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Recap: Petri Nets

Can Petri Nets make it better ?

n n

a bc

An inhibitor arc imposes the precondition that the transition may
only fire when the place is empty; this allows arbitrary

computations on numbers of tokens to be expressed, which makes
the formalism Turing complete.1

1http://en.wikipedia.org/wiki/Petri net
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When are two Actions a, b ∈ Σ independent ?

In a signature σ two Actions a, b are called independent,
if for all fat-systems with σ a and b can be executed in any order

without altering the result of the computation.
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τC simulates τ .
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Does the other direction work too?

Let τ = (Σ,C ,X ,∆) be a fact-system and σ an ω-redundant
signature that induces C .

Then there exists a fat-system τ ′ = (Σ,R, E ,X ′,∆′) over σ
covering τ .



Motivation Introduction Asynchronous Cellular Transition Systems Language Recognizability and Determinization

Simulations
fact → fat

Does the other direction work too?

Let τ = (Σ,C ,X ,∆) be a fact-system and σ an ω-redundant
signature that induces C .

Then there exists a fat-system τ ′ = (Σ,R, E ,X ′,∆′) over σ
covering τ .



Motivation Introduction Asynchronous Cellular Transition Systems Language Recognizability and Determinization

Simulations
fact → fat

Does the other direction work too?

Let τ = (Σ,C ,X ,∆) be a fact-system and σ an ω-redundant
signature that induces C .

Then there exists a fat-system τ ′ = (Σ,R, E ,X ′,∆′) over σ
covering τ .



Content

Motivation

Introduction

Asynchronous Cellular Transition Systems

Language Recognizability and Determinization



Motivation Introduction Asynchronous Cellular Transition Systems Language Recognizability and Determinization

Languages

Finite Asynchronous Automaton (FAA):

A = (Σ,R, E︸ ︷︷ ︸
σ

,X ,∆, I ,F )

L(A) = {w ∈ Σ∗ | ∃s0 ∈ I , sf ∈ F : sf ∈ ∆(s0,w)}

Ldσ := class of languages recognized by deterministic faa over the
signature σ

Lnσ := class of languages recognized by non-deterministic faa over
the signature σ

Defined analogously for FACA
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Languages

Let

• σ1 = (Σ,R, E) be an ω-redundant signature of a fat-system

• σ2 = (Σ,C ) be the induced signature of a fact-system
(C = E2 ∩ Σ2)

Then
Ldσ1

= Ldσ2
and Lnσ1

= Lnσ2

Proof.
Simulation fat↔fact plus a little magic regarding initial/final states
and languages.

In the sequel we restrain our attention to languages recognized by
faca.
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Languages

For each faca A = (Σ,C ,X ,∆, I ,F ) there exists a faca A′ over
the same signature σ = (Σ,C ) with only one initial state s.t.
L(A) = L(A′).

Proof.
boring

In the sequel wlog we assume that there is only one initial state.
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Motivation Introduction Asynchronous Cellular Transition Systems Language Recognizability and Determinization

Languages

Let σ1 = (Σ1,C1) and σ2 = (Σ2,C2) be two signatures, such that

Σ1 ⊆ Σ2 and C1 = C2 ∩ Σ2
1

Then for each language L ⊆ Σ∗1: L ∈ Lnσ1
⇔ L ∈ Lnσ2

proof idea.

⇒: Let A1 be a faca over σ1. Construct A2 over σ2 such that it
works like A1 for Actions in Σ1. For Actions in Σ2 \Σ1 it goes into
a state such that a final state cannot be reached anymore.

⇐: Let A2 be a faca over σ2 with initial state s2
0 , final states F2.

Construct A1 over σ1 with the same values X that works like A2

for Actions in Σ1. Let s be a final state, then s|Σ2\Σ1
= s2

0|Σ2\Σ1
.

Pick F1 = {s|Σ1
| s ∈ F2}.
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