Validity of FOL is undecidable

Jochen Hoenicke

May 15, 2012

Theorem 1 (FOL is undecidable (Turing & Church)). There is no algorithm for deciding if a FOL formula F is valid, i.e. an algorithm that always halts and says “yes” if F is valid or says “no” if F is invalid.

Proof. We reduce the halting problem for deterministic Turing machines on the empty tape to the validity problem for first order-logic. For a TM τ we build a first-order-logic formula F_{τ} such that τ terminates when started on the empty tape if and only if F_{τ} is valid.

Let $\tau = (Q, \Sigma, \Gamma, \delta, q_0, q_n)$ be a deterministic Turing Machine with states $Q = \{q_0, \ldots, q_n\}$, input alphabet $\Sigma = \{\}$ (we consider the halting problem on an empty tape), tape alphabet $\Gamma = \{a_0, \ldots, a_m\}$ where a_0 is the blank symbol, start state q_0, final state q_n, and a total transition function $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$.

We build a formula that encodes the run of τ. There is one constant zero and two one-argument functions succ, pred. Furthermore we have $n + m + 2$ predicates of arity 2, $q_0, \ldots, q_n, a_0, \ldots, a_m$. The intended meaning of the predicate $q_i(s, p)$ is that in the sth step, the Turing Machine is at position p in state q_i. The intended meaning of the predicate $a_i(s, p)$ is that at the sth step the symbol at position p is a_i.

The formula F_{τ} consists of several components:

- Functions succ and pred are inverse to each other:

$$F_1 = \forall s \ (\text{pred} (\text{succ} (s)) = s \land \text{succ} (\text{pred} (s)) = s)$$

- Always at every position there is at most one symbol on the tape:

$$F_2 = \forall s \ \forall p \ \bigwedge_{i,j \in \{0, \ldots, m\}} \text{ for } i \neq j (\neg a_i(s, p) \lor \neg a_j(s, p))$$

Note that this can be written as a valid first-order formula once the number of symbols m is known. In particular there is an algorithm that computes formula F_2 from a given Turing Machine τ.

- Always the TM is only in one state

$$F_3 = \forall s \ \forall p_1 \ \forall p_2 \ \bigwedge_{i,j \in \{0, \ldots, n\}} \text{ for } i \neq j (\neg q_i(s, p_1) \lor \neg q_j(s, p_2))$$
• Always the TM is only at one position
 \[F_4 = \forall s \forall p_1 \forall p_2 \bigwedge_{i \in \{0, \ldots, n\}} (p_1 \neq p_2 \rightarrow \neg q_i(s, p_1) \lor \neg q_i(s, p_2)) \]

• Only the symbol at the position of the TM may change.
 \[F_5 = \forall s \forall p \bigwedge_{i \in \{0, \ldots, m\}} (a_i(s, p) \land \neg a_i(\text{succ}(s), p) \rightarrow \bigvee_{j \in \{0, \ldots, m\}} q_j(s, p)) \]

• The TM writes the correct symbol: For each \(q \in Q, a \in \Gamma \) with \(\delta(q, a) = (q', a', R) \), we define
 \[F_{q,a} = \forall s \forall p \ (a(s, p) \land q(s, p) \rightarrow a'(\text{succ}(s), p) \land q'(\text{succ}(s), \text{succ}(p))) \]
 For each \(q \in Q, a \in \Gamma \) with \(\delta(q, a) = (q', a', L) \), we define
 \[F_{q,a} = \forall s \forall p \ (a(s, p) \land q(s, p) \rightarrow a'(\text{succ}(s), p) \land q'(\text{succ}(s), \text{pred}(p))) \]
 then \(F_6 \) is the conjunction of these formulas.

• The TM starts at step zero on the empty tape:
 \[F_7 = q_0(\text{zero}, \text{zero}) \land \forall p a_0(\text{zero}, p) \]

The formula \(F_7 \) specifies that every run of \(\tau \) is terminating:

\[F_\tau = F_1 \land \ldots \land F_7 \rightarrow \exists s \exists p q_n(s, p) \]

We show that \(F_\tau \) is valid if and only if \(\tau \) terminates when starting on the empty tape.

only if We show that there is a falsifying model \(I \) for \(F_\tau \) if \(\tau \) does not terminate on the empty tape. Let \(D_I = \mathbb{Z} \), \(\alpha_I(\text{zero}) = 0 \), \(\alpha_I(\text{succ})(x) = x + 1 \), \(\alpha_I(\text{pred})(x) = x - 1 \).

We set \(\alpha_I[q_i](s, p) = \top \) if and only if \(s \geq 0 \) and the TM \(\tau \) is in step \(s \) at position \(p \) in state \(q_i \). Note that for \(s < 0 \) the predicate \(q_i(s, p) \) is always false. This is consistent with \(F_1, \ldots, F_7 \).

We set \(\alpha_I[a_i](s, p) \) if and only if \(s < 0 \) and \(i = 0 \) or \(s \geq 0 \) and the tape contains symbol \(a_i \) at position \(p \) in step \(s \).

One can see that \(F_1, \ldots, F_7 \) are true and \(\exists s \exists p q_n(s, p) \) is false. Hence \(I \) is a falsifying interpretation for \(F_\tau \).

if Let \(\text{succ}^i(\text{zero}) \) denote the term \(\text{succ}(\ldots(\text{succ}(\text{zero})\ldots)) \) with \(i \) applications of \(\text{succ} \). If \(i \leq 0 \) we denote by \(\text{succ}^i(\text{zero}) \) the term \(\text{pred}(\ldots(\text{pred}(\text{zero})\ldots)) \) with \(-i \) applications of \(\text{pred} \).

One can show by induction over \(i \) that for every interpretation satisfying \(F_1, \ldots, F_7 \) that if at step \(i \) the TM is in state \(q_i \) and at position \(p \) the predicate \(q_j(\text{succ}^i(\text{zero}), \text{succ}^p(\text{zero})) \) holds and that if at step \(i \) the tape contains symbol \(a_i \) at position \(p \) the predicate \(a_j(\text{succ}^i(\text{zero}), \text{succ}^p(\text{zero})) \) holds. Since \(\tau \) terminates, there is a step \(i \) and a position \(p \) at which the \(\tau \) reaches the final state, hence \(q_n(\text{succ}^i(\text{zero}), \text{succ}^p(\text{zero})) \) holds. Hence \(F_\tau \) is true for every interpretation. \(\square \)