \)
 - \(q', i + 1 \)
 - \(q'', i + 1 \)

\(f_P \): winning strategy for player \(P \) in \(G_{\overline{A},w} \).

\(M^* := \{ q \in Q \mid \exists S \in \text{Mod}\downarrow(\overline{\delta}(p, a_i)) : f_P(\langle S, i \rangle) = \langle q, i + 1 \rangle \} \)

(sublemma) \(M^* \) is a model of \(\delta(p, a_i) \).
Lemma 3 (3)

⇐ Construct a winning strategy f_A for player A in G_A,w.

At position $\langle p, i \rangle \in V_A$

<table>
<thead>
<tr>
<th>in G_A,w:</th>
<th>[q, i + 1]</th>
<th>[q', i + 1]</th>
<th>[q'', i + 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, i</td>
<td>M, i</td>
<td>$q', i + 1$</td>
<td>$q'', i + 1$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in G_A,w:</th>
<th>[q, i + 1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>p, i</td>
<td>S', i</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>S'', i</td>
<td>$q'', i + 1$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- \overline{f}_P: winning strategy for player P in G_A,w
- $M^* := \{ q \in Q \mid \exists S \in \text{Mod}_\downarrow(\overline{\delta}(p, a_i)) : \overline{f}_P(\langle S, i \rangle) = \langle q, i + 1 \rangle \}$
 (sublemma) $\implies M^*$ is a model of $\delta(p, a_i)$.
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_\downarrow(\delta(p, a_i))$

\ldots
Lemma 3 (3)

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$ in $G_{A,w}$:

- $\overline{f_P}$: winning strategy for player P in $G_{A,w}$
- $M^* := \{ q \in Q \mid \exists S \in \text{Mod}_\downarrow(\overline{\delta}(p, a_i)) : \overline{f_P}(\langle S, i \rangle) = \langle q, i + 1 \rangle \}$
- $(\text{sublemma}) \implies M^*$ is a model of $\delta(p, a_i)$.
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_\downarrow(\delta(p, a_i))$
- Define $f_A(\langle p, i \rangle) := \langle M, i \rangle$
Lemma 3 (3)

⇐ Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $⟨p, i⟩ ∈ V_A$

in $G_{A,w}$:

- p, i → M, i → $q, i + 1$
- p, i → M, i → $q', i + 1$
- p, i → M, i → $q'', i + 1$

in $G_{A,w}$:

- p, i → S, i → $q, i + 1$
- p, i → S', i → $q', i + 1$
- p, i → S'', i → $q'', i + 1$

- $M^∗$ is a model of $δ(p, a_i)$.

- M is subset of $M^∗$ that is a minimal model $M ⊆ M^∗$, $M ∈ Mod(δ(p, a_i))$

- Define $f_A(⟨p, i⟩) := ⟨M, i⟩$

- $∀ γ$: play in $G_{A,w}$ played according to f_A
- $∃ \overline{γ}$: play in $G_{A,w}$ played according to f_P
 s.t. $γ$ and $\overline{γ}$ contain the same V_A-nodes.
\[\text{Lemma 3 (3)}\]

Construct a winning strategy \(f_A\) for player \(A\) in \(G_{A,w}\).

At position \(\langle p, i \rangle \in V_A\) in \(G_{A,w}\):

- \(\bar{f}_P\): winning strategy for player \(P\) in \(G_{A,w}\)
- \(M^* := \{ q \in Q | \exists S \in \text{Mod}_{\downarrow}(\delta(p, a_i)) : \bar{f}_P(\langle S, i \rangle) = \langle q, i + 1 \rangle \}\)

 \[\text{(sublemma)}\]
 \[\implies M^* \text{ is a model of } \delta(p, a_i).\]

- \(M\): subset of \(M^*\) that is a minimal model
 \[M \subseteq M^*, \quad M \in \text{Mod}_{\downarrow}(\delta(p, a_i))\]

- Define \(f_A(\langle p, i \rangle) := \langle M, i \rangle\)

- \(\forall \gamma\): play in \(G_{A,w}\) played according to \(f_A\)
- \(\exists \bar{\gamma}\): play in \(G_{A,w}\) played according to \(\bar{f}_P\)

 s.t. \(\gamma\) and \(\bar{\gamma}\) contain the same \(V_A\)-nodes.

 - Player \(P\) wins \(\bar{\gamma}\) in \(G_{A,w}\).
Lemma 3 (3)\[\Leftarrow\]

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$ in $G_{A,w}$:
- \overline{f}_P: winning strategy for player P in $G_{A,w}$
- $M^* := \{ q \in Q \mid \exists S \in \text{Mod}_\downarrow(\overline{\delta}(p, a_i)) : \overline{f}_P(\langle S, i \rangle) = \langle q, i + 1 \rangle \}$
 \[(\text{sublemma})\]
 \[\implies M^* \text{ is a model of } \delta(p, a_i).\]
- M: subset of M^* that is a minimal model
 $M \subseteq M^*$, $M \in \text{Mod}_\downarrow(\delta(p, a_i))$
- Define $f_A(\langle p, i \rangle) := \langle M, i \rangle$

- $\forall \gamma$: play in $G_{A,w}$ played according to f_A
- $\exists \overline{\gamma}$: play in $G_{A,w}$ played according to \overline{f}_P
 s.t. γ and $\overline{\gamma}$ contain the same V_A-nodes.
 - Player P wins $\overline{\gamma}$ in $G_{A,w}$.
 - $\forall q \in Q : \pi(q) = \overline{\pi}(q) - 1$
Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$ in $G_{A,w}$:

- f_P: winning strategy for player P in $G_{A,w}$

- $M^* := \{ q \in Q \mid \exists S \in \text{Mod}_\downarrow(\delta(p, a_i)) : f_P(\langle S, i \rangle) = \langle q, i + 1 \rangle \}$

 (sublemma) M^* is a model of $\delta(p, a_i)$.

- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_\downarrow(\delta(p, a_i))$

- Define $f_A(\langle p, i \rangle) := \langle M, i \rangle$

- $\forall \gamma$: play in $G_{A,w}$ played according to f_A
- $\exists \overline{\gamma}$: play in $G_{A,w}$ played according to f_P

 s.t. γ and $\overline{\gamma}$ contain the same V_A-nodes.

 - Player P wins $\overline{\gamma}$ in $G_{A,w}$.
 - $\forall q \in Q : \pi(q) = \overline{\pi(q)} - 1$

 \implies Player A wins γ in $G_{A,w}$.
Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w \in \Sigma^\omega$.

Lemma 1

Player A has a winning strategy in $G_{A,w}$ iff \mathcal{A} accepts w.

Lemma 2

Player P has a winning strategy in $G_{A,w}$ iff \mathcal{A} does not accept w.

Lemma 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{A,w}$.
Complementation Theorem

Theorem (Complementation)

The dual \bar{A} of a WAPA A accepts its complement, i.e.

$$\mathcal{L}(\bar{A}) = \Sigma^\omega \setminus \mathcal{L}(A)$$

(Thomas and Löding, \sim 2000)
Theorem (Complementation)

The dual \overline{A} of a WAPA A accepts its complement, i.e.

$$\mathcal{L}(\overline{A}) = \Sigma^\omega \setminus \mathcal{L}(A)$$

(Thomas and Löding, ∼2000)

Proof:

A accepts w \iff (lemma 1) player A has a winning strategy in $G_{A,w}$
Theorem (Complementation)

The dual \overline{A} of a WAPA A accepts its complement, i.e.

$$L(\overline{A}) = \Sigma^\omega \setminus L(A)$$

(Thomas and Löding, ~2000)

Proof:

A accepts w (lemma 1) \iff player A has a winning strategy in $G_{A,w}$

(lemma 3) \iff player P has a winning strategy in $G_{\overline{A},w}$
Complementation Theorem

Theorem (Complementation)

The dual \overline{A} of a WAPA A accepts its complement, i.e.

$$\mathcal{L}(\overline{A}) = \Sigma^\omega \setminus \mathcal{L}(A)$$

(Thomas and Löding, ~2000)

Proof:

A accepts w \iff player A has a winning strategy in $G_{A,w}$

(lemma 1)

\iff player P has a winning strategy in $G_{\overline{A},w}$

(lemma 3)

\iff \overline{A} does not accept w

(lemma 2)
1 Weak Alternating Parity Automata

2 Infinite Parity Games

3 Proof of the Complementation Theorem

4 Büchi Complementation Algorithm
B"uchi Complementation Algorithm

\[
\begin{align*}
B \xrightarrow{2^\Omega(n \log n)} \bar{B} \\
\bar{A} \xleftarrow{O(1)} \bar{A}
\end{align*}
\]

Total complexity: \(O(n^2)\)

Can reach \(O(n \log n)\) (lower bound) by improving \(A \rightarrow B\).
Büchi Complementation Algorithm

Total complexity: $2\Omega(n \log n)$. Can reach $2\Omega(n \log n)$ (lower bound) by improving $A \rightarrow B$.
Büchi Complementation Algorithm

\[
\begin{align*}
\mathcal{B} & \quad \xrightarrow{2 \Omega(n \log n)} \quad \mathcal{B} \\
\mathcal{A} & \quad \xleftarrow{O(1)} \quad \mathcal{A}
\end{align*}
\]

Total complexity: \(2^{O(n)}\)
Büchi Complementation Algorithm

- Total complexity: $2^\Omega(n^2)$
Büchi Complementation Algorithm

- Total complexity: $2^{O(n^2)}$
- Can reach $2^{O(n \log n)}$ (lower bound) by improving $\overline{A} \rightarrow \overline{B}$.

![Diagram showing Büchi Complementation Algorithm]

Appendix
From BA to WAPA

Given:

- $B = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA
- $n = |Q|$
From BA to WAPA

Given:
- \(\mathcal{B} = \langle Q, \Sigma, \delta, q_{\text{in}}, F \rangle \): BA
- \(n = |Q| \)

Construction (BA → WAPA)

\[\mathcal{A} := \langle Q \times \{0, \ldots, 2n\}, \Sigma, \delta', \langle q_{\text{in}}, 2n \rangle, \pi \rangle \]

\(\mathcal{O}(n^2) \)

(Thomas and Löding, ~2000)
From BA to WAPA

Given:
- $B = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA
- $n = |Q|

Construction ($BA \rightarrow WAPA$)

$$A := \langle Q \times \{0, \ldots, 2n\}, \Sigma, \delta', \langle q_{in}, 2n \rangle, \pi \rangle$$

where

- $\pi(\langle p, i \rangle) := i$

for $p \in Q$, $a \in \Sigma$, $i \in \{0, \ldots, 2n\}$

(Thomas and Löding, ~2000)
From BA to WAPA

Given:
- $\mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA
- $n = |Q|$

Construction ($\text{BA} \rightarrow \text{WAPA}$)

$\mathcal{A} := \langle Q \times \{0, \ldots, 2n\}, \Sigma, \delta', \langle q_{in}, 2n \rangle, \pi \rangle$

where

\[\delta'(\langle p, i \rangle, a) := \begin{cases} \bigvee_{q \in \delta(p, a)} \langle q, 0 \rangle & \text{if } i = 0 \\ \bigvee_{q \in \delta(p, a)} \langle q, i \rangle \land \langle q, i - 1 \rangle & \text{if } i \text{ even, } i > 0 \end{cases} \]

$\pi(\langle p, i \rangle) := i$

for $p \in Q$, $a \in \Sigma$, $i \in \{0, \ldots, 2n\}$

(Thomas and Löding, \sim 2000)
From BA to WAPA

Given:
- $\mathcal{B} = \langle Q, \Sigma, \delta, q_{\text{in}}, F \rangle$: BA
- $n = |Q|$

Construction ($\mathcal{BA} \to \mathcal{WAPA}$)

$\mathcal{A} := \langle Q \times \{0, \ldots, 2n\}, \Sigma, \delta', \langle q_{\text{in}}, 2n \rangle, \pi \rangle$

where

- $\delta'(\langle p, i \rangle, a) :=$
 \[
 \begin{cases}
 \bigvee_{q \in \delta(p, a)} \langle q, 0 \rangle & \text{if } i = 0 \\
 \bigvee_{q \in \delta(p, a)} \langle q, i \rangle \land \langle q, i - 1 \rangle & \text{if } i \text{ even}, i > 0 \\
 \bigvee_{q \in \delta(p, a)} \langle q, i \rangle & \text{if } i \text{ odd}, p \notin F \\
 \bigvee_{q \in \delta(p, a)} \langle q, i - 1 \rangle & \text{if } i \text{ odd}, p \in F
 \end{cases}
 \]

- $\pi(\langle p, i \rangle) := i$

for $p \in Q$, $a \in \Sigma$, $i \in \{0, \ldots, 2n\}$

(Thomas and Löding, ~2000)
Given:

\[\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle: \text{stratified WAPA, i.e.} \]

\[\forall p \in Q \ \forall a \in \Sigma : \delta(p, a) \in B^+ \left(\{ q \in Q \mid \pi(p) \geq \pi(q) \} \right) \]
From WAPA to BA

Given:

- $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.
 - $\forall p \in Q \ \forall a \in \Sigma : \delta(p, a) \in B^+ \{ q \in Q \mid \pi(p) \geq \pi(q) \}$
- $E \subseteq Q$: all states with even parity
From WAPA to BA

Given:

- $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.
 \[\forall p \in Q \ \forall a \in \Sigma : \delta(p, a) \in \mathbb{B}^+ \left(\{ q \in Q \mid \pi(p) \geq \pi(q) \} \right) \]
- $E \subseteq Q$: all states with even parity

Construction (WAPA \to BA)

\[\mathcal{B} := \langle 2^Q \times 2^Q, \Sigma, \delta', \langle \{ q_{in} \}, \emptyset \rangle, 2^Q \times \{ \emptyset \} \rangle \]

(Miyano and Hayashi, 1984)
From WAPA to BA

Given:
- \(\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \): stratified WAPA, i.e.
 \[
 \forall p \in Q \ \forall a \in \Sigma : \ \delta(p, a) \in \mathbb{B}^+(\{q \in Q \mid \pi(p) \geq \pi(q)\})
 \]
- \(E \subseteq Q \): all states with even parity

Construction (WAPA → BA)

\(\mathcal{B} := \langle 2^Q \times 2^Q, \Sigma, \delta', \langle \{q_{in}\}, \emptyset \rangle, 2^Q \times \{\emptyset\} \rangle \)

where
- \(\delta'(\langle M, \emptyset \rangle, a) := \left\{ \langle M', M' \setminus E \rangle \mid M' \in \text{Mod}_{\downarrow}(\land_{q \in M} \delta(q, a)) \right\} \)

for \(a \in \Sigma, \ M, O \subseteq Q, \ O \neq \emptyset \)

(Miyano and Hayashi, 1984)
FROM WAPA TO BA

Given:
- \(A = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle \): stratified WAPA, i.e.
 \[\forall p \in Q \ \forall a \in \Sigma : \delta(p, a) \in B^+ \left(\{ q \in Q \mid \pi(p) \geq \pi(q) \} \right) \]
- \(E \subseteq Q \): all states with even parity

Construction (WAPA \(\rightarrow \) BA)

\[B := \langle 2^Q \times 2^Q, \Sigma, \delta', \langle \{q_{in}\}, \emptyset \rangle, 2^Q \times \{\emptyset\} \rangle \]

where

- \(\delta'(\langle M, \emptyset \rangle, a) := \left\{ \langle M', M' \setminus E \rangle \mid M' \in \text{Mod}_{\downarrow}(\bigwedge_{q \in M} \delta(q, a)) \right\} \)
- \(\delta'(\langle M, O \rangle, a) := \left\{ \langle M', O' \setminus E \rangle \mid M' \in \text{Mod}_{\downarrow}(\bigwedge_{q \in M} \delta(q, a)), O' \subseteq M', O' \in \text{Mod}_{\downarrow}(\bigwedge_{q \in O} \delta(q, a)) \right\} \)

for \(a \in \Sigma, M, O \subseteq Q, O \neq \emptyset \)

(Miyano and Hayashi, 1984)