Reachability Analysis

Andreas Podelski
program with `assume ()` and `assert ()`

- `assume (e) ≡ if e then skip else halt`
program with **assume ()** and **assert ()**

- **assume** $(e) \equiv$ if e then skip else halt
- **assert** $(e) \equiv$ if e then skip else error
program with **assume ()** and **assert ()**

- **assume (e) ≡ if e then skip else halt**
- **assert (e) ≡ if e then skip else error**
- generalize *partial correctness*:
program with **assume ()** and **assert ()**

▶ **assume (e) ≡ if e then skip else halt**
▶ **assert (e) ≡ if e then skip else error**
▶ generalize *partial correctness*:
 correctness of program wrt. Hoare triple:

\[
\{ \phi \} \ C \ { \psi } \\
\equiv
\]

\[
\]
program with `assume ()` and `assert ()`

- `assume (e) ≡ if e then skip else halt`
- `assert (e) ≡ if e then skip else error`
- generalize *partial correctness*:
 correctness of program wrt. Hoare triple:

 \[
 \{ \phi \} \ C \ {\psi}
 \]

 ≡ *safety* of program: `assume (\phi) ; C ; assert (\psi)`

- safety = non-reachability of `error`
 (no execution of `error` branch)
validity of Hoare triple:

\{y \geq z\}
while (x < y) {
 x++;
}
\{x \geq z\}

≡ safety of program:

assume(y \geq z);
while (x < y) {
 x++;
}
assert(x \geq z);
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

\begin{align*}
\rho_1 &= (move(l_1, l_2) \land y \geq z \land skip(x, y, z)) \\
\rho_2 &= (move(l_2, l_2) \land x + 1 \leq y \land x' = x + 1 \land skip(y, z)) \\
\rho_3 &= (move(l_2, l_3) \land x \geq y \land skip(x, y, z)) \\
\rho_4 &= (move(l_3, l_4) \land x \geq z \land skip(x, y, z)) \\
\rho_5 &= (move(l_3, l_5) \land x + 1 \leq z \land skip(x, y, z))
\end{align*}
transition relation ρ expressed by logica formula

\[
\begin{align*}
\rho_1 &\equiv (\text{move}(\ell_1, \ell_2) \land y \geq z \land \text{skip}(x, y, z)) \\
\rho_2 &\equiv (\text{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z)) \\
\rho_3 &\equiv (\text{move}(\ell_2, \ell_3) \land x \geq y \land \text{skip}(x, y, z)) \\
\rho_4 &\equiv (\text{move}(\ell_3, \ell_4) \land x \geq z \land \text{skip}(x, y, z)) \\
\rho_5 &\equiv (\text{move}(\ell_3, \ell_5) \land x + 1 \leq z \land \text{skip}(x, y, z))
\end{align*}
\]

abbreviations:

\[
\begin{align*}
\text{move}(\ell, \ell') &\equiv (pc = \ell \land pc' = \ell') \\
\text{skip}(v_1, \ldots, v_n) &\equiv (v'_1 = v_1 \land \ldots \land v'_n = v_n)
\end{align*}
\]
program $\mathbf{P} = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$

- V - finite tuple of program variables
- pc - program counter variable (pc included in V)
- φ_{init} - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations
- φ_{err} - an error condition given by a formula over V

- transition relation $\rho \in \mathcal{R}$ given by formula over the variables V and their primed versions V'
states, sets, and relations

- each program variable is assigned a *domain* of values
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
- $\Sigma = \text{set of program states}$
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
- \(\Sigma = \text{set of program states} \)
- formula with free variables in \(V = \text{set of program states} \)
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
- Σ = set of program states
- formula with free variables in V = set of program states
- formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
- \(\Sigma \) = set of program states
- formula with free variables in \(V \) = set of program states
- formula with free variables in \(V \) and \(V' \) = binary relation over program states
 - first component of each pair assigns values to \(V \)
 - second component of the pair assigns values to \(V' \)
- identify formulas with sets and relations that they represent
states, sets, and relations

- each program variable is assigned a *domain* of values
- *program state* = function that assigns each program variable a value from its respective domain
- \(\Sigma = \) set of program states
- formula with free variables in \(V = \) set of program states
- formula with free variables in \(V \) and \(V' = \) binary relation over program states
 - first component of each pair assigns values to \(V \)
 - second component of the pair assigns values to \(V' \)
- identify formulas with sets and relations that they represent
- identify the logical consequence relation between formulas \(\models \) with set inclusion \(\subseteq \)
states, sets, and relations

▶ each program variable is assigned a domain of values
▶ program state = function that assigns each program variable a value from its respective domain
▶ $\Sigma =$ set of program states
▶ formula with free variables in $V =$ set of program states
▶ formula with free variables in V and $V' =$ binary relation over program states
 ▶ first component of each pair assigns values to V
 ▶ second component of the pair assigns values to V'
▶ identify formulas with sets and relations that they represent
▶ identify the logical consequence relation between formulas \models with set inclusion \subseteq
▶ identify the satisfaction relation \models between valuations and formulas, with the membership relation \in
example: states, sets, and relations

- formula $y \geq z =$ set of program states in which the value of the variable y is greater than the value of z
example: states, sets, and relations

- formula $y \geq z =$ set of program states in which the value of the variable y is greater than the value of z

- formula $y' \geq z =$ binary relation over program states, $= set of pairs of program states (s_1, s_2)$ in which the value of the variable y in the second state s_2 is greater than the value of z in the first state s_1
example: states, sets, and relations

- formula $y \geq z = \text{set of program states in which the value of the variable } y \text{ is greater than the value of } z$

- formula $y' \geq z = \text{binary relation over program states, } = \text{set of pairs of program states } (s_1, s_2) \text{ in which the value of the variable } y \text{ in the second state } s_2 \text{ is greater than the value of } z \text{ in the first state } s_1$

- if program state s assigns 1, 3, 2, and ℓ_1 to program variables x, y, z, and pc, respectively, then $s \models y \geq z$
example: states, sets, and relations

- formula \(y \geq z \) = set of program states in which the value of the variable \(y \) is greater than the value of \(z \)

- formula \(y' \geq z \) = binary relation over program states, = set of pairs of program states \((s_1, s_2)\) in which the value of the variable \(y \) in the second state \(s_2 \) is greater than the value of \(z \) in the first state \(s_1 \)

- if program state \(s \) assigns 1, 3, 2, and \(\ell_1 \) to program variables \(x, y, z, \) and \(pc \), respectively, then \(s \models y \geq z \)

- logical consequence: \(y \geq z \models y + 1 \geq z \)
example program $\mathbf{P} = (V, pc, \varphi_{\text{init}}, \mathcal{R}, \varphi_{\text{err}})$

- program variables $V = (pc, x, y, z)$
- program counter pc
- program variables x, y, and z range over integers
- set of control locations $\mathcal{L} = \{\ell_1, \ldots, \ell_5\}$
- initiation condition $\varphi_{\text{init}} = (pc = pc = \ell_1)$
- error condition $\varphi_{\text{err}} = (pc = pc = \ell_5)$
- program transitions $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5\}$

\[
\begin{align*}
\rho_1 &= (move(\ell_1, \ell_2) \land y \geq z \land skip(x, y, z)) \\
\rho_2 &= (move(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land skip(y, z)) \\
\rho_3 &= (move(\ell_2, \ell_3) \land x \geq y \land skip(x, y, z)) \\
\rho_4 &= (move(\ell_3, \ell_4) \land x \geq z \land skip(x, y, z)) \\
\rho_5 &= (move(\ell_3, \ell_5) \land x + 1 \leq z \land skip(x, y, z))
\end{align*}
\]
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

\[\rho_1 = (move(\ell_1, \ell_2) \land y \geq z \land skip(x, y, z)) \]
\[\rho_2 = (move(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land skip(y, z)) \]
\[\rho_3 = (move(\ell_2, \ell_3) \land x \geq y \land skip(x, y, z)) \]
\[\rho_4 = (move(\ell_3, \ell_4) \land x \geq z \land skip(x, y, z)) \]
\[\rho_5 = (move(\ell_3, \ell_5) \land x + 1 \leq z \land skip(x, y, z)) \]
initial state, error state, transition relation \mathcal{R}

- each state that satisfies the initiation condition φ_{init} is called an *initial* state
- each state that satisfies the error condition φ_{err} is called an *error* state
- program transition relation $\rho_{\mathcal{R}}$ is the union of the “single-statement” transition relations, i.e.,

$$
\rho_{\mathcal{R}} = \bigvee_{\rho \in \mathcal{R}} \rho .
$$

- the state s has a transition to the state s' if the pair of states (s, s') lies in the program transition relation $\rho_{\mathcal{R}}$, i.e., if $(s, s') \models \rho_{\mathcal{R}}$
program computation s_1, s_2, \ldots

- the first element is an initial state, i.e., $s_1 \models \varphi_{\text{init}}$
- each pair of consecutive states (s_i, s_{i+1}) is connected by a program transition, i.e., $(s_i, s_{i+1}) \models \rho_R$
- if the sequence is finite
 then the last element does not have any successors i.e., if the last element is s_n, then there is no state s such that $(s_n, s) \models \rho_R$
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

example of a computation:

(ℓ₁, 1, 3, 2), (ℓ₂, 1, 3, 2), (ℓ₂, 2, 3, 2), (ℓ₂, 3, 3, 2), (ℓ₃, 3, 3, 2), (ℓ₄, 3, 3, 2)

- sequence of transitions ρ₁, ρ₂, ρ₂, ρ₃, ρ₄
- state = tuple of values of program variables pc, x, y, and z
- last program state does not any successors
Correctness: Safety

- a state is *reachable* if it occurs in some program computation
- a program is *safe* if no error state is reachable
- . . . if and only if no error state lies in $\varphi_{reach},$

$$\varphi_{err} \land \varphi_{reach} \models false.$$

where $\varphi_{reach} =$ set of reachable program states
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

set of reachable states:

\[
\varphi_{reach} = (pc = l_1 \lor \\
 pc = l_2 \land y \geq z \lor \\
 pc = l_3 \land y \geq z \land x \geq y \lor \\
 pc = l_4 \land y \geq z \land x \geq y)
\]
post operator

- let φ be a formula over V
- let ρ be a formula over V and V'
- define a *post-condition* function $post$ by:

$$ post(\varphi, \rho) = \exists V'': \varphi[V''/V] \land \rho[V''/V][V/V'] $$

an application $post(\varphi, \rho)$ computes the image of the set φ under the relation ρ

- $post$ distributes over disjunction wrt. each argument:

$$ post(\varphi, \rho_1 \lor \rho_2) = (post(\varphi, \rho_1) \lor post(\varphi, \rho_2)) $$
$$ post(\varphi_1 \lor \varphi_2, \rho) = (post(\varphi_1, \rho) \lor post(\varphi_2, \rho)) $$
application of \(\text{post}(\phi, \rho)\) in example program

set of states \(\phi \equiv pc = \ell_2 \land y \geq z\), transition relation \(\rho \equiv \rho_2\),

\[
\rho_2 \equiv (\text{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z))
\]

\[
\text{post}(\phi, \rho_2) = \left(\exists V'' : (pc = \ell_2 \land y \geq z)[V''/V] \land \rho_2[V''/V][V'/V']\right)
\]

\[
= \left(\exists V'' : (pc'' = \ell_2 \land y'' \geq z'') \land (pc'' = \ell_2 \land pc' = \ell_2 \land x'' + 1 \leq y'' \land x' = x'' + 1 \land y' = y'' \land z' = z'')[V'/V']\right)
\]

\[
= \left(\exists V'' : (pc'' = \ell_2 \land y'' \geq z'') \land (pc'' = \ell_2 \land pc = \ell_2 \land x'' + 1 \leq y'' \land x = x'' + 1 \land y = y'' \land z = z'')\right)
\]

\[
= (pc = \ell_2 \land y \geq z \land x \leq y)
\]

[renamed] program variables:
\(V = (pc, x, y, z), \ V' = (pc', x', y', z'), \ V'' = (pc'', x'', y'', z'')\)
iteration of post

\[post^n(\varphi, \rho) = n\text{-fold application of post to } \varphi \text{ under } \rho \]

\[post^n(\varphi, \rho) = \begin{cases}
\varphi & \text{if } n = 0 \\
post(post^{n-1}(\varphi, \rho), \rho) & \text{otherwise}
\end{cases} \]

characterize \(\varphi_{reach} \) using iterates of post:

\[\varphi_{reach} = \varphi_{init} \lor post(\varphi_{init}, \rho_R) \lor post(post(\varphi_{init}, \rho_R), \rho_R) \lor \ldots \]

\[= \bigvee_{i \geq 0} post^i(\varphi_{init}, \rho_R) \]

disjuncts = iterates for every natural number \(n \) ("\(\omega \) iteration")
finite iteration post may suffice

“fixpoint reached in n steps” if

if \[\bigvee_{i=1}^{n} \text{post}^i(\varphi_{\text{init}}, \rho_R) = \bigvee_{i=1}^{n+1} \text{post}^i(\varphi_{\text{init}}, \rho_R) \]

then \[\bigvee_{i=1}^{n} \text{post}^i(\varphi_{\text{init}}, \rho_R) = \bigvee_{i \geq 0} \text{post}^i(\varphi_{\text{init}}, \rho_R) \]
‘distributed’ fixpoint test

- ρ_R is itself a disjunction: $\rho_R = \bigvee_{\rho \in \mathcal{R}} \rho = \{\rho_1, \ldots, \rho_m\}$
- $post(\phi, \rho)$ distributes over disjunction in both arguments
- in ‘distributed’ disjunction $\Phi = \{\phi_k \mid k \in M\}$, every disjunct ϕ_k corresponds to a sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$

$$\phi_k = post(post(\ldots post(\varphi_{init}, \rho_{j_1}), \ldots), \rho_{j_n})$$

- “fixpoint reached in n steps” if (but not only if): every application of $post(\cdot, \cdot)$ to any disjunct ϕ_k is contained in one of the disjuncts ϕ_k' in “big” disjunction

$$\forall k \in M \forall j = 1, \ldots, m \exists k' \in M : post(\phi_k, \rho_j) \subseteq \phi_{k'}$$
example iteration

\[post(\varphi_{init}, \rho_1) \equiv post(pc = \ell_1, \rho_1) \]
\[\equiv pc = \ell_2 \land y \geq z \]
\[\rho_1 \equiv (move(\ell_1, \ell_2) \land y \geq z \land skip(x, y, z)) \]

\[post((pc = \ell_i), \rho_j) \equiv \emptyset \text{ if } \rho_j \land pc = \ell_i \equiv \emptyset \]
loop applied to $\text{post}(\varphi_{\text{init}}, \rho_1)$

1. $\text{post}(\varphi_{\text{init}}, \rho_1) \equiv (pc = \ell_2 \land y \geq z)$

2. $\rho_2 \equiv (\text{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z))$

\[
\text{post}(pc = \ell_2 \land y \geq z, \rho_2)
\]

\[
= (\exists V'' : (pc = \ell_2 \land y \geq z)[V''/V] \land \rho_2[V''/V][V/V'])
\]

\[
= (\exists V'' : (pc'' = \ell_2 \land y'' \geq z'') \land
\]

\[
(pc'' = \ell_2 \land pc' = \ell_2 \land x'' + 1 \leq y'' \land x' = x'' + 1 \land
\]

\[
y' = y'' \land z' = z'')[V/V'])
\]

\[
= (\exists V'' : (pc'' = \ell_2 \land y'' \geq z'') \land
\]

\[
(pc'' = \ell_2 \land pc = \ell_2 \land x'' + 1 \leq y'' \land x = x'' + 1 \land
\]

\[
y = y'' \land z = z''))
\]

\[
= (pc = \ell_2 \land y \geq z \land x \leq y)
\]
loop applied twice to $post(\varphi_{\text{init}}, \rho_1)$

$$
\begin{align*}
\text{post}^2(pc = \ell_2 \land y \geq z, \rho_2) &= \text{post}(\text{post}(pc = \ell_2 \land y \geq z, \rho_2), \rho_2) \\
&= \text{post}(pc = \ell_2 \land y \geq z \land x \leq y, \rho_2) \\
&= (\exists V'' : (pc'' = \ell_2 \land y'' \geq z'' \land x'' \leq y'')) \land \\
&(pc'' = \ell_2 \land pc = \ell_2 \land x'' + 1 \leq y'' \land x = x'' + 1 \land \\
&y = y'' \land z = z'')) \\
&= (pc = \ell_2 \land y \geq z \land x - 1 \leq y \land x \leq y) \\
&= (pc = \ell_2 \land y \geq z \land x \leq y)
\end{align*}
$$
compute φ_{reach} for example program (1)

apply transition relation of the program once:

$$
\text{post}(pc = \ell_1, \rho_R)
= (\text{post}(pc = \ell_1, \rho_1) \lor \text{post}(pc = \ell_1, \rho_2) \lor \text{post}(pc = \ell_1, \rho_3) \lor \\
\text{post}(pc = \ell_1, \rho_4) \lor \text{post}(pc = \ell_1, \rho_5))
= \text{post}(pc = \ell_1, \rho_1)
= (pc = \ell_2 \land y \geq z)
$$

obtain the post-condition for one more application:

$$
\text{post}(pc = \ell_2 \land y \geq z, \rho_R)
= (\text{post}(pc = \ell_2 \land y \geq z, \rho_2) \lor \text{post}(pc = \ell_2 \land y \geq z, \rho_3))
= (pc = \ell_2 \land y \geq z \land x \leq y \lor pc = \ell_3 \land y \geq z \land x \geq y)
$$
compute φ_{reach} for example program (2)

repeat the application step once again:

$$
\text{post}(pc = \ell_2 \land y \geq z \land x \leq y \lor \\
pc = \ell_3 \land y \geq z \land x \geq y, \rho_R) \\
= (\text{post}(pc = \ell_2 \land y \geq z \land x \leq y, \rho_R) \lor \\
\text{post}(pc = \ell_3 \land y \geq z \land x \geq y, \rho_R)) \\
= (\text{post}(pc = \ell_2 \land y \geq z \land x \leq y, \rho_2) \lor \\
\text{post}(pc = \ell_2 \land y \geq z \land x \leq y, \rho_3) \lor \\
\text{post}(pc = \ell_3 \land y \geq z \land x \geq y, \rho_4) \lor \\
\text{post}(pc = \ell_3 \land y \geq z \land x \geq y, \rho_5)) \\
= (pc = \ell_2 \land y \geq z \land x \leq y \lor \\
pc = \ell_3 \land y \geq z \land x = y \lor \\
pc = \ell_4 \land y \geq z \land x \geq y)
$$
compute φ_{reach} for example program

disjunction obtained by iteratively applying post to φ_{init}:

$$pc = \ell_1 \lor$$
$$pc = \ell_2 \land y \geq z \lor$$
$$pc = \ell_2 \land y \geq z \land x \leq y \lor pc = \ell_3 \land y \geq z \land x \geq y \lor$$
$$pc = \ell_2 \land y \geq z \land x \leq y \lor pc = \ell_3 \land y \geq z \land x = y \lor$$
$$pc = \ell_4 \land y \geq z \land x \geq y$$

disjunction in a logically equivalent, simplified form:

$$pc = \ell_1 \lor$$
$$pc = \ell_2 \land y \geq z \lor$$
$$pc = \ell_3 \land y \geq z \land x \geq y \lor$$
$$pc = \ell_4 \land y \geq z \land x \geq y$$

above disjunction $= \varphi_{\text{reach}}$ since any further application of post does not produce any additional disjuncts