AUTOMATA THEORY SEMINAR

BÜCHI COMPLEMENTATION VIA ALTERNATING AUTOMATA

Fabian Reiter

July 16, 2012

BÜCHI COMPLEMENTATION

- Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).
- Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.

Transition Modes (1)

Existential: some run is accepting

$$egin{aligned} (q_0
ightarrow q_{1_a}
ightarrow q_{2_a}
ightarrow q_{3_a}
ightarrow q_{4_a}
ightarrow q_{5_a}
ightarrow \cdots \ q_0
ightarrow q_{1_b}
ightarrow q_{2_b}
ightarrow q_{3_b}
ightarrow q_{4_b}
ightarrow q_{5_b}
ightarrow \cdots \ q_0
ightarrow q_{1_c}
ightarrow q_{2_c}
ightarrow q_{3_c}
ightarrow q_{4_c}
ightarrow q_{5_c}
ightarrow \cdots \ q_0
ightarrow q_{1_d}
ightarrow q_{2_d}
ightarrow q_{3_d}
ightarrow q_{4_d}
ightarrow q_{5_d}
ightarrow \cdots \ q_0
ightarrow q_{1_e}
ightarrow q_{2_e}
ightarrow q_{3_e}
ightarrow q_{4_e}
ightarrow q_{5_e}
ightarrow \cdots \ q_0
ightarrow q_{1_e}
ightarrow q_{2_e}
ightarrow q_{3_e}
ightarrow q_{4_e}
ightarrow q_{5_e}
ightarrow \cdots$$

Universal: every run is accepting

$$q_0
ightarrow q_{1_a}
ightarrow q_{2_a}
ightarrow q_{3_a}
ightarrow q_{4_a}
ightarrow q_{5_a}
ightarrow \cdots$$
 $q_0
ightarrow q_{1_b}
ightarrow q_{2_b}
ightarrow q_{3_b}
ightarrow q_{4_b}
ightarrow q_{5_b}
ightarrow \cdots$
 $q_0
ightarrow q_{1_c}
ightarrow q_{2_c}
ightarrow q_{3_c}
ightarrow q_{4_c}
ightarrow q_{5_c}
ightarrow \cdots$
 $q_0
ightarrow q_{1_e}
ightarrow q_{2_e}
ightarrow q_{3_e}
ightarrow q_{4_e}
ightarrow q_{5_e}
ightarrow \cdots$

Transition Modes (2)

Alternating: in some set of runs every run is accepting

$$\begin{array}{c} q_0 \rightarrow q_{1_s} \rightarrow q_{2_a} \rightarrow q_{3_a} \rightarrow q_{4_a} \rightarrow q_{5_a} \rightarrow \cdots \\ q_0 \rightarrow q_{1_b} \rightarrow q_{2_b} \rightarrow q_{3_b} \rightarrow q_{4_b} \rightarrow q_{5_b} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots \\ q_0 \rightarrow q_{1_d} \rightarrow q_{2_d} \rightarrow q_{3_d} \rightarrow q_{4_d} \rightarrow q_{5_d} \rightarrow \cdots \\ q_0 \rightarrow q_{1_e} \rightarrow q_{2_e} \rightarrow q_{3_e} \rightarrow q_{4_e} \rightarrow q_{5_e} \rightarrow \cdots \\ q_0 \rightarrow q_{1_f} \rightarrow q_{2_f} \rightarrow q_{3_f} \rightarrow q_{4_f} \rightarrow q_{5_f} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_g} \rightarrow q_{2_g} \rightarrow q_{3_g} \rightarrow q_{4_g} \rightarrow q_{5_g} \rightarrow \cdots \\ q_0 \rightarrow q_{1_h} \rightarrow q_{2_h} \rightarrow q_{3_h} \rightarrow q_{4_h} \rightarrow q_{5_h} \rightarrow \cdots \\ q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_h} \rightarrow \cdots \\ q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \\ \hline q_0 \rightarrow q_{1_i} \rightarrow q_{1_i}$$

ALTERNATION AND COMPLEMENTATION

Special case: A in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ho:
 ho fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho)$ fulfills acceptance condition of \mathcal{A})

 iff \forall run ρ : ρ fulfills dual acceptance condition of \mathcal{A}
- \Rightarrow complementation $\widehat{=}$ dualization of:
 - transition mode
 - acceptance condition

Want acceptance condition that is closed under dualization.

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

OUTLINE

- 1 Weak Alternating Parity Automata
 - Definitions and Examples
 - Dual Automaton
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

Preview

Example $((b^*a)^{\omega})$

Büchi automaton \mathcal{B} :

Equivalent WAPA A:

Definition (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- Q finite set of states
- **Σ** finite alphabet
- lacksquare $\delta: Q imes \Sigma o \mathbb{B}^+(Q)$ transition function
- q_{in} initial state
- lacksquare $\pi:Q o\mathbb{N}$ parity function

(Thomas and Löding, \sim 2000)

 $\mathbb{B}^+(Q)$: set of all positive Boolean formulae over Q (built only from elements in $Q \cup \{\land, \lor, \top, \bot\}$)

TRANSITIONS

Example (a^{ω})

$$egin{aligned} \delta: Q imes \Sigma &
ightarrow \mathbb{B}^+(Q) \ &\langle q_0, a
angle &
ightarrow q_0 ee (q_1 \wedge q_2) \ &\langle q_1, a
angle &
ightarrow (q_0 \wedge q_1) ee (q_1 \wedge q_2) \ &\langle q_2, a
angle &
ightarrow q_2 \end{aligned}$$

DEFINITION (Minimal Models)

 $\mathsf{Mod}_{\downarrow}(\theta) \subseteq 2^Q$: set of minimal models of $\theta \in \mathbb{B}^+(Q)$, i.e. the set of minimal subsets $M \subseteq Q$ s.t. θ is satisfied by $q \mapsto \begin{cases} \mathit{true} & \text{if } q \in M \\ \mathit{false} & \text{otherwise} \end{cases}$

Example

$$\mathsf{Mod}_{\downarrow}(q_0 \lor (q_1 \land q_2)) = \{\{q_0\}, \{q_1, q_2\}\}$$

Run Graph (1)

Example (a^{ω})

Accepting run:

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2) \rightarrow (q_0, 3) \rightarrow (q_0, 4) \rightarrow (q_0, 5) \rightarrow \cdots$$

Rejecting run:

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- $lackbox{\ V }\subseteq Q imes\mathbb{N} \ \ ext{with} \ \langle q_{in},0
 angle \in V$
- **V** contains only vertices reachable from $\langle q_{in}, 0 \rangle$.
- **E** contains only edges of the form $\langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle$.
- For every vertex $\langle p, i \rangle \in V$ the set of successors is a minimal model of $\delta(p, a_i)$

$$\{q \in Q \mid \langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle \in E\} \in \mathsf{Mod}_{\downarrow}(\delta(p, a_i))$$

DEFINITION (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^{\omega}$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

• An infinite path ρ in R satisfies the acceptance condition of $\mathcal A$ iff the smallest occurring parity is even, i.e.

 $\min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\}$ is even.

- \blacksquare R is an accepting run iff every infinite path ρ in R satisfies the acceptance condition.
- \blacksquare \mathcal{A} accepts w iff there is some accepting run of \mathcal{A} on w.

Infinitely many a's

Example $((b^*a)^{\omega})$

Run on b^{ω} :

Run on $(ba)^{\omega}$:

DEFINITION (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\textit{in}}, \pi
angle$ is

$$\overline{\mathcal{A}} := \langle Q, \Sigma, \overline{\delta}, q_{in}, \overline{\pi} \rangle$$

where

- lacksquare $\overline{\delta}(q,a)$ is obtained from $\delta(q,a)$ by exchanging \wedge, \vee and \top, \bot
- $\pi(q) := \pi(q) + 1$

for all $q \in Q$ and $a \in \Sigma$

Dual Automaton (2)

Example $((b^*a)^{\omega})$

WAPA A:

$$\delta(q_0, a) = q_0 \ \delta(q_0, b) = q_0 \land q_1 \ \delta(q_1, a) = q_2 \ \delta(q_1, b) = q_1 \ \delta(q_2, a) = q_2 \ \delta(q_2, b) = q_2$$

Dual $\overline{\mathcal{A}}$:

 $egin{aligned} \overline{\delta}(q_0,a) &= q_0 \ \overline{\delta}(q_0,b) &= q_0 ee q_1 \ \overline{\delta}(q_1,a) &= q_2 \ \overline{\delta}(q_1,b) &= q_1 \ \hline \overline{\delta}(q_2,a) &= q_2 \ \overline{\delta}(q_2,b) &= q_2 \end{aligned}$

COMPLEMENTATION THEOREM

Main statement of this talk:

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

AUTOMATON VS. PATHFINDER

Infinite Parity Game (1)

Infinite Parity Game (2)

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^{\omega}$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$ s.t. the only contained edges are
 - $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \mathsf{Mod}_{\downarrow}(\delta(q, a_i))$
 - $\langle \langle M, i \rangle, \langle q, i+1 \rangle \rangle$ iff $q \in M$

for $q \in Q$, $M \subseteq Q$, $i \in \mathbb{N}$

(Thomas and Löding, ~ 2000)

PLAYING A GAME

DEFINITION (Play)

A play γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Winner)

The winner of a play γ is

- \blacksquare player A iff the smallest parity of occurring V_A -nodes is even
- player P · · · · · · · odd

 $X \in \{A, P\}$: a player, \overline{X} : its opponent

DEFINITION (Strategy)

- A strategy $f_X: V_X \to V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.
- f_X is a winning strategy iff player X wins every play γ that is played according to f_X .

STRATEGIES

EXAMPLE

Not a winning strategy for player A:

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
 - Lemma 1
 - Lemma 2
 - Lemma 3
 - Sublemma
 - Putting it All Together
- 4 BÜCHI COMPLEMENTATION ALGORITHM

LEMMA 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LEММА 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

Explanation (oral):

Player A wins every play γ played according to f_A .

There is a run graph R in which every path ρ is accepting.

LEММА 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

Lемма 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

Explanation (oral):

Player P wins every play γ played according to f_P .

Every run graph R contains a rejecting path ρ .

Sublemma

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBLEMMA

$$S \subseteq Q$$
 is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

Proof:

■ W.l.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$

■ Then $\overline{\theta}$ is in CNF, i.e.

$$\overline{\theta} = \bigwedge_{M \in \mathsf{Mod}_{\bot}(\theta)} \bigvee_{q \in M} q$$

Thus $S \subseteq Q$ is a model of $\overline{\theta}$ iff it contains at least one element from each disjunct of θ .

LEMMA 3 (1)

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0 a_1 a_2 \ldots \in \Sigma^{\omega}$.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{\overline{A},w}$.

Proof:

- \Rightarrow Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$
- \leftarrow Construct a winning strategy f_A for player A in $G_{A,w}$

LEMMA 3 (2)

 \Rightarrow Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position
$$\langle S, i \rangle \in V_P$$

in
$$G_{\overline{A},w}$$
:
$$(p,i)$$

$$(5,i)$$

$$(q,i+1)$$

$$...$$

in $G_{A,w}$:

- \blacksquare f_A : winning strategy for player A in $G_{A.w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\bar{\delta}(p, a_i))$ (otherwise don't care).

- $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{ There exists a } q \in S \cap \overline{M}.$
- Define $\overline{f_P}(\langle S, i \rangle) := \langle q, i+1 \rangle$
- $\forall \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.
 - Player A wins γ in $G_{A,w}$.
 - $ullet \ \forall \ q \in Q : \overline{\pi}(q) = \pi(q) + 1$
 - \Rightarrow Player P wins $\overline{\gamma}$ in $G_{\overline{\mathcal{A}},w}$.

LEMMA 3 (3)

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position
$$\langle p, i \rangle \in V_A$$

- \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{A}_W}$
- $\blacksquare M^* := \{ q \in Q \mid \exists S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i)) : \}$
- \blacksquare M: subset of M* that is a minimal model $M \subseteq M^*$, $M \in \mathsf{Mod}_{\downarrow}(\overline{\delta(p, a_i)})$
- in $G_{\overline{A},w}$:

- Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$
- \blacksquare $\forall \gamma$: play in $G_{A,w}$ played according to f_A $\exists \ \overline{\gamma}$: play in $G_{\overline{A}}$ w played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.
 - Player P wins $\overline{\gamma}$ in $G_{\overline{A}_{w}}$.
 - $\forall q \in Q : \pi(q) = \overline{\pi}(q) 1$
 - \Rightarrow Player A wins γ in $G_{A.w}$.

ALL THREE LEMMAS

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w \in \Sigma^{\omega}$.

LEММА 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

LEMMA 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{\overline{A},w}$.

THEOREM (Complementation)

The dual \overline{A} of a WAPA A accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

PROOF:

$$\mathcal{A}$$
 accepts $w \overset{\text{(lemma 1)}}{\Longleftrightarrow}$ player A has a winning strategy in $G_{\mathcal{A},w}$ (lemma 3)

$$\iff$$
 player P has a winning strategy in $G_{\overline{\mathcal{A}},w}$

$$\stackrel{\text{(lemma 2)}}{\Longleftrightarrow} \ \overline{\mathcal{A}} \ \text{does} \ \textit{not} \ \text{accept} \ \textit{w}$$

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

- Total complexity: $2^{\mathcal{O}(n^2)}$
- Can reach $2^{\mathcal{O}(n \log n)}$ (lower bound) by improving $\overline{\mathcal{A}} \to \overline{\mathcal{B}}$.

References

- Thomas, W. (1999)
 Complementation of Büchi Automata Revisited.
 In J. Karhumäki et al., editors, Jewels are Forever, Contributions on Th.
- Comp. Science in Honor of Arto Salomaa, pages 109–122, Springer.
- Klaedtke, F. (2002)
 Complementation of Büchi Automata Using Alternation.
 In E. Grädel et al., editors, *Automata, Logics, and Infinite Games*, LNCS 2500, pages 61-77. Springer.
- Löding, C. and Thomas, W. (2000)
 Alternating Automata and Logics over Infinite Words.
 In J. van Leeuwen et al., editors, *IFIP TCS 2000*, LNCS 1872, pages 521–535. Springer.
- Kupferman, O. and Vardi, M. Y. (2001) Weak Alternating Automata Are Not that Weak. In ACM Transactions on Computational Logic, volume 2, No. 3, July 2001, pages 408–429.

From BA to WAPA

GIVEN:

$$\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$$
: BA

$$\square$$
 $n = |Q|$

Construction (BA \rightarrow WAPA)

$$\mathcal{A} := \big\langle \underbrace{Q \! \times \! \{0, \dots, 2n\}}_{\mathcal{O}(n^2)}, \; \Sigma, \; \delta', \; \langle \textit{q}_{\textit{in}}, 2\textit{n} \rangle, \; \pi \big\rangle$$

where

There
$$\delta'(\langle p,i\rangle,a) := \begin{cases} \bigvee_{q \in \delta(p,a)} \langle q,0\rangle & \text{if } i = 0 \\ \bigvee_{q \in \delta(p,a)} \langle q,i\rangle \wedge \langle q,i-1\rangle & \text{if } i \text{ even, } i > 0 \\ \bigvee_{q \in \delta(p,a)} \langle q,i\rangle & \text{if } i \text{ odd, } p \notin F \\ \bigvee_{q \in \delta(p,a)} \langle q,i-1\rangle & \text{if } i \text{ odd, } p \in F \end{cases}$$

 $\pi(\langle p,i\rangle):=i$

for $p \in Q$, $a \in \Sigma$, $i \in \{0, \ldots, 2n\}$

(Thomas and Löding, ~ 2000)

FROM WAPA TO BA

GIVEN:

- $A = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.
- $orall p \in Q \ orall a \in \Sigma : \ \delta(p,a) \in \mathbb{B}^+ig(\{q \in Q \mid \pi(p) \geq \pi(q)\}ig)$
- \blacksquare $E\subseteq Q$: all states with even parity

Construction (WAPA \rightarrow BA)

where

$$\begin{array}{l} \bullet \ \delta'(\langle M,O\rangle,a) := \Big\{ \langle M',O'\backslash E\rangle \ \Big| \ M' \in \mathsf{Mod}_{\downarrow}\big(\bigwedge_{q \in M} \delta(q,a)\big), \\ O' \subseteq M', \\ O' \in \mathsf{Mod}_{\downarrow}\big(\bigwedge_{q \in O} \delta(q,a)\big) \Big\} \end{array}$$

for
$$a \in \Sigma$$
, $M, O \subseteq Q$, $O \neq \emptyset$

(Miyano and Hayashi, 1984)