Tree Automata

Betim Musa

Seminar: Automata Theory
Introduction

- Automata for tree structures
- Generalization of finite automata
- Two types of tree automata
 - (1) top-down, (2) bottom-up

Applications:
- Compiler construction: generate machine code
- Natural Language Processing: machine translation
- XML: processing XML documents
Outline

- Tree automata
 - Basics of tree automata
 - Bottom-up tree automata
 - Top-down tree automata
 - Decision problems & complexity

- Connection to logic
 - Monadic Second Order Logic (MSOL)
 - Equivalence between tree automata and MSOL
Basics

Definition: \(\Sigma \) is a ranked alphabet if
- It is a non-empty finite set
- each symbol \(a \in \Sigma \) is assigned a finite set \(\text{rank}(a) \subseteq \mathbb{N} \)
- \(\Sigma_i := \{ a \in \Sigma \mid i \in \text{rank}(a) \} \)
- \(\Sigma = \Sigma_0 \cup \ldots \cup \Sigma_m \)
Basics

- Definition: Σ is a ranked alphabet if
 - It is a non-empty finite set
 - each symbol $a \in \Sigma$ is assigned a finite set $\text{rank}(a) \subseteq \mathbb{N}$
 - $\Sigma_i := \{ a \in \Sigma \mid i \in \text{rank}(a) \}$
 - $\Sigma = \Sigma_0 \cup \ldots \cup \Sigma_m$

- Definition: A tree over Σ is inductively defined
 - each symbol $a \in \Sigma_0$ is a tree
 - For $f \in \Sigma_k$ and trees $t_1 \ldots t_k$, $f(t_1 \ldots t_k)$ is also a tree.
Basics

- **Definition**: Σ is a ranked alphabet if
 - It is a non-empty finite set
 - each symbol $a \in \Sigma$ is assigned a finite set $\text{rank}(a) \subseteq \mathbb{N}$
 - $\Sigma_i := \{ a \in \Sigma \mid i \in \text{rank}(a) \}$
 - $\Sigma = \Sigma_0 \cup \ldots \cup \Sigma_m$

- **Definition**: A tree over Σ is inductively defined
 - each symbol $a \in \Sigma_0$ is a tree
 - For $f \in \Sigma_k$ and trees $t_1 \ldots t_k$, $f(t_1 \ldots t_k)$ is also a tree.

- The set of all trees over Σ is denoted by $T(\Sigma)$
Definition: A bottom-up tree automaton is a quadruple \(B=(\Sigma, Q, F, \Delta) \)

- \(\Sigma \) a ranked alphabet
- \(Q \) finite set of states
- \(F \subseteq Q \) set of final states
- \(\Delta \) finite set of transition rules of the form
 \[f(q_1(t_1),...,q_n(t_n)) \rightarrow q \]
 where \(f \in \Sigma_n, \ q, q_1,..., q_n \in Q, \ t_1,..., t_n \) trees
Bottom-up tree automata

- Definition: A bottom-up tree automaton is a quadruple $B = (\Sigma, Q, F, \Delta)$
 - Σ a ranked alphabet
 - Q finite set of states
 - $F \subseteq Q$ set of final states
 - Δ finite set of transition rules of the form
 $$f(q_1(t_1), ..., q_n(t_n)) \rightarrow q$$
 where $f \in \Sigma_n$, $q, q_1, ..., q_n \in Q$, $t_1, ..., t_n$ trees
 - Rules for constants are „initial rules“ $a \rightarrow q_a$
Bottom-up tree automata

- Definition: A bottom-up tree automaton is a quadruple $B = (\Sigma, Q, F, \Delta)$
 - Σ a ranked alphabet
 - Q finite set of states
 - $F \subseteq Q$ set of final states
 - Δ finite set of transition rules of the form
 $$f(q_1(t_1), ..., q_n(t_n)) \rightarrow q$$
 where $f \in \Sigma_n, q, q_1, ..., q_n \in Q, t_1, ..., t_n$ trees
- Rules for constants are „initial rules“ $a \rightarrow q_a$
- Definition: Acceptance of a tree
 - A tree $t \in T(\Sigma)$ is accepted iff $t \rightarrow^* q(t), \text{where } q \in F$
Bottom-up tree automata

Example 1

- Example: A tree automaton, which accepts all true Boolean expressions over $\Sigma = \{ \land_2, \lor_2, \neg_1, 0, 1 \}$
Bottom-up tree automata

Example 1

- Example: A tree automaton, which accepts all true Boolean expressions over $\Sigma = \{ \land_2, \lor_2, \neg_1, 0, 1 \}$
- $B=(\Sigma, Q, F, \Delta)$ with $Q=\{q_0, q_1\}$, $F=\{q_1\}$
 $\Delta=\{0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0, \}$
 $\cup\{ \land(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{min}(i, j)} \}$
 $\cup\{ \lor(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{max}(i, j)} \}$
Bottom-up tree automata

Example 1

- \(B= (\Sigma, Q, F, \Delta) \) with \(Q=\{q_0, q_1\} \), \(F=\{q_1\} \)
 - \(\Delta=\{0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0, \} \)
 - \(\cup\{ \land(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{min}}(i, j) \} \)
 - \(\cup\{ \lor(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{max}}(i, j) \} \)
- Assume we have the following input:
 - \(t_1 = \land(\lor(0, 1), \neg(0)) \)

Diagram:
```
                      /
                     /  \
                    /    \
                   /      \
                  /        \
                 /          \n                /            \n               /              \n              \land\lor\neg 0 1 0
```
Bottom-up tree automata

Example 1

- \(B = (\Sigma, Q, F, \Delta) \) with \(Q = \{q_0, q_1\}, \ F = \{q_1\} \)
- \(\Delta = \{0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0, \} \)
- \(\cup \{ \wedge(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{min}(i,j)} \} \)
- \(\cup \{ \vee(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{max}(i,j)} \} \)

- Assume we have the following input:
 \(t_1 = \wedge(\vee(0,1), \neg(0)) \)
Assume we have the following input:

\[t_1 = \wedge (\vee (0, 1), \neg (0)) \]
Bottom-up tree automata

Example 1

- \(B = (\Sigma, Q, F, \Delta) \) with \(Q = \{ q_0, q_1 \} \), \(F = \{ q_1 \} \)

 \(\Delta = \{ 0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0, \} \)

 \(\cup \{ \wedge(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{min}(i,j)} \} \)

 \(\cup \{ \vee(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{max}(i,j)} \} \)

- Assume we have the following input:

 \(t_1 = \wedge(\vee(0,1), \neg(0)) \)
Bottom-up tree automata

Example 1

- $B=(\Sigma, Q, F, \Delta)$ with $Q=\{q_0, q_1\}$, $F=\{q_1\}$
 - $\Delta=\{0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0,\}$
 - $\cup\{\land(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{min}(i,j)}\}$
 - $\cup\{\lor(q_i(t_1), q_j(t_2)) \rightarrow q_{\text{max}(i,j)}\}$

- Assume we have the following input:
 - $t_1 = \land(\lor(0,1), \neg(0))$
Bottom-up tree automata

Example 1

- \(B=\left(\Sigma, Q, F, \Delta \right) \) with \(Q=\{ q_0, q_1 \}, \ F=\{ q_1 \} \)
 \[
 \Delta=\{ 0 \to q_0, 1 \to q_1, \neg(q_0(t)) \to q_1, \neg(q_1(t)) \to q_0, \}
 \]
 \[
 \cup \{ \land(q_i(t_1), q_j(t_2)) \to q_{\min(i,j)} \}
 \]
 \[
 \cup \{ \lor(q_i(t_1), q_j(t_2)) \to q_{\max(i,j)} \}
 \]

- Assume we have the following input:
 \(t_1= \land(\lor(0,1), \neg(0)) \)
Example 1

- $B = (\Sigma, Q, F, \Delta)$ with $Q = \{q_0, q_1\}$, $F = \{q_1\}$
 - $\Delta = \{0 \rightarrow q_0, 1 \rightarrow q_1, \neg(q_0(t)) \rightarrow q_1, \neg(q_1(t)) \rightarrow q_0, \}$
 - $\cup \{\land(q_i(t_1), q_j(t_2)) \rightarrow q_{\min(i,j)}\}$
 - $\cup \{\lor(q_i(t_1), q_j(t_2)) \rightarrow q_{\max(i,j)}\}$

- Assume we have the following input:
 - $t_1 = \land(\lor(0,1), \neg(0))$
Bottom-up tree automata

Further information

- Non-deterministic if there are at least two rules with the same left-hand side
 \[a(q_1, \ldots, q_k) \rightarrow q \]
 \[a(q_1, \ldots, q_k) \rightarrow q' \]
 where \(q \neq q' \)

- But expressive power is equal
 - Powerset construction

- Regular expressions definable
 - Equal power to tree automata
Top-down tree automata

Definition: A top-down automaton is a structure
\[T = (\Sigma, Q, Q_I, \Delta) \]
- where \(\Sigma \) is a ranked alphabet
- \(Q \) is a finite set of states
- \(Q_I \) is a finite set of initial states
- \(\Delta \) finite set of transition rules of the form
 \[q(f(t_1, ..., t_n)) \rightarrow f(q_1(t_1), ..., q_n(t_n)) \]
- where \(f \in \Sigma_n, \ q, q_1, ..., q_n \in Q, \ t_1, ..., t_n \) different trees

A tree \(t \in T(\Sigma) \) is accepted iff \(q(t) \rightarrow^* t \) for some \(q \in Q_I \)
Top-down tree automata

Example 1

A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$.
Top-down tree automata

Example 1

- A top-down automaton, which accepts all trees with depth 1 over \(\Sigma = \{ f_2, g_1, a_0 \} \)
- Define \(T = (\Sigma, Q, Q_I, \Delta) \) where \(Q = \{ q_0, q_1 \} \), \(Q_I = \{ q_0 \} \)
 \(\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t)) \} \)
 \(\cup \{ q_1(a) \rightarrow a \} \)
- Instance input is:

![Tree Diagram]

University of Freiburg - Computer Science Department
Top-down tree automata

Example 1

- A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$
- Define $T = (\Sigma, Q, Q_I, \Delta)$ where $Q = \{q_0, q_1\}$, $Q_I = \{q_0\}$
 $\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t))\}$
 $\cup \{q_1(a) \rightarrow a\}$
- Instance input is:
Top-down tree automata

Example 1

- A top-down automaton, which accepts all trees with depth 1 over \(\Sigma = \{ f_2, g_1, a_0 \} \)
- Define \(T = (\Sigma, Q, Q_I, \Delta) \) where \(Q = \{ q_0, q_1 \} \), \(Q_I = \{ q_0 \} \)
 \[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t)) \} \]
 \[\cup \{ q_1(a) \rightarrow a \} \]
- Instance input is:
Top-down tree automata

Example 1

- A top-down automaton, which accepts all trees with depth 1 over \(\Sigma = \{f_2, g_1, a_0\} \)
- Define \(T = (\Sigma, Q, Q_I, \Delta) \) where \(Q = \{q_0, q_1\} \), \(Q_I = \{q_0\} \)
 \[\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t))\} \]
 \[\cup \{q_1(a) \rightarrow a\} \]
- Instance input is:
Top-down tree automata

Example 2

- A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$
- Define $T = (\Sigma, Q, Q_I, \Delta)$ where $Q = \{q_0, q_1\}$, $Q_I = \{q_0\}$
 $\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t))\} \cup \{q_1(a) \rightarrow a\}$
- Input, which is not accepted:
Top-down tree automata

Example 2

- A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$

- Define $T = (\Sigma, Q, Q_I, \Delta)$ where $Q = \{q_0, q_1\}$, $Q_I = \{q_0\}$
 $\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t))\}$
 $\cup \{q_1(a) \rightarrow a\}$

- Input, which is not accepted:
A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$

Define $T = (\Sigma, Q, Q_I, \Delta)$ where $Q = \{q_0, q_1\}$, $Q_I = \{q_0\}$

$\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t))\}$

$\cup \{q_1(a) \rightarrow a\}$

Input, which is not accepted:
Top-down tree automata

Example 2

- A top-down automaton, which accepts all trees with depth 1 over $\Sigma = \{f_2, g_1, a_0\}$
- Define $T = (\Sigma, Q, Q_I, \Delta)$ where $Q = \{q_0, q_1\}$, $Q_I = \{q_0\}$
 \[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_1(t_2)), q_0(g(t)) \rightarrow g(q_1(t)) \}\]
 $\cup \{ q_1(a) \rightarrow a \}$
- Input, which is not accepted:
Top-down tree automata

Non-deterministic vs. deterministic

- Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones
Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

Remark: The doubleton set $DT = \{f(a,b) f(b,a)\}$ is acceptable by non-deterministic top-down tree automata
Top-down tree automata

Non-deterministic vs. deterministic

- Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones.

- Remark: The doubleton set $DT = \{f(a,b)f(b,a)\}$ is acceptable by non-deterministic top-down tree automata.

Let $T = (\Sigma, Q, Q_I, \Delta)$ where

- $\Sigma = \{f_2, a_0, b_0\}$,
- $Q = \{q_0, q_a, q_b\}$,
- $Q_I = \{q_0\}$,
- $\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2))\}$
- $\cup \{q_a(a) \rightarrow a, q_b(b) \rightarrow b\}$
Top-down tree automata

Non-deterministic vs. deterministic

- Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

$$T = (\Sigma, Q, Q_I, \Delta)$$ where

$$\Sigma = \{f_2, a_0, b_0\}, Q = \{q_0, q_a, q_b\}, Q_I = \{q_0\}$$

$$\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2))\} \cup \{q_a(a) \rightarrow a, q_b(b) \rightarrow b\}$$

- Assume that there is a deterministic top-down automaton which recognizes the doubleton set
Top-down tree automata
Non-deterministic vs. deterministic

- Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

\[T = (\Sigma, Q, Q_I, \Delta) \]
where
\[\Sigma = \{ f_2, a_0, b_0 \}, \quad Q = \{ q_0, q_a, q_b \}, \quad Q_I = \{ q_0 \} \]
\[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2)) \} \]
\[\cup \{ q_a(a) \rightarrow a, q_b(b) \rightarrow b \} \]

- Assume that there is a deterministic top-down automaton which recognizes the doubleton set

- It must have the following transition rules

\[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_2(t_2)) \} \]
Top-down tree automata

Non-deterministic vs. deterministic

- **Claim:** Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

\[T = (\Sigma, Q, Q_I, \Delta) \]

where \(\Sigma = \{f, a, b\} \), \(Q = \{q_0, q_a, q_b\} \), \(Q_I = \{q_0\} \)

\[\Delta = \{(q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2)))\} \]

\[\cup \{(q_a(a) \rightarrow a, q_b(b) \rightarrow b)\} \]

- Assume that there is a deterministic top-down automaton which recognizes the doubleton set

- It must have the following transition rules

\[\Delta = \{(q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_2(t_2)), q_1(a) \rightarrow a, q_2(b) \rightarrow b)\} \]
Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

$T = (\Sigma, Q, Q_I, \Delta)$ where $\Sigma = \{f_2, a_0, b_0\}$, $Q = \{q_0, q_a, q_b\}$, $Q_I = \{q_0\}$

$\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2))\}$

$\cup \{q_a(a) \rightarrow a, q_b(b) \rightarrow b\}$

Assume that there is a deterministic top-down automaton which recognizes the doubleton set

It must have the following transition rules

$\Delta = \{q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_2(t_2)), q_1(a) \rightarrow a, q_2(b) \rightarrow b\}$

$\cup \{q_2(a) \rightarrow a, q_1(b) \rightarrow b\}$
Top-down tree automata

Non-deterministic vs. deterministic

- Claim: Deterministic top-down tree automata are strictly less powerful than the non-deterministic ones

\[T = (\Sigma, Q, Q_I, \Delta) \]

\[\Sigma = \{ f_2, a_0, b_0 \}, \quad Q = \{ q_0, q_a, q_b \}, \quad Q_I = \{ q_0 \} \]

\[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_a(t_1), q_b(t_2)), q_0(f(t_1, t_2)) \rightarrow f(q_b(t_1), q_a(t_2)) \} \]

\[\cup \{ q_a(a) \rightarrow a, q_b(b) \rightarrow b \} \]

- Assume that there is a deterministic top-down automaton which recognizes the doubleton set

- It must have the following transition rules

\[\Delta = \{ q_0(f(t_1, t_2)) \rightarrow f(q_1(t_1), q_2(t_2)), q_1(a) \rightarrow a, q_2(b) \rightarrow b \} \]

\[\cup \{ q_2(a) \rightarrow a, q_1(b) \rightarrow b \} \]

- It accepts also \(f(a, a) \rightarrow \text{Contradiction} \).
Decision problems & complexity

<table>
<thead>
<tr>
<th></th>
<th>NDTA</th>
<th>NWA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cup, \cdot, \ast</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>complement</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>intersection</td>
<td>✔</td>
<td>✔</td>
<td>❌</td>
</tr>
<tr>
<td>emptiness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>equivalence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>inclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Decision problems & complexity

<table>
<thead>
<tr>
<th></th>
<th>NDTA</th>
<th>NWA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cup,\cdot,*$</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>complement</td>
<td>✔</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td>intersection</td>
<td>✔</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td>emptiness</td>
<td>linear time</td>
<td>PTIME</td>
<td>PTIME</td>
</tr>
<tr>
<td>equivalence</td>
<td>EXPTIME</td>
<td>PTIME</td>
<td>undecidable</td>
</tr>
<tr>
<td>inclusion</td>
<td>EXPTIME</td>
<td>PTIME</td>
<td>undecidable</td>
</tr>
</tbody>
</table>
Outline

- Tree automata
 - Basics of tree automata
 - Bottom-up tree automata
 - Top-down tree automata
 - Decision problems & complexity

- Connection to logic
 - Monadic Second Order Logic (MSOL)
 - Equivalence between tree automata and MSOL
Monadic Second Order Logic

Why?

- Why consider logic on trees?
 - To specify languages in a more comfortable way

- \(L = \text{“There is a path which consists of only } a\text{”} \)
- Regular expression of \(L \) would become too large

- A formula for \(L \):
 - \(\phi := \exists x \exists y (x < y \land \forall z ((x < z \land z < y) \rightarrow P_a(z))) \)
Monadic Second Order Logic

- Extension of first-order logic
- Second-order because quantification over sets is allowed
 - $\exists X (X(min) \rightarrow P_a(min))$
- Monadic because quantification is restricted to sets (unary relations)
Monadic Second Order Logic
over trees

- Formulae are built up from
 - Variables x, y, z denoting positions of branches
 - Constant min, Position of the root node
 - Set variables X, Y, Z denoting sets of positions
Monadic Second Order Logic
over trees

- Formulae are built up from
 - Variables x, y, z denoting positions of branches
 - Constant \min, Position of the root node
 - Set variables X, Y, Z denoting sets of positions
 - Atomic formulae (with explicit semantics)
 - $x = y$ (equality)
 - \leq prefix relation
 - $S_i(x, y)$ i-th successor relation
 - $P_a(x)$ "at position x there is an a"
 - $X(y)$ "y is element of X"
 - And the usual connectors, quantifiers \land, \lor, \neg, \ldots, \exists, \forall
Monadic Second Order Logic
over trees

- How can we describe the properties of trees in terms of MSOL-formulae?
Monadic Second Order Logic over trees

- How can we describe the properties of trees in terms of MSOL-formulae?
- Let $\Sigma = \Sigma_0 \cup \ldots \cup \Sigma_m$ be a ranked alphabet. Following structure encodes a tree t:

 $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (p_a^t)_{a \in \Sigma})$
Monadic Second Order Logic
over trees

- How can we describe the properties of trees in terms of MSOL-formulae?
- Let $\Sigma = \Sigma_0 \cup \ldots \cup \Sigma_m$ be a ranked alphabet. Following structure encodes a tree t:
 $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (P_a^t)_{a \in \Sigma})$
 - dom_t domain of t (i.e. set of all positions in t)
 - S_i^t the i-th successor relation on the domain
 - \leq^t prefix relation (between two positions in t that are on the same path)
 - P_a^t set of all positions of t labeled with an a
Monadic Second Order Logic

Example

- Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ where $\Sigma_0 = \{a\}, \Sigma_1 = \{g\}, \Sigma_2 = \{f\}$
- $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (p^t_a)_{a \in \Sigma})$
Monadic Second Order Logic

Example

- Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ where $\Sigma_0 = \{a\}, \Sigma_1 = \{g\}, \Sigma_2 = \{f\}$
- $t = (\text{dom}^t, S_1^t, \ldots, S_m^t, \leq^t, (p_a^t)_{a \in \Sigma})$
Monadic Second Order Logic

Example

- Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ where $\Sigma_0 = \{a\}, \Sigma_1 = \{g\}, \Sigma_2 = \{f\}$
- $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (p_a^t)_{a \in \Sigma})$
- $\text{dom}_t = \{\text{min}, 1, 11, 12, 2, 21, 211\}$
Monadic Second Order Logic

Example

- Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ where $\Sigma_0 = \{a\}, \Sigma_1 = \{g\}, \Sigma_2 = \{f\}$
- $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (p^t_a)_{a \in \Sigma})$
- $\text{dom}_t = \{\text{min}, 1, 11, 12, 2, 21, 211\}$

- S_1^t, S_2^t
 - $S_2^t(\text{min}, 2), S_1^t(2, 21)$
Monadic Second Order Logic

Example

- Let $\Sigma = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2$ where $\Sigma_0 = \{a\}, \Sigma_1 = \{g\}, \Sigma_2 = \{f\}$
- $t = (\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (P_a^t)_{a \in \Sigma})$
- $\text{dom}_t = \{\text{min}, 1, 11, 12, 2, 21, 211\}$

- S_1^t, S_2^t
 - $S_2^t(\text{min}, 2), S_1^t(2, 21)$
- $P_a = \{11, 12, 211\}, P_f = \{\text{min}, 1\}$
- $P_g = \{2, 21\}$
Monadic Second Order Logic

- Given a sentence ϕ in MSO-L, the expression
 $$(\text{dom}_t, S_1^t, \ldots, S_m^t, \leq^t, (p_a^t)_{a \in \Sigma}) \models \phi$$
 states that t satisfies ϕ if there is an automaton A, which accepts t.

- Tree languages
 - ϕ defines $T(\phi) := \{ t \in T_\Sigma \mid t \models \phi \}$
 - $T(\phi)$ is called MSO-definable
Equivalence between tree automata and MSOL

- Theorem (Doner, Thatcher-Wright, 1968): A tree language is recognizable by a finite tree automaton iff it is MSO-definable.
Equivalence between tree automata and MSOL

- Theorem (Doner, Thatcher-Wright, 1968): A tree language is recognizable by a finite tree automaton iff it is MSO-definable.

- Proof: Direction from tree automata to MSOL
- Given automaton A, specify a formula such that:
- \(t \in L(A) \iff t \models \phi \)
Equivalence
between tree automata and MSOL

- Observation 1: If states of A are \(\{q_1, \ldots, q_n\} \) then every run of A on a tree \(t \) can be represented by sets of nodes \(Q_1, \ldots, Q_n \)
Equivalence
between tree automata and MSOL

- Observation 1: If states of A are $\{q_1, \ldots, q_n\}$ then every run of A on a tree t can be represented by sets of nodes Q_1, \ldots, Q_n
- Observation 2: We can define that Q_1, \ldots, Q_n represent an accepting run
Equivalence
between tree automata and MSOL

- Observation 1: If states of A are \(\{q_1, \ldots, q_n\} \) then every run of A on a tree t can be represented by sets of nodes \(Q_1, \ldots, Q_n \)
- Observation 2: We can define that \(Q_1, \ldots, Q_n \) represent an accepting run
 - every node is labeled with at most one state
 \[
 \phi_1 := \bigwedge_{i \neq j} \forall x \left(Q_i(x) \rightarrow \neg Q_j(x) \right)
 \]
Equivalence between tree automata and MSOL

- Observation 1: If states of A are \(\{q_1, \ldots, q_n\} \) then every run of of A on a tree t can be represented by sets of nodes \(Q_1, \ldots, Q_n \)
- Observation 2: We can define that \(Q_1, \ldots, Q_n \) represent an accepting run
 - every node is labeled with at most one state
 \[
 \phi_1 := \bigwedge_{i \neq j} \forall x \left(Q_i(x) \rightarrow \neg Q_j(x) \right)
 \]
 - root node is labeled with an accepting state
 \[
 \phi_2 := \bigvee_{q_i \in F} Q_i(\text{min})
 \]
Observation 2: We can define that Q_1, \ldots, Q_n represents an accepting run.

- Leaf nodes are labeled with a state according to the rules

$$\phi_3 := \bigwedge_{a \in \Sigma_0} \forall x \left(P_a(x) \rightarrow \bigvee_{a \rightarrow q_i \in \Delta} Q_i(x) \right)$$
Equivalence
between tree automata and MSOL

- Observation 2: We can define that Q_1, \ldots, Q_n represents an accepting run
 - Leaf nodes are labeled with a state according to the rules
 $$\phi_3 := \bigwedge_{a \in \Sigma_0} \forall x \left(P_a(x) \rightarrow \bigvee_{a \rightarrow q_i \in \Delta} Q_i(x) \right)$$
 - Inner nodes are labeled as follows:
 $$\phi_4 := \bigwedge_{a \in \Sigma_r} \forall x \forall y_1 \ldots \forall y_n \\bigg(P_a(x) \land S_r(x, y_1) \land \ldots \land S_r(x, y_n) \land y_1 < y_2 < \ldots < y_{n-1} < y_n \bigg)$$
 $$\quad \rightarrow \bigvee_{a(q_{i_1}, \ldots, q_{i_n}) \rightarrow q_i \in \Delta} \left(Q_{i_1}(y_1) \land \ldots \land Q_{i_n}(y_n) \land Q_i(x) \right)$$
Observation 3: In MSO we can guess Q_1, \ldots, Q_n

$\phi := \exists Q_1 \ldots \exists Q_n \phi_1 \land \phi_2 \land \phi_3 \land \phi_4$
Equivalence
between tree automata and MSOL

- Observation 3: In MSO we can guess Q_1,\ldots,Q_n
- $\phi := \exists Q_1 \ldots \exists Q_n \phi_1 \land \phi_2 \land \phi_3 \land \phi_4$
- Then A accepts t iff $t \models \phi$
- It is clear, that $L(A) = L(\phi)$
- Hence, every finite tree language is MSO-definable.
Equivalence between tree automata and MSOL

- Proof: Direction from formulae to tree automata
Equivalence between tree automata and MSOL

- Proof: Direction from formulae to tree automata
 - Induction over construction of MSO-L formulae
 - Use closure properties of tree automata
- If a tree language is MSO-definable, then it is recognizable by a tree automaton A.
Summary

- Tree automata
 - Basics of tree automata
 - Bottom-up tree automata
 - Top-down tree automata
 - Decision problems & complexity

- Connection to logic
 - Monadic Second Order Logic (MSOL)
 - Equivalence between tree automata and MSOL
References

- M. Dauchet, H. Comon,.. *Tree Automata Techniques and Applications (TATA)*, chapter 1, 2008
- Prof. Dr. W. Thomas, RWTH Aachen *Applied Automata Theory*, chapter 3, 2005
- Wim Martens, Stijn Vansummeren *Automata and Logic on Trees* University of Dortmund