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Motivation

We want an automata model that

I operates on graphs,

I generalizes nested words and tree automata, and

I has some nice properties.
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Outline

1. Introduce graph automata and related concepts

2. Proof that their emptiness is decidable1

3. Show applications

1side conditions apply



Definition of Graph Automata

Let Σ be a finite alphabet and C be a class of Σ-labeled graphs.
A graph automaton on C, GA = (Q, (Ta)a∈Σ, type), where

I Q is a finite set of states,

I Ta ⊂ Q × Q is a tiling relation for every a ∈ Σ, and

I type : Q → 2Σ × 2Σ is the type-relation.

GA accepts a graph G = (V , (Ea)a∈Σ) iff there is a map
ρ : V → Q such that

I for every (u, v) ∈ Ea, (ρ(u), ρ(v)) ∈ Ta and

I for every v ∈ V , type(ρ(v)) = (In,Out), where
In = {a | ∃u.(u, v) ∈ Ea} and Out = {a | ∃u.(v , u) ∈ Ea}.

We restrict ourselves to graphs with at most one incoming and at
most one outgoing a-labeled edge for each a ∈ Σ at any vertex.
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Example (simplified)

Check a graph for 3-colorability.

GA3 = (Q, (Ta)a∈Σ) where

Σ = {a},Q = {q1, q2, q3} and Ta = {(qi , qj) | i 6= j}.

Example: 3-color the Petersen graph



Example (proper)

Check a graph for 3-colorability.

GA3 = (Q, (Ta)a∈Σ, type) where

Σ = {a1, . . . , an},
Q = {q1, q2, q3} × (2Σ × 2Σ),

Ta = {((qi , t), (qj , t
′)) | i 6= j} for a ∈ Σ and

type((q, t)) = t for (q, t) ∈ Q.

This restricts the graph to at most n incoming and outgoing edges
at every vertex.



Goal

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Σ-labeled graphs. The problem
of checking, given k ∈ N and a graph automaton GA, whether
there is some G ∈ C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time |GA|O(k).



Monadic second order logic

We use the following syntax for MSO, where x , y are variables, X
is a set of vertices and Ea is an a-labeled edge for a ∈ Σ.

ϕ ::= x = y | Ea(x , y) | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x .ϕ | ∃X .ϕ



Definition of tree-width

The tree-decomposition of a graph G = (V ,E ) is a tuple
(T , (Bt)t∈T ), where T = (T ,F ) is a tree and for every node
t ∈ T , Bt ⊆ V is a bag of vertices of G such that

I for every v ∈ V , there is a node t ∈ T such that v ∈ Bt ,

I for every edge (u, v) ∈ E , there is a node t ∈ T such that
u, v ∈ Bt , and

I if v ∈ Bt and v ∈ Bt′ , for nodes t, t ′ ∈ T , then for every t ′′

that lies on the unique path connecting t and t ′, v ∈ Bt′′ .

The width of a tree decomposition is the size of the largest bag in
it, minus one; i.e. max{#Bt | t ∈ T} − 1.
The tree-width of a graph is the smallest of the widths of any of
its tree decompositions.
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Example

1 2 3 4 5 6 7 ∗

stack one

stack two

Input word for a 2-NWA.



Example: Tree decomposition

1{1, 5, 6}

2{1, 2, 4, 5, 6} 6 {1, 5, 6}

3{2, 3, 4} 5

{2, 4, 5}

7 {2, 6, 7}

4{3, 4}

Canonical tree decomposition of the graph. (→ Formal definition)



Some facts about tree-width

I A graph without edges has tree-width 0.

I A tree has tree-width of at most 1.

I A graph with a k-clique has a tree-width of at least k − 1.

I A graph with n vertices has a minimal tree decomposition
using at most n nodes.

I Many NP-complete problems become tractable on graphs of
bounded tree-width.

I Computing tree-widths is NP-hard.



Decidable emptiness

Theorem (Madhusudan and Parlato 2011 [2])

Let C be a class of MSO-definable Σ-labeled graphs. The problem
of checking, given k ∈ N and a graph automaton GA, whether
there is some G ∈ C of tree-width at most k that is accepted by
GA, is decidable, and decidable in time |GA|O(k).



Decidable emptiness (proof sketch)

Let G be an input graph and (T , (Bt)t∈T ) its tree decomposition.

I The node labels of T contain information on the the structure
of the subgraph contained in the bag and which vertex also
occurs at the parent node.

I Bounded tree-width ⇒ O(2k) many labels suffice.

I Transform the MSO formula ϕC defining the class of graphs C
into a MSO formula ϕ̂C about trees.

I Transform ϕ̂C into a tree automaton TAC .

I For the graph automaton GA, define a tree automaton TA
running over T .

I There is a graph in C that is accepted by GA iff the
intersection of TA and TAC is not empty.
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Labeling of the tree decomposition

The labeling of tree decomposition captures the isomorphism type
of the graph.
For a node v ∈ T and its parent u ∈ T , let the bag
Bv = {v1, . . . , vk} and Bu = {u1, . . . , uk}.
The label for v will be ((La)a∈Σ,P,W ) where

I La = {(i , j) | (vi , vj) ∈ Ea}
I P = {(i , j) | vi = uj} and

I W = {(i , j) | vi = vj}.
Note: Using more careful encoding, this can be achieved using
O(2k) instead of O(2k

2
) many labels [2].



Graph automaton as tree automaton

For a graph automaton GA = (Q, (Ta)a∈Σ, type) define a
bottom-up tree automaton B = (Labels,Q ′,Q ′,∆) where
Q ′ = (Q × 2Σ × 2Σ)k+1 and the transition rules

I check that the state at the node respects the tiling
requirements Ta and

I accumulate the In and Out sets for every vertex and
cross-references them with the constraints in type.



Applications



Nested word automata

I Nested words have a tree-width of at most 2.

I Therefore NWAs have decidable emptiness.
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n-NWAs

I Generalize NWAs to have n instead of just one nesting
relation.

I Corresponds to a PDA with n stacks.

I n-NWAs have undecidable emptiness.

I Therefore n-nested words have unbounded treewidth.



Bounded context switching NWAs

Bounded context switching NWA is an n-NWA where each word is
partitioned into at most k + 1 “contexts”. Each context utilizes at
most one of the n stacks.

I Tree-width of k + 1.

I Decidable emptiness.



Other modifications to NWAs

I k-phase n-NWAs: in each phase any stack can be pushed, but
only one stack can be popped. Tree-width: 3 · 2k−1 + 1.

I Ordered n-NWAs: any stack can be pushed, but a stack can
be popped only if all stacks with with lower index are empty.

Tree-width: (n + 1) · 2n−1 + 1.
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Further topics

I Formal definition of the canonical tree decomposition

I Efficient coding of tree labels

I Courcelle’ theorem

I Simulation of tree automata

I Recognizing connected graphs



Summary

I Graph automata are a powerful automata model.

I Restriction to an MSO-definable class C of graphs with
bounded tree-width yields decidable emptiness.

I Graph automata naturally generalize nested word automata
and various modifications thereof.

I However, our definition of graph automata is not particularly
useful for problems on graphs.
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Appendix



3-color the Petersen graph



3-colored the Petersen graph

→ Go back



Canonical tree decomposition for nested words

For any n-nested word N = (V , Init,Final , L, (Ej)0≤j<n), the
canonical tree-decomposition of N, can-td(N) = (T , (Bt)t∈T ) is
defined as follows.

I The set of nodes of the tree T are the vertices V of N.

I If (u, v) ∈ Ej , then v is the right-child of u in T .

I If (u, v) ∈ L and for all 0 ≤ j < n and z ∈ V , (z , v) /∈ Ej ,
then v is the left-child of u.

The bags Bv associate the minimum set of vertices to the nodes
v ∈ T that satisfy the following.

I For all v ∈ V , v ∈ Bv .

I For every u, v ∈ V , if u is the parent of v in T , then u ∈ Bv .

I For u, v ∈ V , if (u, v) ∈ L then u ∈ Bz for all vertices z that
are on the unique path from u to v in T .

→ Go back



Labeling of the tree decomposition using O(2k) labels

For a node v ∈ T and its parent u ∈ T , let the bag
Bv ⊆ {v1, . . . , vk} and Bu ⊆ {u1, . . . , uk} where vi 6= vj and
ui 6= uj for i 6= j .
Without loss of generality one can assume

I that the vertex vi ∈ Bv is equal to a vertex in the parent bag
uj ∈ Bu iff i = j and

I that every edge node in the tree captures at most one edge in
the graph.

The label for v will be ((La)a∈Σ,P,W ) where

I La = (i , j), where (vi , vj) ∈ Ea and vi , vj ∈ Bv ,

I P = {i | vi = ui , vi ∈ Bv , uj ∈ Bu} and

I W = {i | vi ∈ Bv}.
This encoding uses (k2)#Σ · 2k · 2k = O(2k) many labels [2].

→ Go back



Simulating tree automata

Simulating tree automata induces the following difficulties:

1. Tree automata ignore vertex types.

2. Tree automata have labeled nodes, graph automata labeled
edges.

3. Every edge has to specify its position in the predicate.



Simulating tree automata: Example

Consider the tree language of valid propositional logic formulae.

∧

∨ ¬

0 1 0

Example tree from the tree
automata presentation

∗

∧1 ∧2

¬

0

∨1

0

∨2

1

Corresponding input for the
graph automaton

→ Go back



Courcelle’s theorem

Theorem (Courcelle [4])

Every graph property definable in monadic second-order logic can
be decided in linear time on graphs of bounded tree-width.

→ Go back
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