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BUcHI COMPLEMENTATION

O(nlog n)
BA B 2750 »BA B
BA: Biichi
Automaton
AA: Alternating
. Automaton
AA A AA A

m Expensive: If B has n states, B has 29(11g 1) states in
the worst case (Michel 1988, Safra 1988).

m Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.
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TrANSITION MoDES (1)

Existential: some run is accepting

(90 — q1, — G2, — g3, — qa, — Gs,
(g0 — q1, = G2, — g3, — qa, — s,
(o — 1. — Q2. — G3. — qa. — s,
(90 = g1y — 92, — G3, —> Gay — s,
(0 — q1. — Q2. — G3, — G4, — s,

1
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TrANSITION MoDES (1)

Existential: some run is accepting

(go — g1, — G2, — g3, — qa, — s,
(g0 — q1, = G2, — g3, — qa, — s,
(90 — q1. — Go. —> g3, —> Ga. — g5,
(90 = g1y — 92, — G3, —> Gay — s,
(90 — q1. — G2. — q3. — qa. — Gs.

1

Universal: every run is accepting

(g0 — g1, — G2, — q3, — G4, — Gs,
do — q1, — qQ2, — q3, — Q4, — G5,
go — 91, —> 92, —> g3, —> qa. —7 Qs
qo — q1y — 924 — q3, — q4, — g5y

90 — 1. —7 Q2. —7 q3. — qa. — G5,

P
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TRANSITION MODES (2)

Alternating: in some set of runs every run is accepting

(qo — q1, — G2, = 43, —> G4, — G5, — |
90 — q1, — G2, — q3, — G4, —> G5, —> -

(G0 — q1. — G2, — G3. —> G4, —> Q5. —> -+ |
qo — 91, — G2 — Q34 —7 G4, —> Q54 — -
90 —7 Q1. —7 92, —> g3, —7 Q4. —7 g5, —7 " *
(90— q1, — G2, —> G3, — Ga, — G5, — )
(G0 — q1, — G2, — q3, —> Qay —> s, —> |

(90 = a1, = G2, — 93, = Gay — G5, = -]

\QO—>q1,-_>CI2,-_>q3,-_>CI4,-_>CI5,-—>"‘

3/33



ALTERNATION AND COMPLEMENTATION

SpeciAL cAase: A in existential mode

m A accepts iff I run p: p fulfills acceptance condition of A
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ALTERNATION AND COMPLEMENTATION

SpeciAL cAase: A in existential mode

m A accepts iff I run p: p fulfills acceptance condition of A

= A accepts iff ¥ run p: —(p fulfills acceptance condition of A)
iff ¥ run p: p fulfills dual acceptance condition of A

= complementation = dualization of:
m transition mode

B acceptance condition

Want acceptance condition that is closed under dualization.
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PREVIEW

ExampLE ((b*a)*)

Buchi automaton B:

b a
a
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PREVIEW

ExampLE ((b*a)*)

Buchi automaton B:

Equivalent WAPA A:
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WEAK ALTERNATING PARITY AUTOMATON ®©

DeriniTioN (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

A= <Q7 Z’ 57 din, 7T>

where
m Q finite set of states
m X finite alphabet

B gj, initial state

(Thomas and Léding, ~ 2000)
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WEAK ALTERNATING PARITY AUTOMATON ®©

DeriniTioN (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

A= <Q7 Z’ 57 din, 7T>

where
m Q finite set of states
m X finite alphabet
md:QxX—BT(Q) transition function
B gj, initial state
m 7: Q — N parity function
(Thomas and Léding, ~ 2000)

BT (Q): set of all positive Boolean formulae over Q
(built only from elements in QU {A,V, T, L})
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TRANSITIONS ®©

ExampLE (a%)
a a

2 (0 soxzono
%

(q0,a) — qo V (g1 A q2)
(g1,a) = (g0 A q1) V (g1 A g2)

(@ 2 (q2,a) — q2
0/
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TRANSITIONS ®©

ExampLE (a%)

a a

2 LYY sorona
%’ (90,2) — qo V (g1 A G2)

(g1,a) = (qo A q1) V(g1 A q2)
q27a> = q2

—

(X |
\0/

DeriNiTION (Minimal Models) EXAMPLE

Mod,(#) C 29: set of minimal models

Mod V A
of € BT(Q), i.e. the set of minimal do V(a1 A a2))

subsets M C @ s.t. 6 is satisfied by = {{q0}. {a1, 2} }
true ifge M
false otherwise
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a a

i)
Gy
\0/

a
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RuN GrAPH (1) @)

ExampLE (a%)

W S)
S
\0/

a

(90, 0}—{g0. 1}—{q0. 2)
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RuUN GRAPH (1) ®)

ExampLE (a%)

a a

1 LD
D
0/

[qO- Oqu- 1]—{(Jo- 2]—{(]0. 3qu. 4qu_ 5]_> e

QO 4
q1 3f—{q1. 4]
% 2 )

a
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RuUN GRAPH (2) @)

DeriNiTION (Run)

A run of a WAPA A = (Q,%, 6, gin, ) on a word apaiaz ... € ¥
is a directed acyclic graph

R:=(V,E)
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RuN GRAPH (2) ©

DeriNiTION (Run)
A run of a WAPA A = (Q,%, 6, gin, ) on a word apaiaz ... € ¥
is a directed acyclic graph
R:=(V,E)
where
BV CQxN with (g,0) € V
m V contains only vertices reachable from (gin, 0).

m E contains only edges of the form ((p, /), (q,i +1)).
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RuUN GRAPH (2) @)

DeriNiTION (Run)

A run of a WAPA A = (Q,%, 6, gin, ) on a word apaiaz ... € ¥
is a directed acyclic graph

R:=(V,E)
where
mVCQxN with (gj,0) €V
m V contains only vertices reachable from (gin, 0).
m E contains only edges of the form ((p, /), (q,i +1)).

m For every vertex (p,i) € V the set of successors is a minimal
model of d(p, a;)
{a€ QI {(p.i),(q.i+1)) € E} € Mody(d(p, 2/))
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ACCEPTANCE ®©

DeriniTION (Acceptance)

Let A be a WAPA, w € X and R = (V, E) a run of A on w.

m An infinite path p in R satisfies the acceptance condition of
A iff the smallest occurring parity is even, i.e.

min{7(q) | 3/€N:(q, i) occurs in p} is even.
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ACCEPTANCE

DeriniTION (Acceptance)

Let A be a WAPA, w € X and R = (V, E) a run of A on w.

m An infinite path p in R satisfies the acceptance condition of
A iff the smallest occurring parity is even, i.e.

min{7(q) | 3/€N:(q, i) occurs in p} is even.

B R is an accepting run iff every infinite path p in R satisfies
the acceptance condition.

m A accepts w iff there is some accepting run of A on w.

12/33
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ACCEPTANCE

ExampLE (a%)

Accepting run:

(90, 0}—{d0. 1}—{(90. 2}—(qo. 3}—{(90. 4}—{(q0. 5}— - -~

QO
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ACCEPTANCE

ExampLE (a%)

Y L)
@’
\2/ a

(X
\.0_/

Accepting run:

(90, 0}—{d0. 1}—{(90. 2}—(qo. 3}—{(90. 4}—{(q0. 5}— - -~

Rejecting run:

QO
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ACCEPTANCE

Alternating: in some set of runs every run is accepting

(qo — q1, — G2, = 43, —> G4, — G5, — |
90 — q1, — G2, — q3, — G4, —> G5, —> -

(G0 — q1. — G2, — G3. —> G4, —> Q5. —> -+ |
qo — 91, — G2 — Q34 —7 G4, —> Q54 — -
90 —7 Q1. —7 92, —> g3, —7 Q4. —7 g5, —7 " *
(90— q1, — G2, —> G3, — Ga, — G5, — )
(G0 — q1, — G2, — q3, —> Qay —> s, —> |

(90 = a1, = G2, — 93, = Gay — G5, = -]

\QO—>q1,-_>CI2,-_>q3,-_>CI4,-_>CI5,-—>"‘
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INFINITELY MANY &S
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ExampLE ((b*a)*)

a b a, b
b

qo0 a1 a qz

2 ) o

Run on b¥:
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INFINITELY MANY &S

ExampLE ((b*a)*)

a b avb
b
do a1 a a2
2 AN,
Run on b¥:
b
(%0.0)
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INFINITELY MANY &S

ExampLE ((b*a)*)

a b a, b
b

qo0 a1 a qz

2 ) o

Run on b¥:

b b
(@0 Dllo Dei@o
N

aq1.
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INFINITELY MANY &S

ExampLE ((b*a)*)
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DuAL AuToMATON (1) ©

DeriNniTION (Dual Automaton)

The dual of a WAPA A = (Q, %, 0, gin, 7) is

"Z = <Qv 2757 qin7ﬁ>
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DuAL AuToMATON (1) ©

DeriNniTION (Dual Automaton)

The dual of a WAPA A = (Q, %, 0, gin, ) is

"Z = <Qv zvga qin7ﬁ>
where
m 0(q,a) is obtained from &(q, a) by exchanging A,V and T, L

forallge Q and ae X
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DuAL AuToMATON (1) ©

DeriNniTION (Dual Automaton)
The dual of a WAPA A = (Q, %, 0, gin, ) is
A:=(Q,X,5, Gin, )
where
m 0(q,a) is obtained from &(q, a) by exchanging A,V and T, L
= 7(q) :==m(q) +1
forallge Q and ae X

14/33



DuAL AUTOMATON (2)

ExampLE ((b*a)“)

WAPA A:
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DuAL AUTOMATON (2)

ExampLE ((b*a)“)

WAPA A:

Dual A:

o N (]
o o O
—~ —_~ —~~
(] T

S 30

o (o
—— — — — —
oo |vlv v |

D
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COMPLEMENTATION THEOREM

Main statement of this talk:

THeEOREM (Complementation)

The dual A of a WAPA A accepts its complement, i.e.

L(A) = T\ L(A)

(Thomas and Loding, ~ 2000)
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OUTLINE

WEAK ALTERNATING PARITY AUTOMATA
INFINITE PARITY GAMES
ProoF oF THE COMPLEMENTATION THEOREM

BUcHI COMPLEMENTATION ALGORITHM
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AUTOMATON VS. PATHFINDER
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AUTOMATON VS. PATHFINDER

find accepting run R find rejecting path in R
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a a
Y LED
o,
(@
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Game G4,u:

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

: a a
‘v)
A: % 3 w = a¥
(2N,
Game G4 v v

,,,,,,,,,,

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

: a a
‘v)
A: % 3 w = a¥
(2N,
Game GAW v

,,,,,,,,,,

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

: a a
‘v)
A: % 3 w = a¥
(2N,
Game GAW v

@

,,,,,,,,,,

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

,,,,,,,,,,

@

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

,,,,,,,,,,

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

,,,,,,,,,,

19/33



INFINITE PARITY GAME (1) @)

ExampLE (a%)

,,,,,,,,,,

19/33



INFINITE PARITY GAME (2) @)

DeriNITION (Game)

A game for a WAPA A = (Q,%, 6, gin, ) and w = agajap... € ¢
is a directed graph

GA7W o= <VAU Vp, E>

(Thomas and Léding, ~2000)
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(Thomas and Léding, ~2000)
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INFINITE PARITY GAME (2) @)

DeriNITION (Game)

A game for a WAPA A = (Q,%, 6, gin, ) and w = agajap... € ¢
is a directed graph

Gaw = (VaUVp,E)
where
m V4 :=Q x N (decision nodes of player A)
m Vp:=2% x N (decision nodes of player P)
| EQ(VAX VP)U(VPX VA)
s.t. the only contained edges are
o ((g,i), (M, i)) iff M € Mod,(6(q, a))

forge Q@ MCQ,ieN
(Thomas and Léding, ~2000)
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DeriNITION (Game)

A game for a WAPA A = (Q,%, 6, gin, ) and w = agajap... € ¢
is a directed graph

GA7W = <VA U Vp, E>
where
m V4 :=Q x N (decision nodes of player A)
m Vp =29 x N (decision nodes of player P)
| EQ(VAX VP)U(VPX VA)
s.t. the only contained edges are
° <<q,i>7<Aﬂ,i>> iff M e Mod,(d(q,a;))
o ((M,i),(q,i+1)) iff geM
forge Q@ MCQ,ieN
(Thomas and Léding, ~2000)
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DeriNniTION (Play)

A play 7 in a game G4, is an infinite path starting with (g, 0).

DeriniTioN (Winner)

The winner of a play ~ is
m player A iff the smallest parity of occurring Va-nodes is even

. player P ................................ Odd

X € {A, P}: a player, X: its opponent
DerINITION (Strategy)

m A strategy fx : Vx — Vi for player X selects for every

decision node of player X one of its successor nodes in G4 .
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PLAYING A GAME ©

DeriNniTION (Play)

A play 7 in a game G4, is an infinite path starting with (g, 0).

DeriniTioN (Winner)

The winner of a play ~ is
m player A iff the smallest parity of occurring Va-nodes is even

. player P ................................ Odd

X € {A, P}: a player, X: its opponent
DerINITION (Strategy)

m A strategy fx : Vx — Vi for player X selects for every
decision node of player X one of its successor nodes in G4 .

m fx is a winning strategy iff player X wins every play v that is
played according to fx.
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STRATEGIES

ExAMPLE

parities

C]oH2

gr—1
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Winning strategy for player A (so far):

parities
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STRATEGIES

EXAMPLE

Winning strategy for player A (so far): parities
qo — 2
g—1
gz — 0
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OUTLINE

WEAK ALTERNATING PARITY AUTOMATA
INFINITE PARITY GAMES

ProoF oF THE COMPLEMENTATION THEOREM
m Lemmal
m Lemma 2

m Lemma 3
= Sublemma

m Putting it All Together

BUcHI COMPLEMENTATION ALGORITHM
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LEMMA 1
Let A be a WAPA and w € ¥¥.

LEMMA 1

Player A has a winning strategy in G4, iff A accepts w.
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LEMMA 1

Let A be a WAPA and w € X¥.

LEMMA 1

Player A has a winning strategy in G4, iff A accepts w.

EXPLANATION (oral):

Player A wins every play v
played according to fa.

\

q’ i+1

There is a run graph R in which
every path p is accepting.

R:

24/33



LEMMA 2

Let A be a WAPA and w € X¥.

LEMMA 2

Player P has a winning strategy in G4, iff A does not accept w.
(pointed out by Jan Leike)
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Let A be a WAPA and w € ¥,
LEMMA 2
Player P has a winning strategy in G4, iff A does not accept w.

(pointed out by Jan Leike)
ExpPLANATION (oral):

Player P wins every play v
played according to fp.

GA o _ /,v"'.
) e )
77777777 T
g e

AL
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,,,,,,,,,,

25/33



LEMMA 2

Let A be a WAPA and w € ¥,
LEMMA 2
Player P has a winning strategy in G4, iff A does not accept w.

(pointed out by Jan Leike)
ExpPLANATION (oral):

Player P wins every play v Every run graph R contains a
played according to fp. rejecting path p.
Gt s '
S = ) B
77777777 T
e e
e AR R’ q.i+1
777777777 A
777777777 /1. ~
g’ kg1 R": g’ i+1
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SUBLEMMA )

Let 0 € BT(Q) be a formula over Q.
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S C Qisamodel of @ iff forall M€ Mod(6): SN M # 0.
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SUBLEMMA
S C Qisamodel of @ iff forall M€ Mod(6): SN M # 0.

ProoF:
m W.lo.g. 6isin DNF, ie.
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ALL THREE LEMMAS ®©

Let A be a WAPA, A its dual and w € ¥,

LEMMA 1

Player A has a winning strategy in G4, iff A accepts w.

LEMMA 2

Player P has a winning strategy in G4, iff A does not accept w.

LEMMA 3

Player A has a winning strategy in G4 .,
iff player P has a winning strategy in Gz, .
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COMPLEMENTATION THEOREM ®©

THeoreM (Complementation)

The dual A of a WAPA A accepts its complement, i.e.

L(A) = 9\ L(A)

(Thomas and Léding, ~2000)
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OUTLINE

WEAK ALTERNATING PARITY AUTOMATA
INFINITE PARITY GAMES
ProoF oF THE COMPLEMENTATION THEOREM

BUcHI COMPLEMENTATION ALGORITHM
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BUcHI COMPLEMENTATION ALGORITHM

BA B2 .BA B
O(n2) 2(9(n)
waPA A %M wapA A

m Total complexity: 20(n%)

m Can reach 29("'°¢") (lower bound) by improving A — B.
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