
Graph Automata

Jan Leike

July 2nd, 2012

Motivation

We want an automata model that

I operates on graphs,

I generalizes nested words and tree automata, and

I has some nice properties.

Motivation

We want an automata model that

I operates on graphs,

I generalizes nested words and tree automata, and

I has some nice properties.

Outline

1. Introduce graph automata and related concepts

2. Proof that their emptiness is decidable1

3. Show applications

1side conditions apply

Definition of Graph Automata

Let Σ be a finite alphabet and C be a class of Σ-labeled graphs.
A graph automaton on C, GA = (Q, (Ta)a∈Σ, type), where

I Q is a finite set of states,

I Ta ⊂ Q × Q is a tiling relation for every a ∈ Σ, and

I type : Q → 2Σ × 2Σ is the type-relation.

GA accepts a graph G = (V , (Ea)a∈Σ) iff there is a map
ρ : V → Q such that

I for every (u, v) ∈ Ea, (ρ(u), ρ(v)) ∈ Ta and

I for every v ∈ V , type(ρ(v)) = (In,Out), where
In = {a | ∃u.(u, v) ∈ Ea} and Out = {a | ∃u.(v , u) ∈ Ea}.

We restrict ourselves to graphs with at most one incoming and at
most one outgoing a-labeled edge for each a ∈ Σ at any vertex.

Definition of Graph Automata

Let Σ be a finite alphabet and C be a class of Σ-labeled graphs.
A graph automaton on C, GA = (Q, (Ta)a∈Σ, type), where

I Q is a finite set of states,

I Ta ⊂ Q × Q is a tiling relation for every a ∈ Σ, and

I type : Q → 2Σ × 2Σ is the type-relation.

GA accepts a graph G = (V , (Ea)a∈Σ) iff there is a map
ρ : V → Q such that

I for every (u, v) ∈ Ea, (ρ(u), ρ(v)) ∈ Ta and

I for every v ∈ V , type(ρ(v)) = (In,Out), where
In = {a | ∃u.(u, v) ∈ Ea} and Out = {a | ∃u.(v , u) ∈ Ea}.

We restrict ourselves to graphs with at most one incoming and at
most one outgoing a-labeled edge for each a ∈ Σ at any vertex.

Definition of Graph Automata

Let Σ be a finite alphabet and C be a class of Σ-labeled graphs.
A graph automaton on C, GA = (Q, (Ta)a∈Σ, type), where

I Q is a finite set of states,

I Ta ⊂ Q × Q is a tiling relation for every a ∈ Σ, and

I type : Q → 2Σ × 2Σ is the type-relation.

GA accepts a graph G = (V , (Ea)a∈Σ) iff there is a map
ρ : V → Q such that

I for every (u, v) ∈ Ea, (ρ(u), ρ(v)) ∈ Ta and

I for every v ∈ V , type(ρ(v)) = (In,Out), where
In = {a | ∃u.(u, v) ∈ Ea} and Out = {a | ∃u.(v , u) ∈ Ea}.

We restrict ourselves to graphs with at most one incoming and at
most one outgoing a-labeled edge for each a ∈ Σ at any vertex.

Example (simplified)

Check a graph for 3-colorability.

GA3 = (Q, (Ta)a∈Σ) where

Σ = {a},Q = {q1, q2, q3} and Ta = {(qi , qj) | i 6= j}.

Example: 3-color the Petersen graph

Example (proper)

Check a graph for 3-colorability.

GA3 = (Q, (Ta)a∈Σ, type) where

Σ = {a1, . . . , an},
Q = {q1, q2, q3} × (2Σ × 2Σ),

Ta = {((qi , t), (qj , t
′)) | i 6= j} for a ∈ Σ and

type((q, t)) = t for (q, t) ∈ Q.

This restricts the graph to at most n incoming and outgoing edges
at every vertex.

Goal

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Σ-labeled graphs. The problem
of checking, given k ∈ N and a graph automaton GA, whether
there is some G ∈ C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time |GA|O(k).

Monadic second order logic

We use the following syntax for MSO, where x , y are variables, X
is a set of vertices and Ea is an a-labeled edge for a ∈ Σ.

ϕ ::= x = y | Ea(x , y) | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x .ϕ | ∃X .ϕ

Definition of tree-width

The tree-decomposition of a graph G = (V ,E) is a tuple
(T , (Bt)t∈T), where T = (T ,F) is a tree and for every node
t ∈ T , Bt ⊆ V is a bag of vertices of G such that

I for every v ∈ V , there is a node t ∈ T such that v ∈ Bt ,

I for every edge (u, v) ∈ E , there is a node t ∈ T such that
u, v ∈ Bt , and

I if v ∈ Bt and v ∈ Bt′ , for nodes t, t ′ ∈ T , then for every t ′′

that lies on the unique path connecting t and t ′, v ∈ Bt′′ .

The width of a tree decomposition is the size of the largest bag in
it, minus one; i.e. max{#Bt | t ∈ T} − 1.
The tree-width of a graph is the smallest of the widths of any of
its tree decompositions.

Definition of tree-width

The tree-decomposition of a graph G = (V ,E) is a tuple
(T , (Bt)t∈T), where T = (T ,F) is a tree and for every node
t ∈ T , Bt ⊆ V is a bag of vertices of G such that

I for every v ∈ V , there is a node t ∈ T such that v ∈ Bt ,

I for every edge (u, v) ∈ E , there is a node t ∈ T such that
u, v ∈ Bt , and

I if v ∈ Bt and v ∈ Bt′ , for nodes t, t ′ ∈ T , then for every t ′′

that lies on the unique path connecting t and t ′, v ∈ Bt′′ .

The width of a tree decomposition is the size of the largest bag in
it, minus one; i.e. max{#Bt | t ∈ T} − 1.
The tree-width of a graph is the smallest of the widths of any of
its tree decompositions.

Example

1 2 3 4 5 6 7 ∗

stack one

stack two

Input word for a 2-NWA.

Example: Tree decomposition

1{1, 5, 6}

2{1, 2, 4, 5, 6} 6 {1, 5, 6}

3{2, 3, 4} 5

{2, 4, 5}

7 {2, 6, 7}

4{3, 4}

Canonical tree decomposition of the graph. (→ Formal definition)

Some facts about tree-width

I A graph without edges has tree-width 0.

I A tree has tree-width of at most 1.

I A graph with a k-clique has a tree-width of at least k − 1.

I A graph with n vertices has a minimal tree decomposition
using at most n nodes.

I Many NP-complete problems become tractable on graphs of
bounded tree-width.

I Computing tree-widths is NP-hard.

Decidable emptiness

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Σ-labeled graphs. The problem
of checking, given k ∈ N and a graph automaton GA, whether
there is some G ∈ C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time |GA|O(k).

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.

Labeling of the tree decomposition

The labeling of tree decomposition captures the isomorphism type
of the graph.
For a node v ∈ T and its parent u ∈ T , let the bag
Bv = {v1, . . . , vk} and Bu = {u1, . . . , uk}.
The label for v will be ((La)a∈Σ,P,W) where

I La = {(i , j) | (vi , vj) ∈ Ea}
I P = {(i , j) | vi = uj} and

I W = {(i , j) | vi = vj}.
Note: Using more careful encoding, this can be achieved using
O(2k) instead of O(2k

2
) many labels [2].

Graph automaton as tree automaton

For a graph automaton GA = (Q, (Ta)a∈Σ, type) define a
bottom-up tree automaton B = (Labels,Q ′,Q ′,∆) where
Q ′ = (Q × 2Σ × 2Σ)k+1 and the transition rules

I check that the state at the node respects the tiling
requirements Ta and

I accumulate the In and Out sets for every vertex and
cross-references them with the constraints in type.

Applications

Nested word automata

I Nested words have a tree-width of at most 2.

I Therefore NWAs have decidable emptiness.

1 2

3 4

5 6

7

8 9

a nested word

1

2

3

4

5

6

7

8

9

its tree decomposition

Nested word automata

I Nested words have a tree-width of at most 2.

I Therefore NWAs have decidable emptiness.

1 2

3 4

5 6

7

8 9

a nested word

1

2

3

4

5

6

7

8

9

its tree decomposition

n-NWAs

I Generalize NWAs to have n instead of just one nesting
relation.

I Corresponds to a PDA with n stacks.

I n-NWAs have undecidable emptiness.

I Therefore n-nested words have unbounded treewidth.

Bounded context switching NWAs

Bounded context switching NWA is an n-NWA where each word is
partitioned into at most k + 1 “contexts”. Each context utilizes at
most one of the n stacks.

I Tree-width of k + 1.

I Decidable emptiness.

Other modifications to NWAs

I k-phase n-NWAs: in each phase any stack can be pushed, but
only one stack can be popped. Tree-width: 3 · 2k−1 + 1.

I Ordered n-NWAs: any stack can be pushed, but a stack can
be popped only if all stacks with with lower index are empty.

Tree-width: (n + 1) · 2n−1 + 1.

Other modifications to NWAs

I k-phase n-NWAs: in each phase any stack can be pushed, but
only one stack can be popped. Tree-width: 3 · 2k−1 + 1.

I Ordered n-NWAs: any stack can be pushed, but a stack can
be popped only if all stacks with with lower index are empty.

Tree-width: (n + 1) · 2n−1 + 1.

Further topics

I Formal definition of the canonical tree decomposition

I Efficient coding of tree labels

I Courcelle’ theorem

I Simulation of tree automata

I Recognizing connected graphs

Summary

I Graph automata are a powerful automata model.

I Restriction to an MSO-definable class C of graphs with
bounded tree-width yields decidable emptiness.

I Graph automata naturally generalize nested word automata
and various modifications thereof.

I However, our definition of graph automata is not particularly
useful for problems on graphs.

References

P. Madhusudan, Gennaro Parlato. The Tree Width of Auxiliary
Storage. In, POPL, Austin, TX, USA, 26 - 28 Jan 2011. ACM,
283-294.

P. Madhusudan and G. Parlato. The tree width of automata
with auxiliary storage. In IDEALS Technical Report,
http://hdl.handle.net/2142/15433, April 2010.

W. Thomas. On logics, tilings, and automata. In J. L. Albert,
B. Monien, and M. Rodriguez-Artalejo, editors, ICALP, volume
510 of Lecture Notes in Computer Science, pages 441-454.
Springer, 1991.

J. Flum and M. Grohe. Parameterized Complexity Theory
(Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

http://hdl.handle.net/2142/15433

Appendix

3-color the Petersen graph

3-colored the Petersen graph

→ Go back

Canonical tree decomposition for nested words

For any n-nested word N = (V , Init,Final , L, (Ej)0≤j<n), the
canonical tree-decomposition of N, can-td(N) = (T , (Bt)t∈T) is
defined as follows.

I The set of nodes of the tree T are the vertices V of N.

I If (u, v) ∈ Ej , then v is the right-child of u in T .

I If (u, v) ∈ L and for all 0 ≤ j < n and z ∈ V , (z , v) /∈ Ej ,
then v is the left-child of u.

The bags Bv associate the minimum set of vertices to the nodes
v ∈ T that satisfy the following.

I For all v ∈ V , v ∈ Bv .

I For every u, v ∈ V , if u is the parent of v in T , then u ∈ Bv .

I For u, v ∈ V , if (u, v) ∈ L then u ∈ Bz for all vertices z that
are on the unique path from u to v in T .

→ Go back

Labeling of the tree decomposition using O(2k) labels

For a node v ∈ T and its parent u ∈ T , let the bag
Bv ⊆ {v1, . . . , vk} and Bu ⊆ {u1, . . . , uk} where vi 6= vj and
ui 6= uj for i 6= j .
Without loss of generality one can assume

I that the vertex vi ∈ Bv is equal to a vertex in the parent bag
uj ∈ Bu iff i = j and

I that every edge node in the tree captures at most one edge in
the graph.

The label for v will be ((La)a∈Σ,P,W) where

I La = (i , j), where (vi , vj) ∈ Ea and vi , vj ∈ Bv ,

I P = {i | vi = ui , vi ∈ Bv , uj ∈ Bu} and

I W = {i | vi ∈ Bv}.
This encoding uses (k2)#Σ · 2k · 2k = O(2k) many labels [2].

→ Go back

Simulating tree automata

Simulating tree automata induces the following difficulties:

1. Tree automata ignore vertex types.

2. Tree automata have labeled nodes, graph automata labeled
edges.

3. Every edge has to specify its position in the predicate.

Simulating tree automata: Example

Consider the tree language of valid propositional logic formulae.

∧

∨ ¬

0 1 0

Example tree from the tree
automata presentation

∗

∧1 ∧2

¬

0

∨1

0

∨2

1

Corresponding input for the
graph automaton

→ Go back

Courcelle’s theorem

Theorem (Courcelle [4])

Every graph property definable in monadic second-order logic can
be decided in linear time on graphs of bounded tree-width.

→ Go back

	Introduction
	Title page
	Motivation
	Outline

	Graph Automata
	Definition
	Example
	Goal
	Monadic second order logic
	Tree-width
	Decidable emptiness

	Applications
	Nested word automata
	n-Nested word automata
	Bounded context switching NWAs
	Other modifications to NWAs
	Further topics

	Summary and References
	Summary
	References

	Appendix
	3-color the Petersen graph
	Definition of the canonical tree decomposition
	Encoding tree labels in O(k)
	Simulating tree automata
	Courcelle's theorem

