AUTOMATA THEORY SEMINAR

Büchi Complementation via Alternating Automata

Fabian Reiter

July 16, 2012

$$\mathsf{BA} \ \mathcal{B} \longrightarrow \mathsf{BA} \ \overline{\mathcal{B}}$$

BA: Büchi Automaton

$$\mathsf{BA} \ \mathcal{B} \xrightarrow{\ \ 2^{\Theta(n\log n)} \ \ } \mathsf{BA} \ \overline{\mathcal{B}}$$

BA: Büchi Automaton

Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).

$$\mathsf{BA} \ \mathcal{B} \xrightarrow{\ 2^{\Theta(n \log n)} \ } \mathsf{BA} \ \overline{\mathcal{B}}$$

BA: Büchi Automaton

- Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).
- Complicated: Direct approaches are rather involved.

- Expensive: If \mathcal{B} has n states, $\overline{\mathcal{B}}$ has $2^{\Theta(n \log n)}$ states in the worst case (Michel 1988, Safra 1988).
- Complicated: Direct approaches are rather involved.

Consider indirect approach: detour over alternating automata.

Transition Modes (1)

Existential: some run is accepting

Transition Modes (1)

Existential: some run is accepting

$$egin{aligned} \left(q_0
ightarrow q_{1_s}
ightarrow q_{2_a}
ightarrow q_{3_a}
ightarrow q_{4_a}
ightarrow q_{5_a}
ightarrow \cdots \ & \left(q_0
ightarrow q_{1_b}
ightarrow q_{2_b}
ightarrow q_{3_b}
ightarrow q_{4_b}
ightarrow q_{5_b}
ightarrow \cdots \ & \left(q_0
ightarrow q_{1_c}
ightarrow q_{2_c}
ightarrow q_{3_c}
ightarrow q_{4_c}
ightarrow q_{5_c}
ightarrow \cdots \ & \left(q_0
ightarrow q_{1_e}
ightarrow q_{2_e}
ightarrow q_{3_e}
ightarrow q_{4_e}
ightarrow q_{5_e}
ightarrow \cdots \end{aligned}$$

Universal: every run is accepting

$$\begin{aligned} q_0 &\to q_{1_a} \to q_{2_a} \to q_{3_a} \to q_{4_a} \to q_{5_a} \to \cdots \\ q_0 &\to q_{1_b} \to q_{2_b} \to q_{3_b} \to q_{4_b} \to q_{5_b} \to \cdots \\ q_0 &\to q_{1_c} \to q_{2_c} \to q_{3_c} \to q_{4_c} \to q_{5_c} \to \cdots \\ q_0 &\to q_{1_d} \to q_{2_d} \to q_{3_d} \to q_{4_d} \to q_{5_d} \to \cdots \\ q_0 &\to q_{1_e} \to q_{2_e} \to q_{3_e} \to q_{4_e} \to q_{5_e} \to \cdots \end{aligned}$$

Transition Modes (2)

Alternating: in some set of runs every run is accepting

$$\begin{aligned} q_0 &\to q_{1_a} \to q_{2_a} \to q_{3_a} \to q_{4_a} \to q_{5_a} \to \cdots \\ q_0 &\to q_{1_b} \to q_{2_b} \to q_{3_b} \to q_{4_b} \to q_{5_b} \to \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\to q_{1_c} \to q_{2_c} \to q_{3_c} \to q_{4_c} \to q_{5_c} \to \cdots \\ q_0 &\to q_{1_c} \to q_{2_c} \to q_{3_c} \to q_{4_c} \to q_{5_c} \to \cdots \\ q_0 &\to q_{1_d} \to q_{2_d} \to q_{3_d} \to q_{4_d} \to q_{5_d} \to \cdots \\ q_0 &\to q_{1_e} \to q_{2_e} \to q_{3_e} \to q_{4_e} \to q_{5_e} \to \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\to q_{1_f} \to q_{2_f} \to q_{3_f} \to q_{4_f} \to q_{5_f} \to \cdots \\ q_0 &\to q_{1_g} \to q_{2_g} \to q_{3_g} \to q_{4_g} \to q_{5_g} \to \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\to q_{1_f} \to q_{2_f} \to q_{3_f} \to q_{4_f} \to q_{5_f} \to \cdots \\ q_0 &\to q_{1_h} \to q_{2_h} \to q_{3_h} \to q_{4_h} \to q_{5_h} \to \cdots \\ q_0 &\to q_{1_i} \to q_{2_i} \to q_{3_i} \to q_{4_i} \to q_{5_i} \to \cdots \end{aligned}$$

Special case: \mathcal{A} in existential mode

lacksquare $\mathcal A$ accepts iff \exists run ρ : ρ fulfills acceptance condition of $\mathcal A$

Special case: A in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ρ : ρ fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho$ fulfills acceptance condition of $\mathcal{A})$

Special case: A in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ρ : ρ fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho$ fulfills acceptance condition of \mathcal{A}) iff \forall run ρ : ρ fulfills **dual** acceptance condition of \mathcal{A}

Special case: A in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ρ : ρ fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho$ fulfills acceptance condition of \mathcal{A}) iff \forall run ρ : ρ fulfills **dual** acceptance condition of \mathcal{A}
- \Rightarrow complementation $\widehat{=}$ dualization of:
 - transition mode
 - acceptance condition

Special case: A in existential mode

- lacksquare $\mathcal A$ accepts iff \exists run ho : ho fulfills acceptance condition of $\mathcal A$
- $\overline{\mathcal{A}}$ accepts iff \forall run ρ : $\neg(\rho$ fulfills acceptance condition of \mathcal{A}) iff \forall run ρ : ρ fulfills **dual** acceptance condition of \mathcal{A}
- \Rightarrow complementation $\widehat{=}$ dualization of:
 - transition mode
 - acceptance condition

Want acceptance condition that is closed under dualization.

OUTLINE

- 1 Weak Alternating Parity Automata
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
 - Definitions and Examples
 - Dual Automaton
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

PREVIEW

Example $((b^*a)^{\omega})$

Büchi automaton \mathcal{B} :

PREVIEW

Example $((b^*a)^{\omega})$

Büchi automaton \mathcal{B} :

Equivalent WAPA A:

Weak Alternating Parity Automaton

DEFINITION (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- \blacksquare Q finite set of states
- \blacksquare Σ finite alphabet
- \blacksquare q_{in} initial state

(Thomas and Löding, \sim 2000)

Weak Alternating Parity Automaton

Definition (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- \blacksquare Q finite set of states
- \blacksquare Σ finite alphabet
- \blacksquare q_{in} initial state
- \blacksquare $\pi: Q \to \mathbb{N}$ parity function

(Thomas and Löding, \sim 2000)

DEFINITION (Weak Alternating Parity Automaton)

A weak alternating parity automaton (WAPA) is a tuple

$$\mathcal{A} := \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$$

where

- \blacksquare Q finite set of states
- \blacksquare Σ finite alphabet
- lacksquare $\delta: Q imes \Sigma o \mathbb{B}^+(Q)$ transition function
- \blacksquare q_{in} initial state
- lacksquare $\pi: Q o \mathbb{N}$ parity function

(Thomas and Löding, \sim 2000)

 $\mathbb{B}^+(Q)$: set of all positive Boolean formulae over Q (built only from elements in $Q \cup \{\land, \lor, \top, \bot\}$)

Transitions

Transitions

Example (a^{ω})

$$egin{aligned} \delta: Q imes \Sigma &
ightarrow \mathbb{B}^+(Q) \ &\langle q_0, a
angle &\mapsto q_0 ee (q_1 \wedge q_2) \ &\langle q_1, a
angle &\mapsto (q_0 \wedge q_1) ee (q_1 \wedge q_2) \ &\langle q_2, a
angle &\mapsto q_2 \end{aligned}$$

DEFINITION (Minimal Models)

 $\operatorname{\mathsf{Mod}}_{\downarrow}(\theta) \subseteq 2^Q$: set of minimal models of $\theta \in \mathbb{B}^+(Q)$, i.e. the set of minimal subsets $M \subseteq Q$ s.t. θ is satisfied by $q \mapsto \begin{cases} \mathit{true} & \text{if } q \in M \\ \mathit{false} & \text{otherwise} \end{cases}$

EXAMPLE

$$\mathsf{Mod}_{\downarrow}(q_0 \lor (q_1 \land q_2)) = \{\{q_0\}, \{q_1, q_2\}\}$$

Example (a^{ω})

 $(q_0, 0)$

$$(q_0,0) \rightarrow (q_0,1)$$

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2)$$

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2) \rightarrow (q_0, 3) \rightarrow (q_0, 4) \rightarrow (q_0, 5) \rightarrow \cdots$$

Example (a^{ω})

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2) \rightarrow (q_0, 3) \rightarrow (q_0, 4) \rightarrow (q_0, 5) \rightarrow \cdots$$

 $(q_0, 0)$

Example (a^{ω})

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2) \rightarrow (q_0, 3) \rightarrow (q_0, 4) \rightarrow (q_0, 5) \rightarrow \cdots$$

$$(q_0, 0) \rightarrow (q_0, 1)$$

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- lacksquare $V\subseteq Q imes\mathbb{N}$ with $\langle q_{in},0
 angle\in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.

Run Graph (2)

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- lacksquare $V\subseteq Q imes\mathbb{N}$ with $\langle q_{in},0
 angle \in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.
- E contains only edges of the form $\langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle$.

Run Graph (2)

DEFINITION (Run)

A run of a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{in},\pi\rangle$ on a word $a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed acyclic graph

$$R := \langle V, E \rangle$$

where

- $lacksquare V\subseteq Q imes\mathbb{N} \ \ ext{with} \ \langle q_{in},0
 angle \in V$
- V contains only vertices reachable from $\langle q_{in}, 0 \rangle$.
- *E* contains only edges of the form $\langle \langle p, i \rangle, \langle q, i+1 \rangle \rangle$.
- For every vertex $\langle p, i \rangle \in V$ the set of successors is a minimal model of $\delta(p, a_i)$

$$\left\{q \in Q \mid \left\langle \left\langle p, i \right\rangle, \left\langle q, i + 1 \right\rangle \right\rangle \in E \right\} \in \mathsf{Mod}_{\downarrow}(\delta(p, a_i))$$

DEFINITION (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^{\omega}$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

■ An infinite path ρ in R satisfies the **acceptance condition** of \mathcal{A} iff the smallest occurring parity is even, i.e.

 $\min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\} \text{ is even.}$

DEFINITION (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^{\omega}$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

■ An infinite path ρ in R satisfies the acceptance condition of \mathcal{A} iff the smallest occurring parity is even, i.e.

 $\min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\} \text{ is even.}$

■ R is an **accepting run** iff <u>every</u> infinite path ρ in R satisfies the acceptance condition.

DEFINITION (Acceptance)

Let \mathcal{A} be a WAPA, $w \in \Sigma^{\omega}$ and $R = \langle V, E \rangle$ a run of \mathcal{A} on w.

■ An infinite path ρ in R satisfies the **acceptance condition** of \mathcal{A} iff the smallest occurring parity is even, i.e. $\min\{\pi(q) \mid \exists i \in \mathbb{N} : \langle q, i \rangle \text{ occurs in } \rho\}$ is even.

■ R is an **accepting run** iff <u>every</u> infinite path ρ in R satisfies the acceptance condition.

■ \mathcal{A} accepts w iff there is some accepting run of \mathcal{A} on w.

Accepting run:

Example (a^{ω})

Accepting run:

$$(q_0, 0) \rightarrow (q_0, 1) \rightarrow (q_0, 2) \rightarrow (q_0, 3) \rightarrow (q_0, 4) \rightarrow (q_0, 5) \rightarrow \cdots$$

Rejecting run:

Alternating: in some set of runs every run is accepting

$$\begin{aligned} q_0 &\rightarrow q_{1_a} \rightarrow q_{2_a} \rightarrow q_{3_a} \rightarrow q_{4_a} \rightarrow q_{5_a} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_b} \rightarrow q_{2_b} \rightarrow q_{3_b} \rightarrow q_{4_b} \rightarrow q_{5_b} \rightarrow \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_c} \rightarrow q_{2_c} \rightarrow q_{3_c} \rightarrow q_{4_c} \rightarrow q_{5_c} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_d} \rightarrow q_{2_d} \rightarrow q_{3_d} \rightarrow q_{4_d} \rightarrow q_{5_d} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_e} \rightarrow q_{2_e} \rightarrow q_{3_e} \rightarrow q_{4_e} \rightarrow q_{5_e} \rightarrow \cdots \end{aligned}$$

$$\begin{aligned} q_0 &\rightarrow q_{1_f} \rightarrow q_{2_f} \rightarrow q_{3_f} \rightarrow q_{4_f} \rightarrow q_{5_f} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_g} \rightarrow q_{2_g} \rightarrow q_{3_g} \rightarrow q_{4_g} \rightarrow q_{5_g} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_h} \rightarrow q_{2_h} \rightarrow q_{3_h} \rightarrow q_{4_h} \rightarrow q_{5_h} \rightarrow \cdots \\ q_0 &\rightarrow q_{1_i} \rightarrow q_{2_i} \rightarrow q_{3_i} \rightarrow q_{4_i} \rightarrow q_{5_i} \rightarrow \cdots \end{aligned}$$

Example $((b^*a)^{\omega})$

Run on b^{ω} :

 $(q_0, 0)$

Example $((b^*a)^{\omega})$

Example $((b^*a)^{\omega})$

Run on b^{ω} :

Run on $(ba)^{\omega}$:

 $(q_0, 0)$

Example $((b^*a)^{\omega})$

Run on b^{ω} :

Run on b^{ω} :

Example $((b^*a)^{\omega})$

Run on b^{ω} :

Run on b^{ω} :

Dual Automaton (1)

DEFINITION (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_{\textit{in}}, \pi
angle$ is

$$\overline{\mathcal{A}}:=\langle Q,\Sigma,\overline{\delta},q_{\textit{in}},\overline{\pi}
angle$$

Dual Automaton (1)

DEFINITION (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle \textit{Q}, \Sigma, \delta, \textit{q}_{\textit{in}}, \pi
angle$ is

$$\overline{\mathcal{A}}:=\langle \textit{Q}, \Sigma, \overline{\delta}, \textit{q}_{\textit{in}}, \overline{\pi} \rangle$$

where

lacksquare $\overline{\delta}(q,a)$ is obtained from $\delta(q,a)$ by exchanging $\wedge\,,ee$ and \top,\bot

for all $q \in Q$ and $a \in \Sigma$

Dual Automaton (1)

DEFINITION (Dual Automaton)

The dual of a WAPA $\mathcal{A} = \langle Q, \Sigma, \delta, q_{\textit{in}}, \pi
angle$ is

$$\overline{\mathcal{A}}:=\langle \textit{Q}, \Sigma, \overline{\delta}, \textit{q}_{\textit{in}}, \overline{\pi} \rangle$$

where

- lacksquare $\overline{\delta}(q,a)$ is obtained from $\delta(q,a)$ by exchanging $\wedge\,,ee$ and \top,\bot
- $\blacksquare \overline{\pi}(q) := \pi(q) + 1$

for all $q \in Q$ and $a \in \Sigma$

Dual Automaton (2)

Example $((b^*a)^{\omega})$

WAPA A:

$$\delta(q_0, a) = q_0
\delta(q_0, b) = q_0 \land q_1
\delta(q_1, a) = q_2
\delta(q_1, b) = q_1
\delta(q_2, a) = q_2
\delta(q_2, b) = q_2$$

Dual Automaton (2)

Example $((b^*a)^{\omega})$

WAPA A:

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_0 \land q_1$
 $\delta(q_1, a) = q_2$
 $\delta(q_1, b) = q_1$
 $\delta(q_2, a) = q_2$
 $\delta(q_2, b) = q_2$

Dual $\overline{\mathcal{A}}$:

$$\overline{\delta}(q_0, a) = q_0
\overline{\delta}(q_0, b) = q_0 \lor q_1
\overline{\delta}(q_1, a) = q_2
\overline{\delta}(q_1, b) = q_1
\overline{\delta}(q_2, a) = q_2
\overline{\delta}(q_2, b) = q_2$$

COMPLEMENTATION THEOREM

Main statement of this talk:

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^\omega \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, $\sim\!2000)$

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 Büchi Complementation Algorithm

find accepting run ${\cal R}$

$$w = a^{\omega}$$

 $w=a^{\omega}$

Game $G_{A,w}$:

 $(q_0, 0)$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q,\Sigma,\delta,q_{\it in},\pi\rangle$ and $w=a_0a_1a_2\ldots\in\Sigma^\omega$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^\omega$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

$$lackbox{} V_{\mathcal{A}} := Q imes \mathbb{N} \quad (\text{decision nodes of player } A)$$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^{\omega}$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $ightharpoonup V_A := Q \times \mathbb{N} \quad (\text{decision nodes of player } A)$
- $ightharpoonup V_P := 2^Q imes \mathbb{N} \quad (\text{decision nodes of player } P)$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^{\omega}$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $\blacksquare E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^{\omega}$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $V_A := Q \times \mathbb{N}$ (decision nodes of player A)
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $\blacksquare E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$
 - s.t. the only contained edges are
 - $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \mathsf{Mod}_{\downarrow}(\delta(q, a_i))$

for
$$q \in Q$$
, $M \subseteq Q$, $i \in \mathbb{N}$

DEFINITION (Game)

A game for a WAPA $\mathcal{A}=\langle Q, \Sigma, \delta, q_{in}, \pi \rangle$ and $w=a_0a_1a_2\ldots \in \Sigma^{\omega}$ is a directed graph

$$G_{A,w} := \langle V_A \dot{\cup} V_P, E \rangle$$

where

- $lackbox{$\blacksquare$} V_A := Q imes \mathbb{N} \quad (\text{decision nodes of player } A)$
- $V_P := 2^Q \times \mathbb{N}$ (decision nodes of player P)
- $\blacksquare E \subseteq (V_A \times V_P) \cup (V_P \times V_A)$
 - s.t. the only contained edges are
 - $\langle \langle q, i \rangle, \langle M, i \rangle \rangle$ iff $M \in \mathsf{Mod}_{\downarrow}(\delta(q, a_i))$
 - $\langle \langle M, i \rangle, \langle q, i+1 \rangle \rangle$ iff $q \in M$

for
$$q \in Q$$
, $M \subseteq Q$, $i \in \mathbb{N}$

DEFINITION (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Winner)

The **winner** of a play γ is

- \blacksquare player A iff the smallest parity of occurring V_A -nodes is even
- player *P* · · · · · · · · odd

DEFINITION (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Winner)

The **winner** of a play γ is

- \blacksquare player A iff the smallest parity of occurring V_A -nodes is even
- player P · · · · · · · · odd

 $X \in \{A, P\}$: a player, \overline{X} : its opponent

DEFINITION (Strategy)

■ A **strategy** $f_X: V_X \to V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.

DEFINITION (Play)

A **play** γ in a game $G_{A,w}$ is an infinite path starting with $\langle q_{in}, 0 \rangle$.

DEFINITION (Winner)

The **winner** of a play γ is

- \blacksquare player A iff the smallest parity of occurring V_A -nodes is even
- player P · · · · · · · · odd

 $X \in \{A, P\}$: a player, \overline{X} : its opponent

DEFINITION (Strategy)

- A **strategy** $f_X: V_X \to V_{\overline{X}}$ for player X selects for every decision node of player X one of its successor nodes in $G_{A,w}$.
- f_X is a **winning strategy** iff player X wins every play γ that is played according to f_X .

STRATEGIES

EXAMPLE parities $(q_0,0) \rightarrow (\{q_0\},0)$ $\{q_1,q_2\},0\}$

STRATEGIES

STRATEGIES

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
 - Lemma 1
 - Lemma 2
 - Lemma 3
 - Sublemma
 - Putting it All Together
- 4 BÜCHI COMPLEMENTATION ALGORITHM

LEMMA 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LEММА 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

LEMMA 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

I FMMA 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

EXPLANATION (oral):

Player A wins every play γ played according to f_A .

LEMMA 1

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

I FMMA 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

Explanation (oral):

Player A wins every play γ played according to f_A .

There is a run graph R in which every path ρ is accepting.

LEММА 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LEMMA 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

LEММА 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LЕММА 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

Explanation (oral):

Player P wins every play γ played according to f_P .

LEММА 2

Let \mathcal{A} be a WAPA and $w \in \Sigma^{\omega}$.

LЕММА 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

(pointed out by Jan Leike)

EXPLANATION (oral):

Player P wins every play γ played according to f_P .

Every run graph R contains a rejecting path ρ .

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBLEMMA

 $S\subseteq Q$ is a model of $\overline{\theta}$ iff for all $M\in \operatorname{\mathsf{Mod}}_{\downarrow}(\theta)\colon S\cap M\neq\emptyset.$

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBLEMMA

$$S \subseteq Q$$
 is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

Proof:

■ W.l.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBLEMMA

 $S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

Proof:

■ W.I.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$

■ Then $\overline{\theta}$ is in CNF, i.e.

$$\overline{\theta} = \bigwedge_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigvee_{q \in M} q$$

Let $\theta \in \mathbb{B}^+(Q)$ be a formula over Q.

SUBI FMMA

 $S \subseteq Q$ is a model of $\overline{\theta}$ iff for all $M \in \text{Mod}_{\downarrow}(\theta)$: $S \cap M \neq \emptyset$.

Proof:

■ W.I.o.g. θ is in DNF, i.e.

$$\theta = \bigvee_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigwedge_{q \in M} q$$

■ Then $\overline{\theta}$ is in CNF, i.e.

$$\overline{\theta} = \bigwedge_{M \in \mathsf{Mod}_{\downarrow}(\theta)} \bigvee_{q \in M} q$$

■ Thus $S \subseteq Q$ is a model of $\overline{\theta}$ iff it contains at least one element from each disjunct of θ .

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0 a_1 a_2 \ldots \in \Sigma^{\omega}$.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{\overline{A},w}$.

Let \mathcal{A} be a WAPA, $\overline{\mathcal{A}}$ its dual and $w = a_0 a_1 a_2 \ldots \in \Sigma^{\omega}$.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{\overline{A},w}$.

Proof:

- \Longrightarrow Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$
- Construct a winning strategy f_A for player A in $G_{A,w}$

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position $\langle S, i \rangle \in V_P$

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

■ f_A : winning strategy for player A in $G_{A,w}$

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{A},w}$: ... $p, j \longrightarrow \overline{S, i} \not k \rightarrow \cdots$

- f_A : winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{\mathcal{A}},w}$:

- f_A : winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).
- $\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$

in $G_{A,w}$:

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{A},w}$: (p,i) S,\overline{i} (q,i+1)...

- f_A : winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).
- $\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$
- $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{There exists a } q \in S \cap M.$

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

■ f_A : winning strategy for player A in $G_{A,w}$

■ Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).

 $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{ There exists a } q \in S \cap M.$

lacksquare Define $\overline{f_P}ig(\langle S,i
angleig):=\langle q,i+1
angle$

in
$$G_{A,w}$$
:
$$(p,i) \leftarrow (M,i) \leftarrow (q,i+1)$$

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{A},w}$: (p,i) $(\overline{S},\overline{i})$ (q,i+1) ...

■ f_A : winning strategy for player A in $G_{A,w}$

Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).

$$\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$$

 $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{There exists a } q \in S \cap M.$

$$lacksquare$$
 Define $\overline{f_P}ig(\langle S,i
angleig):=\langle q,i+1
angle$

in $G_{\mathcal{A},w}$: $(p,i) \leftarrow (q,i+1)$ \dots

■ $\forall \ \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \ \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position $\langle S, i \rangle \in V_P$

■ f_A : winning strategy for player A in $G_{A,w}$

Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i))$ (otherwise don't care).

$$\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$$

 $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{There exists a } q \in S \cap M.$

$$lacksquare$$
 Define $\overline{f_P}ig(\langle \mathcal{S},i
angleig):=\langle q,i+1
angle$

- in $G_{A,w}$: $(p,i) \leftarrow (\overline{M},\overline{i}) \leftarrow (q,i+1)$ \dots
- $\forall \ \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \ \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.
 - Player A wins γ in $G_{A,w}$.

 \Rightarrow

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{\mathcal{A}},w}$.

At position $\langle S, i \rangle \in V_P$

in $G_{\overline{A},w}$: (p,i) S,\overline{i} q,i+1...

• f_A : winning strategy for player A in $G_{A,w}$

Assume there is $\langle p,i\rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p,a_i))$ (otherwise don't care).

$$\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$$

 $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{There exists a } q \in S \cap M.$

$$lacksquare \operatorname{Define} \ \overline{f_P}ig(\langle S,i
angleig) := \langle q,i+1
angle$$

in $G_{A,w}$: $(p,i) \leftarrow (\bar{M},\bar{i}) \leftarrow (q,i+1)$...

- $\forall \ \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \ \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.
 - Player A wins γ in $G_{A,w}$.
 - $\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1$

Construct a winning strategy $\overline{f_P}$ for player P in $G_{\overline{A},w}$.

At position $\langle S, i \rangle \in V_P$

- f_A : winning strategy for player A in $G_{A,w}$
- Assume there is $\langle p, i \rangle \in V_A$ occurring in a play γ in $G_{A,w}$ played according to f_A s.t. $S \in \mathsf{Mod}_{\bot}(\overline{\delta}(p, a_i))$ (otherwise don't care).
- $\blacksquare f_A(\langle p,i\rangle) = \langle M,i\rangle \Rightarrow M \in \mathsf{Mod}_{\downarrow}(\delta(p,a_i))$
- $\blacksquare \stackrel{\text{(sublemma)}}{\Longrightarrow} \text{There exists a } q \in S \cap M.$
- lacksquare Define $\overline{f_P}ig(\langle S,i
 angleig):=\langle q,i+1
 angle$

in
$$G_{A,w}$$
:
$$(\underline{M},\underline{i}) \leftarrow (\underline{q},i+1)$$

- $\forall \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ $\exists \gamma$: play in $G_{A,w}$ played according to f_A s.t. $\overline{\gamma}$ and γ contain the same V_A -nodes.
 - Player A wins γ in $G_{A,w}$.
 - $\forall q \in Q : \overline{\pi}(q) = \pi(q) + 1$
 - \Rightarrow Player P wins $\overline{\gamma}$ in $G_{\overline{\mathcal{A}},w}$.

 \Leftarrow

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

 \Leftarrow

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

 $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$

 \Leftarrow

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

 $lacktriangledown \overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$

in $G_{A,w}$: $p, i \longrightarrow \cdots$

 $M^* := \left\{ q \in Q \mid \exists \, S \in \mathsf{Mod}_{\downarrow}(\overline{\delta}(p, a_i)) : \atop \overline{f_P}(\langle S, i \rangle) = \langle q, i+1 \rangle \, \right\}$

 \Leftarrow

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

in $G_{\mathcal{A},w}$: p, j \cdots

 \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$

 $\begin{array}{c} \blacksquare \quad M^* := \big\{ q \in Q \mid \exists \, S \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(p,a_i)) : \\ \hline f_P\!\left(\langle S,i \rangle\right) = \langle q,i+1 \rangle \, \big\} \\ \Longrightarrow \quad M^* \text{ is a model of } \delta(p,a_i). \end{array}$

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

in
$$G_{A,w}$$
:
$$(\underline{p},i)$$

$$(\underline{M},i)$$

$$(\underline{q'},i+1)$$

$$(\underline{q''},i+1)$$

in $G_{\overline{A},w}$: $(\overline{S',i}) \leftarrow (\overline{q',i+1})$ $(\overline{S'',i}) \leftarrow (\overline{q'',i+1})$

- \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{A},w}$
- $\begin{array}{l} \blacksquare \ \ \mathit{M}^* := \big\{ q \in \mathit{Q} \mid \exists \ \mathit{S} \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(\mathit{p}, \mathit{a}_i)) : \\ \overline{\mathit{f}_P}\big(\langle \mathit{S}, i \rangle\big) = \langle \mathit{q}, i+1 \rangle \ \big\} \\ \Longrightarrow \ \ \mathit{M}^* \ \text{is a model of} \ \delta(\mathit{p}, \mathit{a}_i). \end{array}$
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$

← C

Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

in $G_{\overline{A},w}$: $(\overline{S},\overline{i}) \leftarrow (\overline{q},i+1)$ $(\overline{S''},\overline{i}) \leftarrow (\overline{q''},i+1)$

- \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$
- $\begin{array}{l} \blacksquare \ \ \mathit{M}^* := \big\{ q \in \mathit{Q} \mid \exists \ \mathit{S} \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(\mathit{p}, \mathit{a_i})) : \\ \overline{\mathit{f_P}}\big(\langle \mathit{S}, \mathit{i} \rangle\big) = \langle \mathit{q}, \mathit{i} + 1 \rangle \ \big\} \\ \Longrightarrow \ \ \mathit{M}^* \ \text{is a model of} \ \delta(\mathit{p}, \mathit{a_i}). \end{array}$
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
- \blacksquare Define $f_A(\langle p,i\rangle):=\langle M,i\rangle$

 \leftarrow Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

- \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$
- $\begin{array}{c} \blacksquare \ \, M^* := \big\{ q \in Q \mid \exists \, S \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(p,a_i)) : \\ \overline{f_P}\!\left(\langle S,i \rangle\right) = \langle q,i+1 \rangle \, \big\} \\ \Longrightarrow \ \, M^* \text{ is a model of } \delta(p,a_i). \end{array}$
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
- Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$
- $\forall \gamma$: play in $G_{A,w}$ played according to $\underline{f_A}$ $\exists \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.

 \leftarrow Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

- \blacksquare $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$
- $\begin{array}{c} \blacksquare \ \, M^* := \big\{ q \in Q \mid \exists \, S \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(p,a_i)) : \\ \qquad \qquad \overline{f_P}\big(\langle S,i \rangle\big) = \langle q,i+1 \rangle \, \big\} \\ \Longrightarrow \ \, M^* \text{ is a model of } \delta(p,a_i). \end{array}$
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
- Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$
- $\forall \gamma$: play in $G_{A,w}$ played according to $\underline{f_A}$ $\exists \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.
 - Player P wins $\overline{\gamma}$ in $G_{\overline{\mathcal{A}},w}$.

 \leftarrow Construct a winning strategy f_A for player A in $G_{A,w}$.

At position $\langle p, i \rangle \in V_A$

lacktriangledown $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$

$$\begin{array}{l} \blacksquare \ \ \mathit{M}^* := \big\{ q \in \mathit{Q} \mid \exists \ \mathit{S} \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(\mathit{p}, \mathit{a_i})) : \\ \overline{\mathit{f_P}}\big(\langle \mathit{S}, \mathit{i} \rangle\big) = \langle \mathit{q}, \mathit{i} + 1 \rangle \ \big\} \\ \Longrightarrow \ \ \mathit{M}^* \ \text{is a model of} \ \delta(\mathit{p}, \mathit{a_i}). \end{array}$$

- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \text{Mod}_{\downarrow}(\delta(p, a_i))$
- Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$
- $\forall \gamma$: play in $G_{A,w}$ played according to $\underline{f_A}$ $\exists \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.
 - Player P wins $\overline{\gamma}$ in $G_{\overline{\mathcal{A}},w}$.
 - $\forall q \in Q : \pi(q) = \overline{\pi}(q) 1$

 \leftarrow Construct a winning strategy f_A for player A in $G_{\mathcal{A},w}$.

At position $\langle p, i \rangle \in V_A$

in
$$G_{\overline{A},w}$$
:
$$(S,i) \leftarrow (q,i+1)$$

$$(S'',i) \leftarrow (q',i+1)$$

$$M^*$$

- lacktriangledown $\overline{f_P}$: winning strategy for player P in $G_{\overline{\mathcal{A}},w}$
- $\begin{array}{c} \blacksquare \ \, \mathit{M}^* := \big\{ q \in \mathit{Q} \mid \exists \, \mathit{S} \!\in\! \mathsf{Mod}_{\downarrow}\!(\overline{\delta}(\mathit{p}, \mathit{a}_i)) : \\ \qquad \qquad \qquad \overline{\mathit{f}_P}\big(\langle \mathit{S}, \mathit{i} \rangle\big) = \langle \mathit{q}, \mathit{i} + 1 \rangle \, \big\} \\ \Longrightarrow \ \, \mathit{M}^* \text{ is a model of } \delta(\mathit{p}, \mathit{a}_i). \end{array}$
- M: subset of M^* that is a minimal model $M \subseteq M^*$, $M \in \mathsf{Mod}_{\downarrow}(\delta(p, a_i))$
- Define $f_A(\langle p,i\rangle) := \langle M,i\rangle$
- $\forall \gamma$: play in $G_{A,w}$ played according to $\underline{f_A}$ $\exists \overline{\gamma}$: play in $G_{\overline{A},w}$ played according to $\overline{f_P}$ s.t. γ and $\overline{\gamma}$ contain the same V_A -nodes.
 - Player P wins $\overline{\gamma}$ in $G_{\overline{A},w}$.
 - $\forall q \in Q : \pi(q) = \overline{\pi}(q) 1$
 - \Rightarrow Player A wins γ in $G_{A,w}$.

ALL THREE LEMMAS

Let $\mathcal A$ be a WAPA, $\overline{\mathcal A}$ its dual and $w \in \Sigma^\omega$.

LEMMA 1

Player A has a winning strategy in $G_{A,w}$ iff A accepts w.

LEMMA 2

Player P has a winning strategy in $G_{A,w}$ iff A does not accept w.

LЕММА 3

Player A has a winning strategy in $G_{A,w}$ iff player P has a winning strategy in $G_{\overline{A},w}$.

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, $\sim\!2000)$

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^\omega \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

Proof:

$$\mathcal{A} \text{ accepts } w \overset{\text{(lemma 1)}}{\Longleftrightarrow} \text{ player } A \text{ has a winning strategy in } \mathcal{G}_{\mathcal{A},w}$$

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^\omega \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

Proof:

$$\mathcal{A} \text{ accepts } w \overset{\text{(lemma 1)}}{\Longleftrightarrow} \text{ player } A \text{ has a winning strategy in } G_{\mathcal{A},w}$$

$$\overset{\text{(lemma 3)}}{\Longleftrightarrow} \text{ player } P \text{ has a winning strategy in } G_{\overline{\mathcal{A}},w}$$

THEOREM (Complementation)

The dual $\overline{\mathcal{A}}$ of a WAPA \mathcal{A} accepts its complement, i.e.

$$\mathcal{L}(\overline{\mathcal{A}}) = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$$

(Thomas and Löding, \sim 2000)

Proof:

$$\mathcal A$$
 accepts $w \overset{\text{(lemma 1)}}{\Longleftrightarrow}$ player A has a winning strategy in $G_{\mathcal A,w}$ $\overset{\text{(lemma 3)}}{\Longleftrightarrow}$ player P has a winning strategy in $G_{\overline{\mathcal A},w}$ $\overset{\text{(lemma 2)}}{\Longleftrightarrow}$ $\overline{\mathcal A}$ does *not* accept w

OUTLINE

- 1 WEAK ALTERNATING PARITY AUTOMATA
- 2 Infinite Parity Games
- 3 Proof of the Complementation Theorem
- 4 BÜCHI COMPLEMENTATION ALGORITHM

■ Total complexity: $2^{\mathcal{O}(n^2)}$

- Total complexity: $2^{\mathcal{O}(n^2)}$
- Can reach $2^{\mathcal{O}(n \log n)}$ (lower bound) by improving $\overline{\mathcal{A}} \to \overline{\mathcal{B}}$.

REFERENCES

Thomas, W. (1999)
Complementation of Büchi Automata Revisited.

In J. Karhumäki et al., editors, *Jewels are Forever, Contributions on Th. Comp. Science in Honor of Arto Salomaa*, pages 109–122, Springer.

Klaedtke, F. (2002)
Complementation of Büchi Automata Using Alternation.
In E. Grädel et al., editors, *Automata, Logics, and Infinite Games*, LNCS 2500, pages 61-77. Springer.

Löding, C. and Thomas, W. (2000)
Alternating Automata and Logics over Infinite Words.
In J. van Leeuwen et al., editors, *IFIP TCS 2000*, LNCS 1872, pages 521–535. Springer.

Kupferman, O. and Vardi, M. Y. (2001) Weak Alternating Automata Are Not that Weak. In *ACM Transactions on Computational Logic*, volume 2, No. 3, July 2001, pages 408–429.

From BA то WAPA

GIVEN:

- $\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA
- \blacksquare n = |Q|

GIVEN:

- $\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$: BA
- \blacksquare n = |Q|

Construction (BA \rightarrow WAPA)

$$\mathcal{A} := \big\langle \underbrace{Q \! \times \! \{0, \dots, 2n\}}_{\mathcal{O}(n^2)}, \; \Sigma, \; \delta', \; \langle \textit{q}_{\textit{in}}, 2\textit{n} \rangle, \; \pi \big\rangle$$

GIVEN:

$$\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$$
: BA

$$\blacksquare$$
 $n = |Q|$

Construction (BA \rightarrow WAPA)

$$\mathcal{A} := \big\langle \underbrace{Q \! \times \! \{0, \dots, 2n\}}_{\mathcal{O}(n^2)}, \; \Sigma, \; \delta', \; \langle \textit{q}_{\textit{in}}, 2\textit{n} \rangle, \; \pi \big\rangle$$

$$\blacksquare \pi(\langle p, i \rangle) := i$$

for
$$p \in Q$$
, $a \in \Sigma$, $i \in \{0, ..., 2n\}$

GIVEN:

$$\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$$
: BA

$$\blacksquare$$
 $n = |Q|$

Construction (BA \rightarrow WAPA)

$$\mathcal{A} := \big\langle \underbrace{Q \! \times \! \{0, \dots, 2n\}}_{\mathcal{O}(n^2)}, \; \Sigma, \; \delta', \; \langle \textit{q}_{\textit{in}}, 2\textit{n} \rangle, \; \pi \big\rangle$$

where
$$\delta'(\langle p,i\rangle,a) := \begin{cases} \bigvee_{q \in \delta(p,a)} \langle q,0\rangle & \text{if } i=0 \\ \bigvee_{q \in \delta(p,a)} \langle q,i\rangle \wedge \langle q,i-1\rangle & \text{if } i \text{ even, } i>0 \end{cases}$$

$$\blacksquare \pi(\langle p, i \rangle) := i$$

for
$$p \in Q$$
, $a \in \Sigma$, $i \in \{0, ..., 2n\}$

GIVEN:

$$\blacksquare \mathcal{B} = \langle Q, \Sigma, \delta, q_{in}, F \rangle$$
: BA

$$\blacksquare$$
 $n = |Q|$

Construction (BA \rightarrow WAPA)

$$\mathcal{A} := \left\langle \underbrace{Q \times \{0, \dots, 2n\}}_{\mathcal{O}(n^2)}, \; \Sigma, \; \delta', \; \langle q_{\textit{in}}, 2n \rangle, \; \pi \right
angle$$

where
$$\delta'(\langle p,i\rangle,a) := \begin{cases} \bigvee_{q \in \delta(p,a)} \langle q,0\rangle & \text{if } i = 0 \\ \bigvee_{q \in \delta(p,a)} \langle q,i\rangle \wedge \langle q,i-1\rangle & \text{if } i \text{ even, } i > 0 \\ \bigvee_{q \in \delta(p,a)} \langle q,i\rangle & \text{if } i \text{ odd, } p \notin F \\ \bigvee_{q \in \delta(p,a)} \langle q,i-1\rangle & \text{if } i \text{ odd, } p \in F \end{cases}$$

$$\blacksquare \pi(\langle p, i \rangle) := i$$

for
$$p \in Q$$
, $a \in \Sigma$, $i \in \{0, ..., 2n\}$

From WAPA to BA

GIVEN:

 $\blacksquare \mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.

$$orall p \in Q \ orall a \in \Sigma \ : \ \delta(p,a) \ \in \ \mathbb{B}^+ig(\{q \in Q \mid \pi(p) \geq \pi(q)\}ig)$$

From WAPA to BA

GIVEN:

 \blacksquare $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.

$$\forall p \in Q \ \forall a \in \Sigma : \delta(p,a) \in \mathbb{B}^+(\{q \in Q \mid \pi(p) \geq \pi(q)\})$$

■ $E \subseteq Q$: all states with even parity

FROM WAPA TO BA

GIVEN:

 \blacksquare $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.

$$\forall p \in Q \ \forall a \in \Sigma : \ \delta(p,a) \in \mathbb{B}^+ig(\{q \in Q \mid \pi(p) \geq \pi(q)\}ig)$$

■ $E \subseteq Q$: all states with even parity

Construction (WAPA \rightarrow BA)

$$\mathcal{B} := \big\langle \underbrace{2^Q \!\!\!\! \times \! 2^Q}_{2^{\mathcal{O}(n)}}, \; \Sigma, \; \delta', \; \big\langle \{\textit{q}_{\textit{in}}\}, \emptyset \big\rangle, \; 2^Q \!\!\! \times \!\! \{\emptyset\} \big\rangle$$

FROM WAPA TO BA

GIVEN:

- \blacksquare $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: stratified WAPA, i.e.
 - $\forall p \in Q \ \forall a \in \Sigma : \ \delta(p,a) \in \mathbb{B}^+ \big(\{ q \in Q \mid \pi(p) \ge \pi(q) \} \big)$
- \blacksquare $E \subseteq Q$: all states with even parity

Construction (WAPA \rightarrow BA)

$$\mathcal{B} := \big\langle \underbrace{2^Q \times 2^Q}_{2^{\mathcal{O}(n)}}, \; \Sigma, \; \delta', \; \big\langle \{q_{\textit{in}}\}, \emptyset \big\rangle, \; 2^Q \times \{\emptyset\} \big\rangle$$

for
$$a \in \Sigma$$
, $M, O \subseteq Q$, $O \neq \emptyset$

FROM WAPA TO BA

GIVEN:

 \blacksquare $\mathcal{A} = \langle Q, \Sigma, \delta, q_{in}, \pi \rangle$: **stratified** WAPA, i.e.

$$\forall p \in Q \ \forall a \in \Sigma : \ \delta(p,a) \in \mathbb{B}^+ \big(\{q \in Q \mid \pi(p) \geq \pi(q)\} \big)$$

■ $E \subseteq Q$: all states with even parity

Construction (WAPA ightarrow BA)

$$\mathcal{B} := \big\langle \underbrace{2^Q \!\! \times \! 2^Q}_{2^{\mathcal{O}(n)}}, \; \Sigma, \; \delta', \; \big\langle \{\textit{q}_{\textit{in}}\}, \emptyset \big\rangle, \; 2^Q \!\! \times \!\! \{\emptyset\} \big\rangle$$

where

$$\bullet \delta'(\langle M, O \rangle, a) := \left\{ \langle M', O' \backslash E \rangle \; \middle| \; \begin{array}{l} M' \in \mathsf{Mod}_{\downarrow} \big(\bigwedge_{q \in M} \delta(q, a) \big), \\ O' \subseteq M', \\ O' \in \mathsf{Mod}_{\downarrow} \big(\bigwedge_{q \in O} \delta(q, a) \big) \right\} \end{aligned}$$

for $a \in \Sigma$, $M, O \subseteq Q$, $O \neq \emptyset$

(Miyano and Hayashi, 1984)