
Decision Procedures

Jochen Hoenicke

Software Engineering
Albert-Ludwigs-University Freiburg

Summer 2012

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 1 / 20

Craig Interpolation

Introduction

Given an unsatisfiable formula of the form:

F ∧ G

Can we find a “smaller” formula that explains the conflict?

I.e., a formula implied by F that is inconsistent with G?

Under certain conditions, there is an interpolant I with

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 3 / 20

Craig Interpolation

A craig interpolant I for an unsatisfiable formula F ∧ G is

F ⇒ I .

I ∧ G is unsatisfiable.

I contains only symbols common to F and G .

Craig interpolants exists in many theories and fragments:

First-order logic.

Quantifier-free FOL.

Quantifier-free fragment of TE.

Quantifier-free fragment of TQ.

Quantifier-free fragment of T̂Z (augmented with divisibility).

However, QF fragment of TZ does not allow Craig interpolation.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 4 / 20

Program correctness

Consider this path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
i := `

assume i ≤ u

assume a[i] 6= e

i := i + 1

assume i ≤ u

@ 0 ≤ i ∧ i < |a|

Single Static Assingment (SSA)
replaces assignments by assumes:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 5 / 20

Program correctness and Interpolants

If program contains only assumes, the VC looks like

VC : P → (F1 → (F2 → (F3 → . . . (Fn → Q) . . .)))

Using ¬(F → G) ⇔ F ∧ ¬G compute negation:

¬VC : P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ Q

If verification condition is valid ¬VC is unsatisfiable. We can compute
interpolants for any program point, e.g. for

P ∧ F1 ∧ F2 ∧ F3 ∧ · · · ∧ Fn ∧ ¬Q

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 6 / 20

Verification Condition and interpolants

Consider the path through
LinearSearch:

@pre 0 ≤ ` ∧ u < |a|
assume i1 = `

assume i1 ≤ u

assume a[i1] 6= e

assume i2 = i1 + 1

assume i2 ≤ u

@ 0 ≤ i2 ∧ i2 < |a|

The negated VC is unsatisfiable:

0 ≤ ` ∧ u < |a| ∧ i1 = `

∧ i1 ≤ u ∧ a[i1] 6= e ∧ i2 = i1 + 1

∧ i2 ≤ u ∧ (0 > i2 ∨ i2 ≥ |a|)

The interpolant I for the red and
blue part is

i1 ≥ 0 ∧ u < |a|

This is actually the loop invariant
needed to prove the assertion.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 7 / 20

Computing Interpolants

Suppose F1 ∧ ... ∧ Fm ∧ G1 ∧ ... ∧ Gn is unsat.
How can we compute an interpolant?

The algorithm is dependent on the theory and the fragment.

We will show an algorithm for

Quantifier-free conjunctive fragment of TE.
Quantifier-free conjunctive fragment of TQ.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 8 / 20

Computing Interpolants for TE

F1 ∧ · · · ∧ Fm ∧ G1 ∧ · · · ∧ Gn is unsat.

Let us first consider the case without function symbols.
The congruence closure algorithm returns unsat. Hence,

there is a disequality v 6= w and

v ,w have the same representative.

Example:

v 6= w ∧ x = y ∧ y = z ∧ z = u ∧ w = s ∧ t = z ∧ s = t ∧ v = x

v x y

z u

s tw

6=

The Interpolant “summarizes” the red edges: I : v 6= s ∧ x = t
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 9 / 20

Computing Interpolants for TE

Given conjunctive formula:

F1 ∧ · · · ∧ Fn ∧ G1 ∧ · · · ∧ Gm

The following algorithm can be used unless there is a congruence edge:

Build the congruence closure graph. Edges Fi are colored red, Edges
Gj are colored blue.

Add (colored) disequality edge. Find circle and remove all other edges.

Combine maximal red paths, remove blue paths.

The F paths start and end at shared symbols.
Interpolant is the conjunction of the corresponding equalities.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 10 / 20

Handling Congruence Edges (Case 1)

Both sides of the congruence edge belong to G .

i3 = i2 ∧ e 6= f ∧ a(i1) = e ∧ a(i4) = f ∧ i1 = i2 ∧ i3 = i4

a

fe

a

i4

i3i2

i1

Interpolant:
i2 = i3 ∧ e 6= f

Follow the path that connects the
arguments.

Also add summarized edges for that path.

Treat the congruence edge as blue edge
(ignore it).

Interpolant is conjunction of all summarized
paths.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 11 / 20

Handling Congruence Edges (Case 2)

Both side of the congruence edge belong to different formulas.

a(i1) = e ∧ i2 = i1 ∧ i3 = i2 ∧ a(i3) 6= e

a

e

a

i3

i2

i1

a

Interpolant: e = a(i2).

Function symbol a must be shared.

Follow the path that connects the
arguments.

Find first change from red to blue.

Lift function application on that term.

Summarize e = a(i1) ∧ i1 = i2 by
e = a(i2).

Compute remaining interpolant as usual.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 12 / 20

Handling Congruence Edges (Case 3)

Both side of the congruence edge belong to F .

a(i1) = e ∧ a(i4) = f ∧ i1 = i2 ∧ i3 = i4 ∧ i3 = i2 ∧ e 6= f

a

fe

a

i4

i3i2

i1

Interpolant:
i2 = i3 → e = f

Follow the path that connects the
arguments.

Find the first and last terms i2, i3 where
color changes.

Treat congruence edge as red edge and
summarize path.

The summary only holds under i2 = i3,i.e.,
add i2 = i3 → e = f to interpolants.

Summarize remaining path segments as
usual.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 13 / 20

Computing Interpolants for TQ

First apply Dutertre/de Moura algorithm.

Non-basic variables x1, . . . , xn.

Basic variables y1, . . . , ym.

yi =
∑

aijxj

Conjunctive formula
y1 ≤ b1 . . . ym′ ≤ bm′ ∧ ym′+1 ≤ bm′+1 . . . ym ≤ bm.

The algorithm returns unsatisfiable if and only if there is a line:
x · · · x y · · · y y · · · y

...
yi/yi 0 · · · 0 −/0 · · · −/0 −/0 · · · −/0

...

yi =
∑
−a′kyk , a′k ≥ 0 and

∑
−a′kbk > bi

(the constraint yi ≤ bi is not satisfied)

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 14 / 20

Computing Interpolants for TQ

The conflict is:

bi ≥ yi =
∑
−a′kyk ≥

∑
−a′kbk > bi

or
0 = yi +

∑
a′kyk ≤ bi +

∑
a′kbk < 0

We split the y variables into blue and red ones:

0 =
m′∑
k=1

aikyk +
m∑

k=m′+1

aikyk ≤
m′∑
k=1

aikbk +
m∑

k=m′+1

aikbk < 0

where a′k ≥ 0, (a′i = 1). The interpolant I is the red part:

m′∑
k=1

aikyk ≤
m′∑
k=1

aikbk

where the basic variables yk are replaced by their definition.
Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 15 / 20

Example

x1 + x2 ≤ 3 ∧ x1 − x2 ≤ 1 ∧ x3 − x1 ≤ 1 ∧ x3 ≥ 4

y1 := x1 + x2 b1 := 3 y3 := −x1 + x3 b3 := 1

y2 := x1 − x2 b1 := 1 y4 := −x3 b4 := −4

Algorithm ends with the tableaux

1 1 -4
y2 y3 y4 β

y1 -1 -2 -2 5
x1 0 -1 -1 3
x2 -1 -1 -1 2
x3 0 0 -1 4

Conflict is 0 = y1 + y2 + 2y3 + 2y4 ≤ 3 + 1 + 2 − 8 = −2.
Interpolant is: y1 + y2 ≤ 3 + 1
or (substituting non-basic vars): 2x1 ≤ 4.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 16 / 20

Correctness

Fk : yk :=
n∑

j=0

akjxj ≤ bk , (k=1,...,m) Gk : yk :=
n∑

j=0

akjxj ≤ bk , (k=m′,...,m)

Conflict is 0 =
m′∑
k=1

a′kyk +
m∑

k=m′+1

a′kyk ≤
m′∑
k=1

a′kbk +
m∑

k=m′+1

a′kbk < 0

After substitution the red part
m′∑
k=1

a′kyk ≤
m′∑
k=1

a′kbk becomes

I :
n∑

j=1

(
m′∑
k=1

a′kakj

)
xj ≤

m′∑
k=1

a′kbk .

F ⇒ I (sum up the inequalities in F with factors a′k).
I ∧ G ⇒ ⊥ (sum up I and G with factors a′k to get 0 ≤

∑m
k=1 a

′
kbk < 0).

Only shared symbols in I: 0 =
∑m′

k=1 akja
′
kxj +

∑m
k=m′+1 akja

′
kxj .

If the left sum is not zero, the right sum is not zero and xj appears in F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 17 / 20

Computing Interpolants for DPLL(T)

Key Idea: Compute Interpolants for conflict clauses:
Split C into CF and CG (if literal appear in F and G put it in CG).

The conflict clause follows from the original formula:

F ∧ G ⇒ CF ∨ CG

Hence, the following formula is unsatisfiable.

F ∧ ¬CF ∧ G ∧ ¬CG

An interpolant IC for C is the interpolant of the above formula. IC
contains only symbols shared between F and G .

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 18 / 20

Computing Interpolants for Conflict Clauses

There are several points where conflict clauses are returned:

Conflict clause is returned by tcheck.
Then theory must give an interpolant.
Conflict clause comes from F .
Then F ⇒ CF ∨ CG .
Hence, (F ∧ ¬CF) ⇒ CG . Also, CG ∧ G ∧ ¬CG is unsatisfiable
Interpolant is CG .
Conflict clause comes from G .
Then CG = C , G ⇒ CG .
Hence, (G ∧ ¬CG) is unsatisfiable. Interpolant is >.
Conflict clause comes from resolution on `.
Then there is a unit clause U = ` ∨ U ′ with interpolant IU
and conflict clause C = ¬` ∨ C ′ with interpolant IC .

If ` ∈ F , set IU′∨C ′ = IU ∨ IC
If ` ∈ G , set IU′∨C ′ = IU ∧ IC

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 19 / 20

Computing Interpolants for DPLL(T)

The previous algorithm can compute interpolant for each conflict clause.
The final conflict clause returned is ⊥.
I⊥ is an interpolant of F ∧ G .

Unfortunately, it is not that easy. . .
. . . because equalities shared by Nelson-Oppen can contain red and blue
symbols simultaneously.

Interpolating in theory combination is still ongoing research.

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2012 20 / 20

	Craig Interpolation

