Graph Automata

Jan Leike

July 2nd, 2012

Motivation

We want an automata model that

Motivation

We want an automata model that
> operates on graphs,
» generalizes nested words and tree automata, and

» has some nice properties.

Outline

1. Introduce graph automata and related concepts
2. Proof that their emptiness is decidable!
3. Show applications

!side conditions apply

Definition of Graph Automata

Let > be a finite alphabet and C be a class of ¥-labeled graphs.
A graph automaton on C, GA = (Q, (T,)aex, type), where

» (@ is a finite set of states,
» T,C Q x Q is a tiling relation for every a € ¥, and
> type: @ — 2% x 2% is the type-relation.

Definition of Graph Automata

Let > be a finite alphabet and C be a class of ¥-labeled graphs.
A graph automaton on C, GA = (Q, (T,)aex, type), where

» Q is a finite set of states,
» T,C Q x Q is a tiling relation for every a € ¥, and
> type: @ — 2% x 2% is the type-relation.

GA accepts a graph G = (V, (E,)acyx) iff there is a map
p: V = Q such that

» for every (u,v) € E,, (p(u),p(v)) € T, and

» for every v € V, type(p(v)) = (In, Out), where
In={a|3u.(u,v) € E;} and Out ={a | Ju.(v,u) € E,;}.

Definition of Graph Automata

Let > be a finite alphabet and C be a class of ¥-labeled graphs.
A graph automaton on C, GA = (Q, (T,)aex, type), where

» (@ is a finite set of states,
» T,C Q x Q is a tiling relation for every a € ¥, and
> type: @ — 2% x 2% is the type-relation.

GA accepts a graph G = (V, (E,)acyx) iff there is a map
p: V = Q such that

» for every (u,v) € Ej, (p(u),p(v)) € T, and
» for every v € V, type(p(v)) = (In, Out), where
In={a|3u.(u,v) € E;} and Out ={a | Ju.(v,u) € E,;}.
We restrict ourselves to graphs with at most one incoming and at
most one outgoing a-labeled edge for each a € ¥ at any vertex.

Example (simplified)

Check a graph for 3-colorability.

GAs = (Q, (T,)aex) where
Y ={a},Q={q1.92,q3} and T, = {(qgi,q;) | i #j}-

Example: 3-color the Petersen graph

Example (proper)

Check a graph for 3-colorability.

GAs = (Q,(T,)aex, type) where
Y ={a1,...,an},
Q = {a1, g2, g3} x (2 x 2%),
To={((qi,t),(qj, ")) | i #j} for a € X and
type((q,t)) =t for (q,t) € Q.

This restricts the graph to at most n incoming and outgoing edges
at every vertex.

Goal

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Y-labeled graphs. The problem
of checking, given k € N and a graph automaton GA, whether
there is some G € C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time]GA|O(").

Monadic second order logic

We use the following syntax for MSO, where x, y are variables, X
is a set of vertices and Ej, is an a-labeled edge for a € ¥.

pu=x=y|E(xy)|xeX][oVe|-p|Ixe|3IX.p

Definition of tree-width

The tree-decomposition of a graph G = (V,E) is a tuple
(T,(Bt)teT), where T = (T, F) is a tree and for every node
te T, B; CV isa bag of vertices of G such that

» for every v € V, there is a node t € T such that v € B;,

» for every edge (u, v) € E, there is a node t € T such that
u,v € By, and

» if v € B; and v € By, for nodes t,t' € T, then for every t”
that lies on the unique path connecting t and t/, v € By».

Definition of tree-width

The tree-decomposition of a graph G = (V,E) is a tuple
(T,(Bt)teT), where T = (T, F) is a tree and for every node
te T, B; CV isa bag of vertices of G such that

» for every v € V, there is a node t € T such that v € B;,

» for every edge (u, v) € E, there is a node t € T such that
u,v € By, and
» if v € B; and v € By, for nodes t,t' € T, then for every t”
that lies on the unique path connecting t and t/, v € By».
The width of a tree decomposition is the size of the largest bag in
it, minus one; i.e. max{#B; |te€ T} — 1.
The tree-width of a graph is the smallest of the widths of any of
its tree decompositions.

Example

stack one - -_-:__: -
C@%@@
stack two e

Input word for a 2-NWA.

Example: Tree decomposition

Canonical tree decomposition of the graph. (— Formal definition)

Some facts about tree-width

v

A graph without edges has tree-width 0.

v

A tree has tree-width of at most 1.

v

A graph with a k-clique has a tree-width of at least k — 1.

v

A graph with n vertices has a minimal tree decomposition
using at most n nodes.

v

Many NP-complete problems become tractable on graphs of
bounded tree-width.

v

Computing tree-widths is NP-hard.

Decidable emptiness

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Y-labeled graphs. The problem
of checking, given k € N and a graph automaton GA, whether
there is some G € C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time]GA|O(").

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.
» The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

» The node labels of 7 contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

» Bounded tree-width = O(2%) many labels suffice.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

» The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

» Bounded tree-width = O(2%) many labels suffice.

» Transform the MSO formula ¢¢ defining the class of graphs C
into a MSO formula ¢ about trees.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

» The node labels of 7 contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

» Bounded tree-width = O(2%) many labels suffice.

» Transform the MSO formula ¢¢ defining the class of graphs C
into a MSO formula ¢ about trees.

» Transform @¢ into a tree automaton TAc.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

>

The node labels of 7 contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

Bounded tree-width = O(2) many labels suffice.

Transform the MSO formula ¢¢ defining the class of graphs C
into a MSO formula ¢ about trees.

Transform ¢ into a tree automaton TAc.

For the graph automaton GA, define a tree automaton TA
running over 7.

Decidable emptiness (proof sketch)

Let G be an input graph and (7, (Bt)teT) its tree decomposition.

>

The node labels of 7 contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

Bounded tree-width = O(2) many labels suffice.

Transform the MSO formula ¢¢ defining the class of graphs C
into a MSO formula ¢ about trees.

Transform ¢ into a tree automaton TAc.

For the graph automaton GA, define a tree automaton TA
running over 7.

There is a graph in C that is accepted by GA iff the
intersection of TA and TA¢ is not empty.

Labeling of the tree decomposition

The labeling of tree decomposition captures the isomorphism type
of the graph.
For a node v € T and its parent u € T, let the bag
B, ={vi,...,v} and B, ={u1,..., ux}.
The label for v will be ((L;)aex, P, W) where
> Lo =A{(i,)) | (vi,vj) € Ea}
» P={(i,j) | vi=u;} and
> W={(i,J) | vi= v}
Note: Using more careful encoding, this can be achieved using
O(2K) instead of O(2%*) many labels [2].

Graph automaton as tree automaton

For a graph automaton GA = (Q, (T,)aex, type) define a
bottom-up tree automaton B = (Labels, Q', Q', A) where
Q' = (Q x 2% x 2%)k*1 and the transition rules

» check that the state at the node respects the tiling
requirements T, and

» accumulate the /n and Out sets for every vertex and
cross-references them with the constraints in type.

Applications

Nested word automata

» Nested words have a tree-width of at most 2.

» Therefore NWAs have decidable emptiness.

a nested word

Nested word automata

» Nested words have a tree-width of at most 2.

» Therefore NWAs have decidable emptiness.

o
OO 2)
ONNO
OO
&) ONO

a nested word e

its tree decomposition

n-NWAs

v

Generalize NWAs to have n instead of just one nesting
relation.

v

Corresponds to a PDA with n stacks.

v

n-NWAs have undecidable emptiness.

v

Therefore n-nested words have unbounded treewidth.

Bounded context switching NWAs

Bounded context switching NWA is an n-NWA where each word is
partitioned into at most kK + 1 “contexts”. Each context utilizes at
most one of the n stacks.

» Tree-width of k + 1.

» Decidable emptiness.

Other modifications to NWAs

» k-phase n-NWAs: in each phase any stack can be pushed, but
only one stack can be popped. Tree-width: 3-2k~1 4 1.

Other modifications to NWAs

» k-phase n-NWAs: in each phase any stack can be pushed, but
only one stack can be popped. Tree-width: 3-2k~1 4 1.

» Ordered n-NWAs: any stack can be pushed, but a stack can
be popped only if all stacks with with lower index are empty.

Tree-width: (n+1)-2"1 +1.

Further topics

v

Formal definition of the canonical tree decomposition

v

Efficient coding of tree labels

Courcelle’ theorem

v

Simulation of tree automata

v

» Recognizing connected graphs

Summary

» Graph automata are a powerful automata model.

> Restriction to an MSO-definable class C of graphs with
bounded tree-width yields decidable emptiness.

» Graph automata naturally generalize nested word automata
and various modifications thereof.

» However, our definition of graph automata is not particularly
useful for problems on graphs.

References

E

B

P. Madhusudan, Gennaro Parlato. The Tree Width of Auxiliary
Storage. In, POPL, Austin, TX, USA, 26 - 28 Jan 2011. ACM,
283-294.

P. Madhusudan and G. Parlato. The tree width of automata
with auxiliary storage. In IDEALS Technical Report,
http://hdl.handle.net/2142/15433, April 2010.

W. Thomas. On logics, tilings, and automata. In J. L. Albert,
B. Monien, and M. Rodriguez-Artalejo, editors, ICALP, volume
510 of Lecture Notes in Computer Science, pages 441-454.
Springer, 1991.

J. Flum and M. Grohe. Parameterized Complexity Theory
(Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

http://hdl.handle.net/2142/15433

Appendix

3-color the Petersen graph

3-colored the Petersen graph

— Go back

Canonical tree decomposition for nested words

For any n-nested word N = (V/, Init, Final, L, (Ej)o<j<n), the
canonical tree-decomposition of N, can-td(N) = (T, (Bt)teT) is
defined as follows.

» The set of nodes of the tree 7 are the vertices V of N.
> If (u,v) € Ej, then v is the right-child of v in 7.

» If (u,v) e Landforall0<j<nandze V, (z,v) ¢ E
then v is the left-child of wv.

The bags B, associate the minimum set of vertices to the nodes
v € T that satisfy the following.

» Forallve V, veB,.
» For every u,v € V, if u is the parent of v in T, then u € B,.

» For u,v € V, if (u,v) € L then u € B, for all vertices z that
are on the unique path from v to v in 7.

— Go back

Labeling of the tree decomposition using O(2%) labels

For a node v € T and its parent u € T, let the bag
B, € {vi,...,v} and B, C {u1,...,ux} where v; # v; and
ui # uj for i # j.
Without loss of generality one can assume
> that the vertex v; € B, is equal to a vertex in the parent bag
u; € B, iff i = j and
> that every edge node in the tree captures at most one edge in
the graph.
The label for v will be ((L3)aex, P, W) where
» L, =(i,j), where (v;,vj) € E; and v;, vj € By,
» P={i|vi=uj,vi€ B,,uj € B,} and
» W={i|vie B}
This encoding uses (k2)#* - 2k . 2k = O(2K) many labels [2].

— Go back

Simulating tree automata

Simulating tree automata induces the following difficulties:
1. Tree automata ignore vertex types.

2. Tree automata have labeled nodes, graph automata labeled
edges.

3. Every edge has to specify its position in the predicate.

Simulating tree automata: Example

Consider the tree language of valid propositional logic formulae.
*

A1 AV}

ofiRe
Fo © %L oL

Example tree from the tree Corresponding input for the

automata presentation graph automaton

— Go back

Courcelle's theorem

Theorem (Courcelle [4])

Every graph property definable in monadic second-order logic can
be decided in linear time on graphs of bounded tree-width.

— Go back

	Introduction
	Title page
	Motivation
	Outline

	Graph Automata
	Definition
	Example
	Goal
	Monadic second order logic
	Tree-width
	Decidable emptiness

	Applications
	Nested word automata
	n-Nested word automata
	Bounded context switching NWAs
	Other modifications to NWAs
	Further topics

	Summary and References
	Summary
	References

	Appendix
	3-color the Petersen graph
	Definition of the canonical tree decomposition
	Encoding tree labels in O(k)
	Simulating tree automata
	Courcelle's theorem

