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Notation

We use the following standard notations:

Symbol Description

Sets and set operators
Z set of integers
N set of natural numbers including 0
N>0 set of positive natural numbers excluding 0
Q set of rational numbers
R set of real numbers
Rd the d-dimensional real space
R≥0 set of non-negative real numbers including 0
2M powerset (set of subsets) of the set M

Mappings
id identity mapping id : M →M, id(m) = m for a set M
f(M) image {f(m) | m ∈M} of a set M according to a mapping f
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Chapter 1

Introduction

This book deals with the modeling and analysis of hybrid systems from the view point
of computer science. Hybrid systems are systems with mixed discrete-continuous behav-
ior. Typical examples are physical systems controlled by a discrete controller. Whereas
methods and tools for the modeling and simulation of the dynamic continuous behavior
is hosted mainly in physics and control theory, the modeling and analysis of discrete
systems is a subject of computer science. Hybrid systems combine these two parts, re-
sulting in systems with quite complex behaviour, and posing a challenging task for their
analysis.
Chapter 2 introduces hybrid systems on a number of examples, and describes automata-
based modeling approaches of discrete and hybrid systems. We use labeled state tran-
sition systems to model finite-state systems, and labeled transition systems to model
general discrete systems with possibly infinite state spaces. Finally, hybrid automata are
introduced for the modeling of hybrid systems.
Chapter 3 first recalls the temporal logics LTL, CTL, and CTL∗ to specify properties of
discrete systems, and gives a short introduction to CTL model checking. We give a short
description of discrete-time systems before we deal with continuous-time systems in the
next chapter.
Chapter 4 introduces timed automata, a simple class of hybrid automata that extends
discrete systems with a notion of time. We introduce the timed temporal logic TCTL,
used to specify properties of timed automata. We show that the validity of TCTL
properties for timed automata is decidable by giving a model checking algorithm.
Timed automata build a quite restricted class of hybrid automata. In Chapter 5 we define
rectangular automata, a bit more general class, which is at the boundary of decidabil-
ity: though checking TCTL properties of rectangular automata (under some additional
conditions) is a decidable problem, relaxing any of the restrictions lead to undecidability.
Though more expressive classes of hybrid automata are in general undecidable, we need
them when we want to model more complex systems without strong abstraction. Though
undecidability implies that we cannot give any complete model checking algorithm for
them, there exist incomplete algorithms for their analysis. Such a more expressive class is

7



CHAPTER 1. INTRODUCTION

the class of linear hybrid automata1, being the subject of Chapter 6. They are particularly
interesting, because the bounded reachability problem (reachability within a fixed finite
number of steps) is still decidable and efficiently computable for this class. We discuss
a fixed-point-based algorithm for the reachability analysis of linear hybrid systems, and
mention some approximation and abstraction techniques.
The reachability analysis of even more general classes of hybrid automata requires special
representations of state sets, which build the content of Chapter 7. We discuss differ-
ent geometrical forms like convex polyhedra, orthogonal polyhedra, oriented rectangular
hulls, and zonotopes, suited for the (over-approximative) representation of state sets of
general hybrid automata. Using such representations we give an incomplete fixed-point-
based algorithm for their reachability analysis.

1There are two different notions of linear hybrid automata. We mean here systems with a linear
behaviour, and not with linear differential equations describing the continuous behaviour.
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Chapter 2

Hybrid Systems and Hybrid
Automata

In this chapter we first introduce hybrid systems in Section 2.1. Before we come to their
modeling, we describe labeled state transition systems (LSTSs) suited for the modeling
of discrete systems in Section 2.2. We generalize LSTS to labeled transition systems
(LTSs) in Section 2.3. Finally, we define hybrid automata for the modeling of hybrid
systems in Section 2.4.

2.1 Hybrid Systems

Discrete systems are systems with a countable number of states. Typical examples are
circuits, digital chips, and computers (as far as we abstract away from the underlying
physical processes). Though the state space of a program can be very large, it is not
only countable but even finite. Thus also programs running on a computer can be seen
as discrete systems if we do not care about their real-time behaviour.
Continuous systems are systems with a continuous behaviour and a real-valued state
space. Physical systems with quantities like time, temperature, speed, acceleration etc.
are continuous systems. There evolution over time can be described by continuous func-
tions or ordinary differential equations.
Hybrid systems are systems with combined discrete and continuous behavior (cf. Fig-
ure 2.1). Typical examples are physical systems controlled by a discrete controller. In
modern cars there are hundreds of embedded digital chips helping to drive the car, that
means, controlling the physical behaviour like speed and acceleration. Behind the au-
topilot of an aeroplane there is a program running on a computer and acting with the
physical environment. Some examples of discrete, continuous, and hybrid systems are
illustrated on Figure 2.2.
We introduce some hybrid system examples from [ACH+95, Hen96].

Example 1 (Thermostat).
Assume a thermostat, which senses the temperature x of a room and turns a heater on

9
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     discrete                                    continuous
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Figure 2.1: Hybrid systems

and off in order to keep the temperature between 18◦C and 22◦C. Initially, the heater is
on and the temperature is 20◦C. If the heater is on, the temperature increases according
to the differential equation ẋ = K(h − x) where h is a constant of the heater and K a
room constant. If the temperature is 21◦C or above, but at latest when it reaches 22◦C,
the heater gets turned off. If the heater is off, the temperature falls according to the
differential equation ẋ = −Kx. If the temperature falls to 19◦C or below, but at latest if
it reaches 18◦C, the heater gets switched on. Figure 2.3 visualizes a possible behaviour of
the system.
This system is hybrid. The discrete part of the system’s state consists of the control mode
of the heater being on or off. The continuos part is the temperature which continuously
evolves over time, taking values from R. The discrete part controls the continuous part
by changing the discrete state and thereby influencing the continuous behaviour.
Note that, since the heater gets switched on and off within certain temperature intervals,
the system is non-deterministic. Replacing these intervals by fixed values would yield a
deterministic system.

Example 2 (Water-level monitor).
Assume two constantly leaking water tanks and a hose that refills exactly one of the tanks
at each point in time (cf. Figure 2.4). Let us denote the water level in the two tanks
by x1 and x2, respectively, and let the leaking lead to a decrease of the levels ẋ1 = −v1

and ẋ2 = −v2 for some v1, v2 ∈ R+ without refilling. The hose fills w ∈ R+ units of
tank height per time unit. Thus the derivative of the water height for the first tank is
ẋ1 = w − v1 when it gets refilled. Refilling the second tank yields ẋ2 = w − v2.

10 ——- Draft version, please do not distribute ——-



CHAPTER 2. HYBRID SYSTEMS AND HYBRID AUTOMATA

    

The discrete part

  

Combined with the continuous part

Figure 2.2: Discrete, continuous, and hybrid systems
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Figure 2.3: A possible behavior of the thermostat

Also this is a hybrid system. The discrete part of the state space consists of the position
of the hose refilling either the first or the second tank. The continuous part of the state
space corresponds to the water heights in the tanks which evolve continuously over time.

Example 3 (Bouncing ball).
Assume a bouncing ball with the initial height x1 ≥ 0 and with an initial upwards directed
speed x2 > 0. Due to gravity, the ball has the acceleration ẋ2 = −g. Thus the ball’s speed
is decreasing to 0 until the ball reaches its highest position, and gets negative when the
ball is falling down again. The ball bounces when it reaches the earth at position x1 = 0
with a speed x2 < 0. When bouncing, the sign of x2 gets inverted, and a part of the ball’s
kinetic energy gets lost. Its speed after bouncing is −cx2 with some c ∈ (0, 1) ⊆ R and
x2 the speed before bouncing. Figure 2.5 illustrates the behaviour of the system.
The continuous part of the state space covers the physical quantities of height and speed
which follow the same evolution rules all the time. Thus there is only a single mode
(“moving”) for the ball behaviour, and the state space does not have any discrete com-
ponent. However, the discrete time points of bouncing introduce discrete events. That’s
why a bouncing ball can also be considered as a hybrid system.
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Figure 2.4: Water-level monitor

Figure 2.5: A possible behavior of the bouncing ball

Hybrid systems are often modeled as hybrid automata. Before giving a definition of hybrid
automata, we recall the definitions of state transition systems and transition systems.

2.2 Labeled State Transition Systems

Labeled state transition systems consist of a set of states, a set of initial states where the
execution starts, and labeled transitions between the states.

Definition 1 (Syntax of labeled state transition systems).
A labeled state transition system (LSTS) is a tuple LST S = (Σ,Lab,Edge, Init) withLSTS

LST S
• a (possibly infinite) state set Σ,Σ

• a (synchronization) label set Lab,Lab

• a set of transitions Edge ⊆ Σ× Lab × Σ, andEdge

• a non-empty set of initial states Init ⊆ Σ.Init

The semantics allows to build paths of an LSTS starting in an initial state and following
transitions.
Definition 2 (Semantics of LSTS).
The semantics of a labeled state transition system LST S = (Σ,Lab,Edge, Init) is given
by an operational semantics with the following single rule:

(σ, a, σ′) ∈ Edge

σ
a→ σ′

Rulediscrete
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CHAPTER 2. HYBRID SYSTEMS AND HYBRID AUTOMATA

We call σ a→ σ′ an (execution) step. A path (or run or execution) π of LST S is a π

(finite or infinite) sequence π = σ0
a0→ σ1

a1→ . . . with

• σ0 ∈ Init and

• σi
ai→ σi+1 for all i ≥ 0 for infinite paths and for all 0 ≤ i < |π| with |π| the number

of steps in the path for finite paths.

A state σ ∈ Σ is called reachable iff there is a finite path leading to it.

The labels of the set Lab are attached to edges and are used for synchronization purposes
in the parallel composition.
To be able to formalize properties of LSTSs, it is common to define a set of atomic propo-
sitions AP and a labeling function L : Σ → 2AP assigning a set of atomic propositions AP , L

to each state. The set L(σ) consists of all propositions that are defined to hold in σ.
These propositional labels on states should not be mixed up with the synchronization
labels on edges.
A labeled state transition system LST S = (Σ,Lab,Edge, Init) can be represented as a
directed graph, where the vertices of the graph are the states from Σ and the (labeled)
edges are the transitions from Edge. The initial states are marked by an incoming edge
without source.

Example 4 (Pedestrian light).
We model a pedestrian traffic light in a crossing by a labeled state transition system
LST S = (Σ,Lab,Edge, Init). The light can be red or green (we do not model the light
being off or blinking). Thus we can represent the light’s state set by Σ = {red, green}.
Assume the light is initially red, i.e., Init = {red}. Possible state changes go from red
to green and from green to red, yielding Edge = {(red, go, green), (green, stop, red)} for
a possible label set Lab = {go, stop}. The labels can be used, e.g., to synchronize state
changes with another light in the same crossing. The model LST S can be visualized as
follows:

red green
go

stop

This model is not only deterministic, but has even only a single run red go→ green stop→
red . . ..

Larger or more complex systems are often modeled componentwise. The global sys-
tem is given by the parallel composition of the components. Component-local, non-
synchronizing transitions, having labels belonging to one components’s label set only,
are executed in an interleaved manner. Synchronizing transitions of the components,
agreeing on the label, are executed synchronously.

——- Draft version, please do not distribute ——- 13
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Definition 3 (Parallel composition of LSTS).
Let

LST S1 = (Σ1,Lab1,Edge1, Init1) and
LST S2 = (Σ2,Lab2,Edge2, Init2)

be two LSTSs. The parallel composition LST S1||LST S2 is the LSTS (Σ,Lab,Edge, Init)LST S1||
LST S2 with

• Σ = Σ1 × Σ2,

• Lab = Lab1 ∪ Lab2,

• ((s1, s2) , a, (s′1, s
′
2)) ∈ Edge iff

1. a ∈ Lab1 ∩ Lab2, (s1, a, s
′
1) ∈ Edge1, and (s2, a, s

′
2) ∈ Edge2, or

2. a ∈ Lab1\Lab2, (s1, a, s
′
1) ∈ Edge1, and s2 = s′2, or

3. a ∈ Lab2\Lab1, (s2, a, s
′
2) ∈ Edge2, and s1 = s′1,

• Init = (Init1 × Init2).

To demonstrate the advantages of compositional modeling, we give an example for the
parallel composition of two traffic lights.
Example 5 (Two pedestrian lights).
Assume now a crossing of two roads with two pedestrian lights, similar to those from
Example 4, one in north-south and one in east-west direction. The two lights are composed
such that they allow pedestrians to pass alternatingly.

red1 green1

go1

go2

green2 red2

go2

go1

Formally, the two LSTSs are given by

LST S1 = ({red1, green1}︸ ︷︷ ︸
Σ1

, {go1, go2}︸ ︷︷ ︸
Lab1

, {(red1, go1, green1), (green1, go2, red1)}︸ ︷︷ ︸
Edge1

, {red1}︸ ︷︷ ︸
Init1

)

LST S2 = ({red2, green2}︸ ︷︷ ︸
Σ2

, {go1, go2}︸ ︷︷ ︸
Lab2

, {(red2, go2, green2), (green2, go1, red2)}︸ ︷︷ ︸
Edge2

, {green2}︸ ︷︷ ︸
Init2

)

The parallel composition LST S = (Σ,Lab,Edge, Init) = LST S1||LST S2 is by defini-
tion:

Σ = {(green1, green2), (green1, red2), (red1, red2), (red1, green2)}
Lab = {go1, go2}

Edge = {((red1, green2), go1, (green1, red2)), ((green1, red2), go2, (red1, green2))}
Init = {(red1, green2)}
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CHAPTER 2. HYBRID SYSTEMS AND HYBRID AUTOMATA

The parallel composition can be visualized be the following graph:

(red1, green2) (green1, red2)

go1

go2

(red1, red2) (green1, green2)

Note that the states (red1, red2) and (green1, green2) are not reachable, i.e., the two lights
are never green respectively red at the same time.
Again, the composition is deterministic, and has even a single run (red1, green2)

go1→
(green1, red2)

go2→ (red1, green2) . . ..

Another well-known example for the parallel composition is that of a railway crossing.

Example 6 (Railroad crossing).
Assume the crossing of a railroad with a street, secured by a gate. The system consists
of three components: a train, a controller, and a gate. The train communicates with the
controller, and the controller communicates with the gate as follows.

• Sensors recognize if the train is approaching to the gate and an “approach” signal is
sent to the controller. Similarly, if the train has left the railroad crossing, an “exit”
signal gets sent to the controller.

• The controller reacts to an incoming “approach” signal with the sending of a “lower”
signal to the gate. The “exit” signal from the train triggers a “raise” signal to the
gate.

• The gate reacts to an incoming “lower” signal with closing the gate, and to a “raise”
signal with opening the gate.

If we are interested in the communication aspects only, we can model the railroad crossing
system as the parallel composition of the following three LSTS components:

• Train

far near past
approach enter

exit

——- Draft version, please do not distribute ——- 15
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• Controller

0 1

23

approach

low
er

exit

ra
is
e

• Gate

up{up} coming down ∅

down {down}going up∅

lower

raise

Given the proposition set AP = {up, down}, we can define a state labeling function
L assigning a set of propositions to the states of the gate as depicted in the above
graph.

The formal specification of the parallel composition (HTrain ‖ HController) ‖ HGate
is the content of Exercise 4. The parallel composition’s initial state is (far, 0, up).
In the initial state the gate cannot execute, because the only possible transition
from the state up has the label lower that synchronizes with the controller, but the
controller first has to move into the state 1 to be able to synchronize on it. Thus first
synchronization on approach must take place. Thus each path of the composition
starts with the step (far, 0, up)

approach→ (near, 1, up).

16 ——- Draft version, please do not distribute ——-



CHAPTER 2. HYBRID SYSTEMS AND HYBRID AUTOMATA

2.3 Labeled Transition Systems

If an LSTS has a large or even infinite state set, it is usually more convenient to define it
as a transition system having a finite set Loc of locations which can possibly be reached Loc

by different states of the system. In order to keep track of the current states in the
locations, variables are introduced. Here we are interested in real-valued variables only,
and in the following we restrict the formalisms accordingly.
Given a set of real-valued variables Var , a valuation is a function ν : Var → R assigning Var

ν, Vvalues to the variables. We use VVar (or short V ) to denote the set of all valuations for
the variable set Var . The system’s state is determined by the current location and the
current valuation. Therefore states σ = (l, ν) are location-valuation pairs from the set σ,Σ

Σ = Loc × V .
A labeled transition system (LTS) has a set of locations. The locations are connected by
discrete labeled transitions (edges) with guards and effects. The guard and effect of a
transition is specified in form of a transition relation µ ⊆ V × V : the transition can be
taken with an evaluation ν thereby changing the evaluation to ν ′ iff (ν, ν ′) ∈ µ. A set of
initial states specify the states in which the execution may start.
In the following definition of LTSs we also embed controlled variables and τ -transitions
(also called stutter transitions). Their role will become clear later when we define the
parallel composition of LTSs. Intuitively, these constructs help us to define “local” vari-
ables of an LTS whose values may not be changed by non-synchronizing steps of other
parallel LTSs.

Definition 4 (Syntax of labeled transition systems).
A labeled transition system (LTS) is a tuple LT S = (Loc,Var ,Con,Lab,Edge, Init) with LTS, LT S

• a finite set Loc of locations,

• a finite set Var of real-valued variables,

• a function Con : Loc → 2Var assigning a set of controlled variables to each location, Con

• a finite set of labels Lab, including the label τ ∈ Lab, τ

• a finite set Edge ⊆ Loc×Lab×2V
2×Loc of edges including τ -transitions (l, τ, Id , l) Edge

for each location l ∈ Loc with Id = {(ν, ν ′)|∀x ∈ Con(l).ν ′(x) = ν(x)}, and where Id

all edges with label τ are τ -transitions, and

• a set Init ⊆ Σ of initial states.

Definition 5 (Semantics of LTS).
The semantics of LT S = (Loc,Var ,Con,Lab,Edge, Init) is given by an operational
semantics with the following single rule:

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ
(l, ν)

a→ (l′, ν ′)
Rulediscrete
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method mult(int y, int z){
int x;

`0 x := 0;
`1

while( y > 0 ) {
`2 y := y-1;
`3 x := x+z;

}
`4 }

`0 `1 `2

`3`4

y ≥ 0 x := 0 y > 0

y
:=

y
−

1

x
:=
x

+
z

y
≤

0

Figure 2.6: Modeling a simple while program with an LTS.

A path (or run or execution) π of LT S is a sequence σ0
a0→ σ1

a1→ σ2 . . . of states σi ∈ Σπ

with σ0 ∈ Init and σi
ai→ σi+1 for all i. A state is called reachable in an LT S iff there is

a path of the LT S leading to it.

Based on the operational semantics, an LTS induces an underlying LSTS state space
model: a transition (l, ν)

a→ (l′, ν ′) can be performed in the induced LSTS if there is an
edge (l, a, µ, l′) from l to l′ in the LTS with (ν, ν ′) ∈ µ.
The next example shows how an LTS can be used to describe program flows.

Example 7 (Modeling a simple while program).
The simple while program of Figure 2.6 calculates x := y · z for two input integers y and
z with y ≥ 0. Each instruction corresponds to a transition (l, a, µ, l′) with the source
location l being the program location before the instruction, the target location l′ being
the program location after the instruction, a label a which is omitted here because no
synchronization is needed, and a set of valuation pairs µ describing the condition or
effect represented by the instruction.
Formally, this (closed) system can be defined as a transition system
LT S = (Loc,Var ,Con,Lab,Edge, Init) where

• Loc = {`0, `1, `2, `3, `4},

• Var = {x, y, z},

• Con(l) = Var for each l ∈ Loc,

• Lab = {τ},

• V = {ν : Var → Z},

• Edge =

18 ——- Draft version, please do not distribute ——-



CHAPTER 2. HYBRID SYSTEMS AND HYBRID AUTOMATA

{ (`0, τ, {(ν, ν ′) ∈ V 2 | ν ′(x) = 0 ∧ ν ′(y) = ν(y) ∧ ν ′(z) = ν(z)}, `1),
(`1, τ, {(ν, ν ′) ∈ V 2 | ν(y) > 0 ∧ ν ′ = ν}, `2),
(`2, τ, {(ν, ν ′) ∈ V 2 | ν ′(x) = ν(x) ∧ ν ′(y) = ν(y)− 1 ∧ ν ′(z) = ν(z)}, `3),
(`3, τ, {(ν, ν ′) ∈ V 2 | ν ′(x) = ν(x) + ν(z) ∧ ν ′(y) = ν(y) ∧ ν ′(z) = ν(z)}, `1),
(`1, τ, {(ν, ν ′) ∈ V 2 | ν(y) ≤ 0 ∧ ν ′ = ν}, `4),
τ`0 , τ`1 , τ`2 , τ`3 , τ`4},

• Init = {(`0, ν) | ν(y) ≥ 0}

with τl = {(ν, ν ′) ∈ V 2|ν = ν ′} for all l ∈ Loc.

The parallel composition of LTSs allows to model larger systems compositionally. Intu-
itively, two LTSs running in parallel may execute non-synchronizing steps interleaved on
their own, whereas synchronizing steps are executed simultaneously in both components.
If a step is synchronizing or not depends on the fact if both systems have the step’s label
in their label sets. That means, for a label being in the label set of both components,
one of the components can take a transition with this label only if the other component
also takes a transition with this label. For this joint step the conditions and effects of
both transitions must be considered, i.e., the transition relation for the joint step is the
intersection of the transition relations of both local transitions.
If one of the components execute a non-synchronizing step, the other component is ba-
sically not active. However, in the parallel composition of LTSs we define the other
component to take a so-called τ -transition or stutter transition, a “do nothing” step. The
reason for this is twofold: Firstly, this makes the definitions and the underlying algo-
rithms more unique, since in each step both systems take a transition. Secondly, and
more importantly, sometimes we would like to define components with variables local to
this component, or with variables that can only be read but not written by the other
components. Then the τ -transitions of this component will specify in their transition
relation that the values of those variables are not modified by the environment’s non-
synchronizing steps. Those variables that a components has under its control and may
not be modified during its τ -transitions are defined by the function Con.

Definition 6 (Parallel composition of LTSs).
Let

LT S1 = (Loc1,Var ,Con1,Lab1,Edge1, Init1) and
LT S2 = (Loc2,Var ,Con2,Lab2,Edge2, Init2)

be two LTSs. The parallel composition or product LT S1||LT S2 of LT S1 and LT S2 LT S1||LT S2

is defined to be the LTS

LT S = (Loc,Var ,Con,Lab,Edge, Init)

with

• Loc = Loc1 × Loc2,
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• Con((l1, l2)) = Con1(l1) ∪ Con2(l2),

• Lab = Lab1 ∪ Lab2,

• ((l1, l2), a, µ, (l′1, l
′
2)) ∈ Edge iff

– there exist (l1, a1, µ1, l
′
1) ∈ Edge1 and (l2, a2, µ2, l

′
2) ∈ Edge2 such that

– either a1 = a2 = a or
a1 = a ∈ Lab1\Lab2 and a2 = τ , or
a1 = τ and a2 = a ∈ Lab2\Lab1, and

– µ = µ1 ∩ µ2, and

• Init = {((l1, l2), ν) | (l1, ν) ∈ Init1 ∧ (l2, ν) ∈ Init2}.

Example 8.
Assume the parallel composition of the following two LTSs:

LT S1 = (Loc1,Var ,Con1,Lab1,Edge1, Init1)

LT S2 = (Loc2,Var ,Con2,Lab2,Edge2, Init2)

with

• Loc1 = {l1, l2}, Loc2 = {l′1, l′2},

• Var = {x, y},

• Con1(l1) = Con1(l2) = {x}, Con2(l′1) = Con2(l′2) = {y},

• Lab1 = Lab2 = {a, τ},

• Edge1 = {(l1, a, {(ν, ν ′) ∈ V 2|ν ′(x) = ν(y) + 1}, l2), τl1 , τl2},
Edge2 = {(l′1, a, {(ν, ν ′) ∈ V 2|ν ′(y) = ν(x) + 1}, l′2), τl′1 , τl′2},

• Init1 = {(l1, {ν ∈ V |ν(x) = 0})}, Init2 = {(l′1, {ν ∈ V |ν(y) = 0})}

with τl = {(ν, ν ′) ∈ V 2|∀v ∈ Coni(l).ν(v) = ν ′(v)} for all i = 1, 2 and l ∈ Loci.
Graphically (without representing the control variables and τ -transitions):

`1

x = 0

`2
a : x := y + 1

`′1

y = 0

`′2
a : y := x+ 1

The graphical representation of the parallel composition (again without control variables
and τ -transitions) looks as follows:
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(`1, `
′
1)

x = 0, y = 0

(`2, `
′
2)

a : x, y := y + 1, x+ 1

As the only non-τ -transitions of the LTSs are synchronized by the label a, all runs of
the system are of the form σ0

τ→ . . . σ0
a→ σ1

τ→ σ1 . . . with σ0(x) = σ0(y) = 0 and
σ1(x) = σ1(y) = 1.
Let us modify the example such that the transitions do not synchronize:

`1

x = 0

`2
a : x := y + 1

`′1

y = 0

`′2
b : y := x+ 1

The parallel composition looks as follows:

(`1`
′
1)x = 0, y = 0

(`2, `
′
1)

(`1, `
′
2)

(`2, `
′
2)

a : x := y + 1 b : y := x+ 1

b : y := x+ 1 a : x := y + 1

Now the transitions interleave, and if we skip the transitions where both components do
a τ -step, we get two possible runs:

• σ0
a→ σ1

b→ σ2 with

– σ0 = ((l1, l
′
1), ν0), ν0(x) = ν0(y) = 0,

– σ1 = ((l2, l
′
1), ν1), ν1(x) = 1, ν1(y) = 0, and

– σ2 = ((l2, l
′
2), ν2), ν2(x) = 1, ν2(y) = 2, or

• σ0
b→ σ1

a→ σ2 with

– σ0 = ((l1, l
′
1), ν0), ν0(x) = ν0(y) = 0,

– σ1 = ((l1, l
′
2), ν1), ν1(x) = 0, ν1(y) = 1, and

– σ2 = ((l2, l
′
2), ν2), ν2(x) = 2, ν2(y) = 1.

In the next section we extend labeled transition systems to hybrid automata.
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2.4 Hybrid Automata

In an LTS the values of the variables may change instantaneously by taking a discrete
transition from one location to another. Hybrid automata extend LTSs: Additionally
to such discrete state changes, while control stays in a location, times passes by, and
the values of variables change continuously according to some continuous functions. The
combination of the discrete and the continuous behaviour leads to the term “hybrid”.

Definition 7 (Syntax of hybrid automata).
A hybrid automaton H is a tuple (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) whereH

• (Loc,Var ,Con,Lab,Edge, Init) is an LTS with real-valued variables Var , V the set
of all valuations ν : Var → R, and Σ = Loc × V the set of states,

• Act is a function assigning a set of activities f : R≥0 → V to each locationAct

which are time-invariant meaning that f ∈ Act(l) implies (f + t) ∈ Act(l) where
(f + t)(t′) = f(t+ t′) for all t′ ∈ R≥0, and

• a function Inv assigning an invariant Inv(l) ⊆ V to each location l ∈ Loc.Inv

Compared to LTS, we have two new components: the activities and the invariants at-
tached to the locations. The activities describe the continuous state changes in the
locations when time passes by. The invariants restrict this behaviour such that time can
evolve only as long as the invariant of the current location is satisfied. The control must
leave the location before the invariant gets violated using a discrete transition. Also
entering a location by a discrete step is only possible if the target location’s invariant is
satisfied after the step.
The execution of a hybrid automaton starts in a state σ0 = (l0, ν0) ∈ Init from the
initial set. The invariant Inv(l0) of the initial location l0 must be satisfied by the initial
valuation ν0, i.e., ν0 ∈ Inv(l0) must hold. Now two things can happen:

1. Time can pass by in the current location l0, and the values of the variables evolve
according to a function f : R≥0 → V from Act(l0). The function f must satisfy
f(0) = ν0, i.e., it assigns the initial valuation to the time point 0. After t time
units the variables’ values are given by ν1 = f(t), i.e., the system reaches the state
(l0, ν1).

However, the control may stay in l0 only as long as the invariant Inv(l0) of l0 is
satisfied. I.e., t time can pass by only if ∀0 ≤ t′ ≤ t we have f(t) ∈ Inv(l0).

2. A discrete state change can happen if there is an enabled edge from l0, i.e., if there
is a (l0, a, µ, l1) ∈ Edge and a valuation ν1 ∈ V such that (ν0, ν1) ∈ µ. The invariant
of the target location must be satisfied after the step, i.e., ν1 ∈ Inv(l1) must hold.

From the state resulting from such a time or discrete step the system can again take
either a time or a discrete step as described above.
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Definition 8 (Semantics of hybrid automata).
The semantics of a hybrid automaton H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init) is
given by an operational semantics consisting of two rules, one for the discrete instanta-
neous steps and one for the continuous time steps.

1. Discrete step semantics

(l, a, (ν, ν ′), l′) ∈ Edge ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rulediscrete

2. Time step semantics

f ∈ Act(l) f(0) = ν f(t) = ν ′ t ≥ 0 f([0, t]) ⊆ Inv(l)

(l, ν)
t→ (l, ν ′)

Ruletime

An execution step

→ =
a→ ∪ t→

of H is either a discrete or a time step. A path (or run or excecution) π of H is a π

sequence σ0 → σ1 → σ2 . . . with σ0 = (l0, ν0) ∈ Init , ν0 ∈ Inv(l0), and σi → σi+1 for all
i ≥ 0. A state is said to be reachable in H iff there is a run of H leading to it.

As it is the case for LTS, the operational semantics of hybrid automata define their
induced state transition system. In the hybrid setting the set of reachables states is in
general uncountable, as time progress leads to continuous behaviour.
Usually, the activities of a hybrid automaton are given implicitly by differential equations,
the activities being their solutions. E.g., ẋ = 1 specifies a set of activities f : R≥0 → V
with f(t)(x) = t+ c for any c ∈ R being the value of x at time point 0.
Furthermore, valuation sets like the invariants of the locations are usually specified by
formulae of the first-order logic over the reals (without quantifiers). E.g., x > 0 specifies
the valuation set {ν ∈ V |ν(x) > 0}.
Finally, similarly to LTSs, also hybrid automata are often given in a graphical repre-
sentation. We illustate the modeling by hybrid automata on our previous examples of
the bouncing ball, the thermostat, and the water-level monitor. In the graphical rep-
resentations in the following we omit the τ -transitions, non-synchronizing labels, trivial
invariants, etc..
Example 9.
Assume the following graphical visualization of a hybrid automaton:

`1

ẋ = 2
x ≤ 4

x = 0

`2
ẋ = −2
x ≥ 0

a: x ≥ 3

a: x := 0
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The formal definition is as follows:

• Loc = {`1, `2},

• Var = {x},

• Con(`1) = Con(`2) = {x},

• Lab = {τ, a},

• Edge =

{ (`1, a, {(ν, ν ′) ∈ V 2 | ν(x) ≥ 3 ∧ ν ′(x) = ν(x)}, `2),

(`2, a, {(ν, ν ′) ∈ V 2 | ν ′(x) = 0}, `1),

(`1, τ, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `1),

(`2, τ, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `2) },

• Act(`1) = {f : R≥0 → V | ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = 2t+ c},
Act(`2) = {f : R≥0 → V | ∃c ∈ R.∀t ∈ R≥0.f(t)(x) = −2t+ c},

• Inv(`1) = {ν ∈ V | ν(x) ≤ 4},
Inv(`2) = {ν ∈ V | ν(x) ≥ 0},

• Init = {(`1, ν) ∈ Σ | ν(x) = 0}.

Note that the activity sets for both locations are time-invariant. The instances of the
discrete rule of the semantics for the two non-τ discrete transitions are:

ν(x) ≥ 3 ν ′(x) = ν(x) (ν ′(x) ≥ 0)

(l1, ν)
a→ (l2, ν

′)
Rulel1→l2discrete

ν ′(x) = 0 (ν ′(x) ≤ 4)

(l2, ν)
a→ (l1, ν

′)
Rulel2→l1discrete

The antecedents in parenthesis are implied by the other antecedents and are thus not
needed. Since the only variable x is in the control variable sets of both locations, the
τ -transitions do not allow any state change:

l ∈ Loc

(l, ν)
τ→ (l, ν)

Ruleτdiscrete

For the time steps we have the following rule instances:

ν ′(x) ≤ 4 t ≥ 0 ν ′(x) = ν(x) + 2t

(l1, ν)
a→ (l1, ν

′)
Rulel1time

ν ′(x) ≥ 0 t ≥ 0 ν ′(x) = ν(x)− 2t

(l2, ν)
a→ (l2, ν

′)
Rulel2time
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The following picture visualizes the behavior of the system by depicting the possible values
for x at each point in time:

t0

x

1 2 3 4 5 6

1

2

3

4

Example 10.
Assume another hybrid automaton:

`1

ẋ = 1
ẏ = 0

x ≤ y + 1

x = y = 0

`2
ẋ = 0
ẏ = 1

y ≤ x+ 1

a:

a:

The formal definition is as follows:

• Loc = {`1, `2},

• Var = {x, y},

• Con(`1) = Con(`2) = {x, y},

• Lab = {τ, a},

• Edge =

{ (`1, a, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `2),

(`2, a, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `1),

(`1, τ, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `1),

(`2, τ, {(ν, ν ′) ∈ V 2 | ν = ν ′}, `2) },

• Act(`1) = {f : R≥0 → V | ∃cx, cy ∈ R.∀t ∈ R≥0.f(t)(x) = t+ cx ∧ f(t)(y) = cy},
Act(`2) = {f : R≥0 → V | ∃cx, cy ∈ R.∀t ∈ R≥0.f(t)(x) = cx ∧ f(t)(y) = t+ cy},
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• Inv(`1) = {ν ∈ V | ν(x) ≤ ν(y) + 1},
Inv(`2) = {ν ∈ V | ν(y) ≤ ν(x) + 1},

• Init = {(`1, ν) ∈ Σ | ν(x) = 0 ∧ ν(y) = 0}.

The behaviour can be visualized as follows by depicting the reachable (x, y) value pairs
(without representing the time):

x0

y

1 2 3 4

1

2

3

4

Example 11 (Thermostat).
Assume again the thermostat from Example 1. The modeling hybrid automaton is depicted
on Figure 2.7.
In location `on the heater is on and the temperature raises according to the differential
equation ẋ = K(h− x). The location’s invariant x ≤ 22 assures that the heater turns off
at latest when the temperature reaches 22◦C. Analogously for the location `off, where the
heater is off.
Control may move from location `on to `off, switching the heater off, if the temperature is
at least 21◦C, and from `off to `on if the temperature is at most 19◦C. The temperature
x does not change by jumping from `on to `off or from `off to `on. Initially, the heater is
on and the temperature is 20◦C.
Note that this model is non-deterministic. E.g., in location `on, if the temperature is
between 21◦C and 22◦C, both time progress and switching the heater off are possible.

Example 12 (Water-level monitor).
The hybrid automaton model for the water-level monitor Example 2 is depicted in Fig-
ure 2.8.
The automaton has two locations representing the control modes for refilling the first tank
in `1 or refilling the second tank in `2. The water levels in the tanks are represented by
the variables x1 and x2, being initially larger than r1 resp. r2 height units, i.e., initially
x1 > r1 ∧ x2 > r2 holds.
Both tanks are leaking; the first tank looses v1 height unit per time unit by leaking, the
second tank v2. When refilling a tank, w height unit per time unit is refilled. That
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`on

ẋ = K(h− x)
x ≤ 22

`off

ẋ = −Kx
x ≥ 18

x = 20

x ≥ 21

x ≤ 19

Figure 2.7: The hybrid automaton model of the thermostat

q1

ẋ1 = w − v1

ẋ2 = −v2

x2 ≥ r2

q2

ẋ1 = −v1

ẋ2 = w − v2

x1 ≥ r1

x1 > r1 ∧ x2 > r2 x1 > r1 ∧ x2 > r2
x2 ≤ r2

x1 ≤ r1

Figure 2.8: The hybrid automaton model of the water-level monitor

means, the activities in `1 are represented by the differential equations ẋ1 = w − v1 and
ẋ2 = −v2, and analogously for `2. In order to increase the water level when refilling a
tank we assume w > v1 and w > v2.
The invariant x2 ≥ r2 of `1 assures that the first tank is getting refilled only as long as
there is enough water in the second tank (water level at least r2). The hose will switch to
refilling the second tank when the water level x2 reaches r2. This is done by taking the
discrete transition from `1 to `2. Note that the transition’s condition allows to switch only
if x2 is at most r2, and the invariant assures that x2 is at least r2, such that the transition
will be taken by the exact value r2 of x2. Refilling the second tank works analogously.
Note also that the discrete transitions can be taken only if the target location’s invariant
x1 ≥ r1 is not violated. It can be shown that both invariants are globally valid, and thus
the discrete transitions are never blocked by the invariants.

Example 13 (Bouncing Ball).
The hybrid automaton model of the bouncing ball from Example 3 is depicted on Fig-
ure 2.9. Initially the height of the ball x1 is larger or equal 0 (height 0 corresponds to the
earth and positive height above the earth) and its speed x2 is positive, stating that the ball
is initially raising.
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l0

ẋ1 = x2

ẋ2 = −g
x1 ≥ 0

x1 ≥ 0 ∧ x2 > 0

x1 = 0 ∧ x2 < 0
x2 := −cx2

Figure 2.9: The hybrid automaton model of the bouncing ball

The automaton has a single location l0. Time progress in this location corresponds to
the raising and falling of the ball. The differential equation ẋ1 = x2 defines x2 as the
derivative of the height, i.e., the ball’s speed, and ẋ2 = −g with g the gravity constant
defines the speed change due to gravity.
The ball can raise and fall only as long as it has a non-negative height as stated by
the invariant x1 ≥ 0. After raising and reaching the highest point, it starts falling and
reaches the earth when x1 = 0 and x2 < 0. Then it bounces, represented by the single
discrete transition. Note that the bounce is forced by the invariant. The bounce changes
the speed’s direction and reduces its absolute value due to some loss of kinetic energy
during bouncing as denoted by x2 := −cx2. After bouncing, x1 is still 0 but x2 is now
positive, and the ball raises again.

For the ease of modeling, also hybrid systems can be modeled componentwise. The re-
sulting global system is given by the parallel composition of the different components.
The parallel composition of hybrid automata extends the definition of the parallel com-
position for LTSs as follows.

Definition 9 (Parallel composition of hybrid automata).
Let

H1 = (Loc1,Var ,Con1,Lab1,Edge1,Act1, Inv1, Init1) and
H2 = (Loc2,Var ,Con2,Lab2,Edge2,Act2, Inv2, Init2)

be two hybrid automata. The parallel composition or product H1||H2 of H1 and H2 isH1||H2

defined to be the hybrid automaton

H = (Loc,Var ,Con,Lab,Edge,Act , Inv , Init)

with

• The LTS part (Loc,Var ,Con,Lab,Edge, Init) equals the parallel composition

(Loc1,Var ,Con1,Lab1,Edge1, Init1)||(Loc2,Var ,Con2,Lab2,Edge2, Init2)
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of the LTS parts of the components,

• Act(l1, l2) = Act1(l1) ∩Act2(l2) for all (l1, l2) ∈ Loc, and

• Inv(l1, l2) = Inv1(l1) ∩ Inv2(l2) for all (l1, l2) ∈ Loc.

As a simple demonstration of the parallel composition we consider the modeling of a
railroad crossing.

Example 14 (Railroad crossing).
We extend Example 6 with real-time behaviour as follows:

• After the train triggers the “approach” signal it reaches the gate between 2 and 3
minutes. It passes the track between the “approach” and the “exit” sensors within 5
minutes. The resulting automaton HTrain looks as follows, with the single control
variable x in each location:

far
near
ẋ = 1
x ≤ 3

past
ẋ = 1
x ≤ 5

x := 0

approach enter
x ≥ 2

exit

• After receiving an “approach” signal, the controller delays 1 minute before it sends
a “lower” signal to the gate. After receiving an “exit” signal it notifies the gate
by emitting a “raise” signal with a delay of at most one minute. The resulting
automaton HController, with y being the only control variable in each location, is as
follows:

0 1
ẏ = 1
y ≤ 1

23
ẏ = 1
y ≤ 1

y := 0

approach

low
er

y
=

1

exit

y := 0

ra
is
e
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• The gate needs at most one minute to be lowered and between one and two minutes
to be raised. The so obtained automaton, having z as single control variable in each
location, is denoted by HGate:

up coming down
ż = 1
z ≤ 1

downgoing up
ż = 1
z ≤ 2

z := 0

lower

z := 0

raise

z
≥

1

Exercises
Exercise 1.
Show that the LSTS parallel composition is commutative and associative.

Exercise 2.
Show that the LTS parallel composition is commutative and associative.

Exercise 3.
Show that the parallel composition of hybrid automata is commutative and associative.

Exercise 4.
Construct the automaton (HTrain ‖ HController) ‖ HGate from Example 14.
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Chapter 3

Discrete Systems

In the next chapters we address the analysis of hybrid systems modeled by hybrid au-
tomata. Before doing so, in this chapter we first give some preliminaries in logics that
allow to describe properties of discrete systems (here on the example of labeled state
transition systems). After introducing propositional logic in a nutshell in Section 3.1 we
deal with temporal logics in Section 3.2. We explain the basic idea of model checking of
discrete systems in Section 3.3. We close the chapter with discussing a discrete model of
time in Section 3.4.

3.1 Propositional Logic

Assume a set of states Σ, a set of atomic propositions AP, and a labeling function
L : Σ→ 2AP assigning to each state a set of propositions holding in that state. Then we
can use propositional logic to describe properties of states. Propositional logic is built up
from propositions and Boolean operators, and has the abstract syntax

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ)

with a ∈ AP and where ∧ is the “and”-operator for conjunction and ¬ is the operator ∧,¬
for negation. As syntactic sugar the constants true and false, and the Boolean operators
∨ (“or”), → (“implies”), ↔ (“if and only if”), . . . can be introduced. We often omit ∨,→,↔
parentheses with the convention that the strength of binding is in the order ¬,∧,∨,→,↔,
i.e., ¬ binds the strongest and ↔ the weakest. We use FormAP

prop (or short Formprop) to Formprop

denote the set of all propositional formulae over the atomic proposition set AP .
Propositional formulae are evaluated in the context of a state with the help of the labeling
function. The semantics is given by the relation |=prop ⊆ Σ × Formprop (or short |=),
which is defined recursively over the structure of propositional formulae as follows: |=prop

σ |=prop a iff a ∈ L(σ),
σ |=prop (ϕ1 ∧ ϕ2) iff σ |=prop ϕ1 and σ |=prop ϕ2,
σ |=prop (¬ϕ) iff σ 6|=prop ϕ.
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Though propositional logic is well-suited to describe states of a system, we are also
interested in describing computations of systems. Propositional temporal logics, i.e.,
propositional logic extended with temporal modalities, can be used for this purpose.

3.2 Temporal Logics

Assume in the following a labeled state transition system LST S = (Σ,Lab,Edge, Init),
a set of atomic propositions AP, and a labeling function L : Σ → 2AP. The labeled
state transition system’s semantics specifies the paths of the system which can be seen
as a forest: for each initial state there is a tree with that initial state as root, and each
state being a node in a tree has all possible successor states as children. Each path
of the system corresponds to a path in one of the trees. In the following we assume
deadlock-free systems and infinite paths.

Example 15 (Computation tree).
Assume the following simple state transition system, where we omit synchronization labels
on edges, but depict the labeling of states with atomic propositions:

σ1 σ2{a} {b}

This system has the following computation tree:

σ1

σ1

σ1

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

σ1

. . . . . .

σ2

. . . . . .

σ2

σ1

. . . . . .

σ2

. . . . . .

{a}

{a}

{a}

{a} {b}

{b}

{a} {b}

{b}

{a}

{a} {b}

{b}

{a} {b}

Next we describe the temporal logics LTL, CTL, and CTL∗, which are suited to argue
about paths in the computation tree.
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3.2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) is suited to argue about single (linear) paths in the com-
putation tree.

Definition 10 (Syntax of LTL).
Assume a set AP of atomic propositions. LTL has the abstract syntax X ,U

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (Xϕ) | (ϕ U ϕ)

where a ∈ AP. We use FormAP
LTL (or short FormLTL) to denote the set of LTL formulae. FormLTL

Again, we omit parentheses when it causes no confusion, assuming that the Boolean
operators bind stronger than the temporal ones.
For a path π = σ0 → σ1 → . . . let π(i) denote the ith state in π, i.e., σi, and let πi

denote the suffix σi → σi+1 → . . ..
Using the “next time” operator X we can build LTL formulae Xϕ (“next time ϕ”) which
are satisfied by a path π iff ϕ holds in π1, i.e., when removing the first state from π.
The second temporal operator is the “until” operator. The formula ϕ1 U ϕ2 (“ϕ1 until
ϕ2”) is satisfied by a path π = σ0 → σ1 → . . . iff ϕ2 holds for some suffix πj and ϕ1 holds
all the time before, i.e., for all πi with 0 ≤ i < j.
As syntactic sugar the temporal operators F (“finally” or “eventually”) and G (“globally”) F ,G
can be introduced. The formula Fϕ (“finally ϕ) is defined as true U ϕ, stating that ϕ
will be true after a finite number of steps. The formula Gϕ (“globally ϕ”) is defined as
¬(true U ¬ϕ), stating that ϕ holds all along the path.
Besides the above notation, for the temporal operators there is another commonly used
alternative notation: #,♦,2

U for U
# for X
♦ for F
2 for G

For example, the formula GFϕ can also be written as 2♦ϕ.

Example 16.
We give some example LTL formulae and some paths of the system from Example 15
satisfying them. Thereby we omit labelings irrelevant for the satisfaction.
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a : σ1 σ2 σ2 σ1 σ1 . . .

{a}

X b : σ1 σ2 σ1 σ1 σ1 . . .

{b}

a U b : σ1 σ1 σ1 σ2 σ1 . . .

{a} {a} {a} {b}

Fb : σ1 σ1 σ1 σ1 σ2 . . .

{b}

Ga : σ1 σ1 σ1 σ1 σ1 . . .

{a} {a} {a} {a} {a}

Definition 11 (Semantics of LTL).
The semantics of LTL is given by the satisfaction relation |=LTL (or short |=) which|=LTL

evaluates LTL formulae in the context of a path as follows:

π |=LTL a iff a ∈ L(π(0)),
π |=LTL ϕ1 ∧ ϕ2 iff π |=LTL ϕ1 and π |=LTL ϕ2,
π |=LTL ¬ϕ iff π 6|=LTL ϕ,
π |=LTL Xϕ iff π1 |=LTL ϕ,
π |=LTL ϕ1 U ϕ2 iff ∃j ≥ 0.πj |=LTL ϕ2 ∧ ∀0 ≤ i < j.πi |=LTL ϕ1.

For a state transition system LST S and an LTL formula ϕ we define LST S |=LTL ϕ to
hold if and only if π |=LTL ϕ for all paths π of LST S.

Example 17.
The LST S from Example 15 does not satisfy Fb, since there is a path π = σ1 → σ1 → . . .
on which b never holds. But it satisfies Fa, since the proposition a holds in the initial
state.

A typical property expressible in LTL is the liveness property of reactive systems, ex-
pressed by formulae of the form GFϕ. Another class of properties of the form Gϕ ex-
presses safety, stating that ϕ holds all the time.
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3.2.2 Computation Tree Logic

Whereas LTL argues about linear paths, CTL formulae specify properties of computa-
tion trees. We distinguish between state formulae and path formulae. Intuitively, state
formulae describe properties of the states (nodes) in the computation tree, and path for-
mulae describe properties of paths in the tree. On the one hand, a path formula can be
converted into a state formula by putting an existential or a universal quantifier in front
of it, denoting that the path formula holds for a path respectively for all paths starting
in a given node of the computation tree. On the other hand, state formulae are used to
generate path formulae using the temporal operators. This implies, that a CTL state
formula contains quantifiers and temporal operators in an alternating manner.

Definition 12 (Syntax of CTL).
CTL state formulae over a set AP of atomic propositions can be built according to the
abstract grammar

ψ ::= a | (ψ ∧ ψ) | (¬ψ) | (Eϕ) | (Aϕ)

with a ∈ AP and ϕ are CTL path formulae. CTL path formulae are built according to
the abstract grammar

ϕ ::= Xψ | ψ U ψ

where ψ are CTL state formulae. CTL formulae are CTL state formulae building the set
FormAP

CTL (or short FormCTL). FormCTL

We omit parentheses when it causes no confusion. Similarly to LTL, we can introduce
the “finally” and “globally” operators. For state formulae ψ we define Fψ = true U ψ as
path formulae. Note that the LTL definition Gψ = ¬(true U ¬ψ) of “globally” has to be
modified since it does not follow the CTL syntax (see Exercise 5).
Also the quantifiers A and E have an alternative notation, as introduced for LTL for the
temporal operators. In this alternative notation we write ∃, ∀

U for U
# for X
♦ for F
2 for G
∃ for E
∀ for A

For example, the formula AGEFϕ can also be written as ∀2∃♦ϕ.
|=CTL

Definition 13 (Semantics of CTL).
The satisfaction relation |=CTL⊆ Σ×FormCTL (or short |=) evaluates CTL state formulae
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in the context of a state, and CTL path formulae in the context of a path as follows:

σ |=CTL a iff a ∈ L(σ)
σ |=CTL ψ1 ∧ ψ2 iff σ |=CTL ψ1 and σ |=CTL ψ2

σ |=CTL ¬ψ iff σ 6|=CTL ψ
σ |=CTL Eϕ iff π |=CTL ϕ for some π = σ0 → σ1 → . . . with σ0 = σ
σ |=CTL Aϕ iff π |=CTL ϕ for all π = σ0 → σ1 → . . . with σ0 = σ

π |=CTL Xψ iff π(1) |=CTL ψ
π |=CTL ψ1 U ψ2 iff exists 0 ≤ j with π(j) |=CTL ψ2 and π(i) |=CTL ψ1 for all 0 ≤ i < j.

Example 18.
For our LST S from Example 15 the CTL formula AGEX b holds, since at each node of
the computation tree we can take a transition into σ2 labeled with b.
The formula AFEGa does not hold, as the path σ1 → σ2 → σ2 → . . . violates the path
property FEGa.
However, the formula AGEXEGa holds.

3.2.3 CTL∗

The logic CTL∗ is an extension of CTL and allows arbitrary alternation of path quantifiers
and temporal operators.

Definition 14 (Syntax of CTL∗).
CTL∗ formulae can be built according to the following abstract syntax. CTL∗ state for-
mulae over a set AP of atomic propositions can be built according to the abstract grammar

ψ ::= a | (ψ ∧ ψ) | (¬ψ) | (Eϕ)

with a ∈ AP and ϕ are CTL∗ path formulae. CTL∗ path formulae are built according to
the abstract grammar

ϕ ::= ψ | (ϕ ∧ ϕ) | (¬ϕ) | (Xϕ) | (ϕ U ϕ)

where ψ are CTL∗ state formulae. CTL∗ formulae are CTL∗ state formulae building the
set FormCTL∗.FormCTL∗

Again, we omit parentheses when it causes no confusion. We can define the “finally”
and “globally” operators also for CTL∗ as syntactic sugar (see Exercise 6). Note that
the universal quantification is not part of the CTL∗ syntax since Aϕ can be defined as
syntactic sugar by ¬E¬ϕ.

Definition 15 (Semantics of CTL∗).
The satisfaction relation |=CTL∗⊆ Σ × FormCTL∗ (or short |=) evaluates CTL∗ state|=CTL∗
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LTL CTL

CTL∗

Figure 3.1: The expressiveness of LTL, CTL, and CTL∗

formulae in the context of a state and CTL∗ path formulae in the context of a path as
follows:

σ |=CTL∗ a iff a ∈ L(σ)
σ |=CTL∗ ψ1 ∧ ψ2 iff σ |=CTL∗ ψ1 and σ |=CTL∗ ψ2

σ |=CTL∗ ¬ψ iff σ 6|=CTL∗ ψ
σ |=CTL∗ Eϕ iff π |=CTL∗ ϕ for some π = σ0 → σ1 → . . . with σ0 = σ

π |=CTL∗ ψ iff π(0) |=CTL∗ ψ
π |=CTL∗ ϕ1 ∧ ϕ2 iff π |=CTL∗ ϕ1 and π |=CTL∗ ϕ2

π |=CTL∗ ¬ϕ iff π 6|=CTL∗ ϕ
π |=CTL∗ Xϕ iff π1 |=CTL∗ ϕ
π |=CTL∗ ϕ1 U ϕ2 iff exists 0 ≤ j with πj |=CTL∗ ϕ2 and πi |=CTL∗ ϕ1 for all 0 ≤ i < j.

3.2.4 The Relation of LTL, CTL, and CTL∗

The logics LTL and CTL are incomparable, and both are included in CTL∗, as shown in
Figure 3.1. That LTL and CTL are incomparable means, that there are LTL formulae for
which no equivalent CTL formulae exist, and vice versa, there are CTL formulae which
are not expressible in LTL.

Example 19.
• The LTL formula FGa is not expressible in CTL.

• The CTL formula AFAGa is not expressible in LTL.

There are CTL∗ formulae that syntactically does not belong to LTL or to CTL but for
that semantically equivalent LTL or CTL formulae can be given. However, CTL∗ is
more expressive than LTL and CTL together, i.e., there are CTL∗ formulae that can be
expressed neither in LTL nor in CTL (see Exercise 7).

Example 20.
The CTL∗ formula A¬GEFa with a ∈ AP is syntactically not a CTL formula. However,
it can be expressed by the semantically equivalent CTL formula ∀F∀G¬a.

——- Draft version, please do not distribute ——- 37



CHAPTER 3. DISCRETE SYSTEMS

The CTL∗ formula AGAFGa with a ∈ AP is syntactically not an LTL formula. However,
it can be expressed by the semantically equivalent LTL formula FGa.

3.3 Model Checking

Model checking of discrete systems is not the basic content of this lecture, thus here
we restrict ourselves to the intuition behind explicit1 model checking can handle finite-
state systems, only. This will be relevant later, as we will build finite abstractions of
infinite-state systems to be able to apply model checking.
Given a state transition system (usually represented as a Kripke-structure) and a CTL
formula ψ0, CTL model checking labels the states recursively with the subformulae of ψ0

inside-out.

• The labeling with atomic propositions a ∈ AP is given by a labeling function.

• Given the labelings for ψ1 and ψ2, we label those states with ψ1 ∧ ψ2 that are
labeled with both ψ1 and ψ2.

• Given the labeling for ψ, we label those states with ¬ψ that are not labeled with
ψ.

• Given the labeling for ψ, we label those states with EXψ that have a successor
state labeled with ψ.

• Given the labeling for ψ1 and ψ2, we

– label all with ψ2 labeled states additionally with Eψ1 U ψ2, and
– label those states that have the label ψ1 and have a successor state with the

label Eψ1 U ψ2 also with Eψ1 U ψ2 iteratively until a fixed point is reached,
i.e., until no new labels can be added.

• Given the labeling for ψ, we label those states with AXψ whose successor states
are all labeled with ψ.

• Given the labeling for ψ1 and ψ2, we

– label all with ψ2 labeled states additionally with Aψ1 U ψ2, and
– label those states that have the label ψ1 and all of their successor states have

the label Aψ1 U ψ2 also with Aψ1 U ψ2 iteratively until a fixed point is reached.

Since ψ0 has only a finite number of sub-formulae and since there is only a finite number
of states that can be labeled in the iterative cases, the procedure always terminates. The
formula ψ0 is satisfied by the LSTS iff after termination of the procedure the initial state
is labeled with ψ0. Note that this model checking approach would not be complete, i.e.,
in general would not terminate, for infinite-state systems.

1Explicit model checking is based on the enumeration of states, in contrast to symbolic model checking
using a symbolic BDD state space representation. CTL model checking.
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Example 21.
Assume again the LSTS from Example 15:

σ1 σ2{a} {b}

In Example 18 we stated that this LSTS satisfies the CTL formula AGEXEGa. We prove
this fact by model checking.
First we replace the syntactic sugar of the “globally” operator by its definition using

EGψ ↔ ¬Atrue U ¬ψ
AGψ ↔ ¬Etrue U ¬ψ.

This yields
ψ := ¬ (E true U ¬ (EX¬ (Atrue U (¬a))))

Model checking this property for the given system consists of labeling the states with the
following subformulae in this order:

1. ψ1 := ¬a

2. ψ2 := Atrue U ψ1

3. ψ3 := ¬ψ2

4. ψ4 := EXψ3

5. ψ5 := ¬ψ4

6. ψ6 := E true U ψ5

7. ψ7 := ¬ψ6

Labeling with the atomic proposition a is given by the labeling function: it holds only in
σ1. For the labeling with the above subformulae we get:

1. ψ1 := ¬a: We label with ψ1 all those states where a does not hold. That means we
label σ2 with ψ1.

2. ψ2 := Atrue U ψ1:

• We first label with ψ2 all those states where ψ1 holds. That means, we label
σ2 with ψ2.

• Those states that are not yet labeled with ψ2 but whose successors are all labeled
with ψ2 get also labeled with ψ2. However, there are no such states.
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3. ψ3 = ¬ψ2: We label with ψ3 all states that are not labeled with ψ2. That means,
we label σ1 with ψ3.

4. ψ4 := EXψ3: We label with ψ4 all states that have a successor state labeld with ψ3.
That means, we label both σ1 and σ2 with ψ4.

5. ψ5 := ¬ψ4: Label with ψ5 all states that are not labeled with ψ4. As both states are
labeled with ψ4, no states get the label ψ5 attached.

6. ψ6 := E true U ψ5:

• We label with ψ6 all states with the label ψ5. However, there are no such states.

• We label with ψ6 all states that are not yet labeled with ψ6 but that have a
successor state labeled with ψ6. There are no such states.

7. ψ7 := ¬ψ6: We label with ψ7 all states that are not labeled with ψ6. That means,
we label both states σ1 and σ2 with ψ7.

The labeling result is as follows:

σ1 σ2



a,

ψ3,
ψ4,
ψ7





b,
ψ1,
ψ2,

ψ4,
ψ7


As the initial state is labeled with ψ7, the LSTS satisfies ψ7.

3.4 Discrete-Time Systems

Though discrete systems have no continuous components in their model, the real-time
behaviour of the modeled systems may nonetheless be relevant. Assume a controller
executing a program. Though the program itself can be modeled as a discrete system, it
may be critical if the program executes too long and the control values arrive too late.
If we want to model time without having a hybrid model, we can use a discrete-time
model : Time is modeled by discrete time steps, also called ticks. Each transition step
lasts for exactly one tick. Thus the ellapsed time between two actions is always a multiple
of a tick.
In order to describe the time behaviour of discrete-time systems, the temporal operators
of LTL, CTL, and CTL∗ can be extended with time bounds. This way we can express
not only that some events take place but also when they take place in time. However,
this extension does not increase the expressive power of the logics, i.e., a formula in the
extended logics can be represented with an equivalent formula without the discrete-time
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extension. This has the effect that we can use model checking for CTL and LTL also for
their discrete-time extensions.
Note that only the temporal operators “next” X and “until” U are basic, the remaining
ones like “finally” F and “globally” G are syntactic sugar.

We extend the “next” operator X with an upper index. The formula X kϕ with k ∈ N
denotes that ϕ is true after k steps. This indexed “next” operator does not increase the
expressiveness of the logic, as it is syntactic sugar. In LTL it is defined recursively by

X kϕ =

{
ϕ if k = 0
XX k−1ϕ else.

Thus X kϕ = X . . .X︸ ︷︷ ︸
k

ϕ in LTL.

In CTL the quantifiers and temporal operators are alternating. For CTL we define

EX kψ =

{
ψ if k = 0
EXEX k−1ψ else.

Thus EX kψ = EX . . .EX︸ ︷︷ ︸
k

ψ. The definition in combination with the universal quantifier

AX kψ is analogous.

The extension of the “until” U operator is similar, but here we allow intervals instead of
fixed values for the time bounds. The formula ϕ1 U [k1,k2] ϕ2 (k1, k2 ∈ N, k1 ≤ k2) states
that there exists a k ∈ N with k1 ≤ k ≤ k2 such that ϕ2 holds in k steps and ϕ1 holds all
the time before. We also allow right-open intervals with k2 being ∞, such that we can
still represent the original “until” operator by ϕ1 U [0,∞) ϕ2 = ϕ1 U ϕ2.
In LTL we define

ϕ1 U [k1,k2] ϕ2 =


ϕ1 U ϕ2 for [k1, k2] = [0,∞)
ϕ2 for [k1, k2] = [0, 0]

ϕ1 ∧ X (ϕ1 U [k1−1,k2−1] ϕ2) for k1 > 0

ϕ2 ∨ (ϕ1 ∧ X (ϕ1 U [0,k2−1] ϕ2)) for k1 = 0, k2 > 0

In CTL we define

Eψ1 U [k1,k2] ψ2 =


Eψ1 U ψ2 for [k1, k2] = [0,∞)
ψ2 for [k1, k2] = [0, 0]

ψ1 ∧ EXE (ψ1 U [k1−1,k2−1] ψ2) for k1 > 0

ψ2 ∨ (ψ1 ∧ EXE (ψ1 U [0,k2−1] ψ2)) for k1 = 0, k2 > 0

We also write

• U≤k instead of U [0,k],

• U≥k for U [k,∞],

• U=k for U [k,k], and
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• U for U [0,∞].

Example 22.
The discrete-time LTL formula a U [2,3] b is defined as

a ∧ X (a ∧ X (b ∨ (a ∧ X b))).

It is satisfied by paths of the following form:

. . .

{a} {a} {b}

. . .

{a} {a} {a} {b}

As the discrete-time temporal operators are defined as syntactic sugar, model checking
can be applied to check the validity of discrete-time temporal formulae for labeled state
transition systems [Kat99, CGP01].

Exercises
Exercise 5.
The LTL definition Gψ = ¬(true U ¬ψ) of “globally” has to be modified for CTL since it
does not follow the CTL syntax. Give a syntactically correct definition for the “globally”
operator in CTL, i.e., define Gψ as a CTL path formula for a CTL state formula ψ.

Exercise 6.
Give a definition of the “finally” and “globally” operators in CTL∗ as syntactic sugar.

Exercise 7.
To show that CTL∗ is more expressive than LTL and CTL together, give a CTL∗ formula
that can be expressed neither in LTL nor in CTL.

42 ——- Draft version, please do not distribute ——-



Chapter 4

Timed Automata

The general reachability problem for hybrid automata is undecidable [ACHH92]. How-
ever, there are subclasses of hybrid automata with restricted expressiveness that are
decidable.
One of the most popular subclasses of hybrid automata is that of timed automata.
Though their expressiveness is very restricted, a wide range of real-time systems can
be modeled with timed automata, for which the reachability problem is decidable, and
thus model checking can be applied. Basically, the only continuous component in timed
automata is time.
In this chapter we introduce timed automata in Section 4.1. In Section 4.2 we extend the
logic CTL with continuous time aspects, resulting in the logic TCTL. In this book we
restrict ourselves to the introduction of TCTL. Another popular timed temporal logic is,
e.g., metric LTL (MTL). We discuss model checking TCTL properties of timed automata
in Section 4.3. For further reading on timed automata and its model checking algorithm
we refer to [BK08].

4.1 Timed Automata

Timed automata are a subclass of hybrid automata, putting several restrictions on the
expressiveness. The variable set of a timed automaton is a finite set of clocks. A clock
is a variable measuring the time, i.e., always evolving at rate 1. The values of the clocks
can only be accessed in a limited way. For reading, the only fact we can observe about a
clock value is the result of a comparision of its value with a constant. Such comparisions
can be formulated by clock constraints. For writing, clocks can only be reset, i.e., their
values can only be set to 0.

Definition 16 (Syntax of clock constraints).
Clock constraints over a finite set C of clocks can be built using the following abstract
grammar:

g ::= x < c | x ≤ c | x > c | x ≥ c | g ∧ g
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where c ∈ N1 and x ∈ C.
Clock constraints which are not a conjunction are called atomic. The set of atomic clock
constraints over a set C of clocks is denoted by ACC (C). The set of all clock constraints
over C is referred to as CC (C).

We also introduce clock constraints of the form x = c as syntactic sugar, using the
definition x ≥ c ∧ x ≤ c.
Clock constraints are evaluated in the context of a valuation ν ∈ V as introduced for
hybrid automata. In the context of timed automata the valuation is a function assigning
values to the clocks, i.e., being of type ν : C → R.

Definition 17 (Semantics of clock constraints).
The semantics of clock constraints over a finite set C of clocks is given by the relation
|=CC⊆ V × CC (C) (or short |=) defined as follows:|=CC

ν |=CC x < c iff ν(x) < c,
ν |=CC x ≤ c iff ν(x) ≤ c,
ν |=CC x > c iff ν(x) > c,
ν |=CC x ≥ c iff ν(x) ≥ c,
ν |=CC g1 ∧ g2 iff ν |=CC g1 and ν |=CC g2.

We also use the notation σ |=CC g for states σ = (l, ν) with the meaning ν |=CC g.

For the sake of readability we also use notations like

true, x ∈ [c1, c2), c1 ≤ x < c2, x = c, . . .

with the expected meaning.
As mentioned above, write access to clocks is restricted to resetting their values to 0.

Definition 18 (Syntax of clock reset).
Given a finite set C of clocks, a clock reset is an expression of the form reset(C) withreset(C)

C ⊆ C. Sometimes we also write reset(x1, . . . , xn) for reset({x1, . . . , xn}).

Also the semantics of a clock reset is given in the context of a valuation. Semantically,
a clock reset reset(C) denotes that the values of all clocks in C get reset to 0, and the
values of all other clocks from C\C remain unchanged.

Definition 19 (Semantics of clock reset).
Let C be a finite set of clocks and C ⊆ C. The result of reset(C) applied to a valuation
ν ∈ V is given by the valuationreset(C) in ν

(reset(C) in ν)(x) =

{
0 if x ∈ C
ν(x) otherwise

for all x ∈ C. For a state σ = (l, ν) also write reset(x) in σ for the state (l, reset(x) in ν).

In the following we make use of the following notation for time delay:
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Definition 20.
We define for all valuations ν ∈ V and constants c ∈ N the notation ν+c for the valuation ν + c

with (ν + c)(x) = ν(x) + c for all x ∈ C.

Example 23 (Clock access).
Assume a clock set C = {x, y} and a valuation ν : C → R with ν(x) = 2 and ν(y) = 3.
Then

• ν + 9 assigns 11 to x and 12 to y,

• reset(x) in (ν + 9) assigns 0 to x and 12 to y,

• (reset(x) in ν) + 9 assigns 9 to x and 12 to y,

• reset(x) in (reset(y) in ν) assigns 0 to both x and y, and

• reset(x, y) in ν assigns 0 to both x and y.

Next we give the definition of timed automata. The definition of hybrid automata gets
thereby restricted according to the above described properties as follows:

• The variables of a timed automaton are clocks. We write C instead of Var to denote
this fact.

• The activity functions can be skipped, as all clocks evolve with the derivative 1.
That means, all timed automata with a clock set C have the same set

{f : R→ V | ∀x ∈ C.∃c ∈ R.∀t ∈ R≥0.f(t)(x) = t+ c}

of activity functions in all locations, which we do not define explicitely.

• In order to restrict the transition relation of the discrete edges to the less powerful
clock access, we use enabling conditions in form of clock constraints combined with
reset sets in place of general transition relations. Given a pair (g, C) ∈ CC (C)× 2C

of a clock constraint g and a reset set C, the corresponding transition relation
µ ⊆ V 2 is given by

µ = {(ν, ν ′) ∈ V 2 | ν |= g ∧ ν ′ = reset(C) in ν}.

For simplicity in the following we write edges in the form (l, a, (g, C), l′) ∈ Loc ×
Lab × (CC (C)× 2C)× Loc).

• The invariants are also of a restricted form, as they must be definable by clock
constraints. An invariant set defined by a clock constraint g ∈ CC (C) is given by
the set of all valuations satisfying g:

{ν ∈ V | ν |= g}

Note that since all clock constraints are conjunctions of atomic clock constraints,
the resulting invariant sets are convex. In the following we see the invariant function
as of type Inv : Loc → CC (C) assigning a clock contraint to each location.

1We can also allow c ∈ Q.
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• Finally, the valuation components of initial states assign the value 0 to all clocks.

There is a further difference between timed automata and hybrid automata regarding the
parallel composition. For hybrid automata the parallel composition requires a common
variable set, i.e., there are variables shared by the components. However, allowing shared
variables in the timed automata composition leads to some complications, which we do
not discuss here. Instead, we restrict the composition of timed automata such that
the components must have disjunct variable sets, and give a definition of the parallel
composition for timed automata under this restriction.
Note that when excluding shared variables, the only way of communication is label
synchronization. Thus the definition of the controlled variable sets Con and also the
τ -transitions get superfluous.

Definition 21 (Syntax of timed automata).
A timed automaton T = (Loc, C,Lab,Edge, Inv , Init) is a tuple with

• Loc is a finite set of locations,

• C is a finite set of clocks,

• Lab is a finite set of synchronization labels,

• Edge ⊆ Loc × Lab × (CC (C)× 2C)× Loc is a finite set of edges,

• Inv : Loc → CC (C) is a function assigning an invariant to each location, and

• Init ⊆ Σ with ν(x) = 0 for all x ∈ C and all (l, ν) ∈ Init .

We call the variables in C clocks. We also use the notation2 l
a:g,C
↪→ l′ to state that there

exists an edge (l, a, (g, C), l′) ∈ Edge.

Definition 22 (Semantics of timed automata).
The semantics of a timed automaton T = (Loc, C,Lab,Edge, Inv , Init) is given by an
operational semantics, consisting of the following two rules:

(l, a, (g, C), l′) ∈ Edge ν |= g ν ′ = reset(C) in ν ν ′ |= Inv(l′)

(l, ν)
a→ (l′, ν ′)

RuleDiscrete

t ∈ R≥0 ν ′ = ν + t ν ′ |= Inv(l)

(l, ν)
t→ (l, ν ′)

RuleTime .

We use → to denote a→ ∪ t→ when we are not interested in the type of the steps.

2Note that we deviate from the notation in the book of Baier and Katoen who use l
g:a,C
↪→ l′.
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A run (or path or execution) of T is an infinite sequence σ0 → σ1 → σ2 . . . with σi ∈ Σ,
σ0 = (l0, ν0) ∈ Init ∩ Inv(l0). We use PathsT (or short Paths) to denote the set of all
paths of T and ReachT (or short Reach) for the set of reachable states of T , i.e., the set
of states for that there is a path containing that state. We write Paths(σ0) for the set of
infinite execution fragments σ0 → σ1 → σ2 . . . starting in a not necessarily initial state
σ0.

Note that, since the invariants are convex, it is enough to require that they hold after
each time step, and we do not need the requirement that they hold during the whole
period of a time step. Together with the fact that paths start in an initial state satisfying
the invariant of the initial location, we get by induction that the invariants hold on all
paths at each time point.
Again, the semantics of a timed automaton induces an LSTS for its (in general un-
countable) state space. As in the case of discrete systems, also timed automata can
be augmented by a labeling function L : Loc → 2AP where AP denotes the set of
atomic propositions. To simplify the notations, we overload the labeling function defin-
ing L : Σ→ 2AP with L((l, ν)) = L(l).
Similarly to hybrid automata, also timed automata is often represented graphically. As
all clocks evolve with derivative 1 we do not represent the time behaviour in the graphs.
Trivial conditions, non-synchronizing labels, and empty reset sets are also skipped.

Example 24.
The graphical representation

l

x ≤ 2

l′

x ≤ 4

a : x ≥ 1

b : x ≥ 3 reset(x)

denotes the timed automaton T = (Loc, C,Lab,Edge, Inv , Init) with

• Loc = {l, l′}

• C = {x},

• Lab = {a, b},

• Edge = {(l, a, (x ≥ 1, ∅), l′), (l′, b, (x ≥ 3, {x}), l)},

• Inv(l) = x ≤ 2, Inv(l′) = x ≤ 4,

• Init = {(l, ν0)} with ν0(x) = 0.
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Definition 23 (Parallel composition of timed automata).
Let T1 = (Loc1, C1,Lab1,Edge1, Inv1, Init1) and T2 = (Loc2, C2,Lab2,Edge2, Inv2, Init2)
two timed automaton with C1 ∩ C2 = ∅.
The parallel composition T1||T2 is a timed automaton T = (Loc, C,Lab,Edge, Inv , Init)
with valuations ν : C → R≥0, valuation set V , and states Σ = Loc × V , where

• Loc = Loc1 × Loc2,

• C = C1 ∪ C2,

• Lab = Lab1 ∪ Lab2,

• Inv((l1, l2)) = Inv1(l1) ∧ Inv2(l2) for all (l1, l2) ∈ Loc,

• Init = {((l1, l2), ν) ∈ Σ|(l1, ν) ∈ Init1 ∧ (l2, ν) ∈ Init2}.

The discrete transitions in Edge are defined by the following rules:

(l1, a, (g1, C1), l′1) ∈ Edge1 (l2, a, (g2, C2), l′2) ∈ Edge2

((l1, l2), a, (g1 ∧ g2, C1 ∪ C2), (l′1, l
′
2)) ∈ Edge

Rule Synch

(l1, a, (g, C), l′1) ∈ Edge1 a /∈ Lab2

((l1, l2), a, (g, C), (l′1, l2)) ∈ Edge
Rule NonSynch1

(l2, a, (g, C), l′2) ∈ Edge2 a /∈ Lab1

((l1, l2), a, (g, C), (l1, l′2)) ∈ Edge
Rule NonSynch2

Example 25.
The railroad crossing Example 14 is modeled as a parallel composition of timed automata.
Adapting the syntax of timed automata we get the following graphical representation:
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far near
x ≤ 3

past
x ≤ 5

approach:

reset(x)

enter:
x ≥ 2

exit:

0 1
y ≤ 1

23
y ≤ 1

reset(y)

approach:

low
er:

y
=
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exit:
reset(y)

ra
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up coming down
z ≤ 1

downgoing up
z ≤ 2

reset(z)
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reset(z)

raise:
z
≥

1

4.1.1 Continuous-Time Phenomena

In the state space model of timed automata induced by their semantics, each path corre-
sponds to a possible system behaviour. However, some of the paths may model unrealistic
behaviour.

Time convergence: There are syntactically inavoidable paths of timed automata along
which time converges, i.e., time never evolves beyond some value. For example, the
timed automaton from Example 24 has a path

(l, ν1)
1→ (l, ν2)

1/2→ (l, ν3)
1/4→ (l, ν4)

1/8→ . . .

starting in the initial state and executing time steps with durations converging
to 0. The time duration

∑n
i=1

1
i converges to 2 with path length n → ∞. Such

a path is called time-convergent. Paths that are not time-convergent are called
time-divergent.

Time-convergent paths are not realizable, but are unavoidable in the modeling. We
will explicitely exclude such paths in the semantics of the logic for the property
specification.

Time lock: There could be states in the LSTS of a timed automaton from which all
paths are time-convergent, such that there is no possibility that time progresses
forever. Such states do not allow time divergence, and are therefore called time
locks. Timed automata without time locks are called time-lock free. Time locks are
modeling flaws, i.e., they can be avoided by appropriate modeling.

——- Draft version, please do not distribute ——- 49



CHAPTER 4. TIMED AUTOMATA

Zenoness: Paths on which infinitely many discrete steps are performed in a finite
amount of time are called zeno paths. Note that all zeno paths are time-convergent.
Zeno-paths are not realizable, as they would require infinitely fast processors. Zeno
paths are also modeling flaws, and they can be avoided by careful modeling.

Next we formalize the above properties.
Definition 24 (Time convergence, time lock, zenoness).
Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton. We define the time duration
of a step by the function ExecTime : (Lab ∪ R≥0)→ R≥0 withExecTime

ExecTime(α) =

{
0 α ∈ Lab
a α ∈ R≥0.

The time duration of an infinite execution fragment π = σ0
τ0→ σ1

τ1→ σ2
τ2→ . . . of T is

defined by the (overloaded) function

ExecTime(π) =
∞∑
i=0

ExecTime(τi).

• An infinite execution fragment π is said to be time-divergent if ExecTime(π) =∞,
and time-convergent otherwise.
For a state σ ∈ Σ we define Pathsdiv (σ) ⊆ Paths(σ) to be the set of time-divergentPathsdiv

infinite execution fragments starting in σ.

• A state σ ∈ Σ contains a timelock iff Pathsdiv (σ) = ∅. A timed automaton is said
to be timelock-free if none of its reachable states contains a timelock.

• π is said to be zeno if it is time-convergent and infinitely many discrete actions are
executed within π. T is said to be non-zeno if it has no zeno paths.

As mentioned above, zeno paths a modeling flows. To check whether a timed automaton
is non-zeno is algorithmically difficult. However, there is a sufficient (but not necessary)
condition for non-zenoness, which is simple to check.
Theorem 1 (Sufficient condition for non-zenoness).
Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton such that for each sequence
of edges

l0
α1:g1,C1// l1

α2:g2,C2// l2 . . .
αn:gn,Cn// ln

with l0 = ln in T there exists a clock x ∈ C such that

1. x ∈ Ci for some 0 < i ≤ n and

2. for all valuations ν ∈ V there exists a c ∈ N>0 such that

ν(x) < c → (ν 6|= gj or ν 6|= Inv(lj))

for some 0 < j ≤ n.
Then T is non-zeno.
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4.2 Timed Temporal Logics

Hybrid automata in general and timed automata in special usually model real-time sys-
tems, which are often time-critical in the sense that for their correct functioning certain
events must occur within some time limits. For example, in case of an accident the airbag
of a car must react within very tight time limits. Also other controller are supposed to
support control values within some predefined time bounds.
The untimed logics of the previous section are not yet able to argue about those time
constraints. In this section we extend them for this purpose. Thereby we restrict ourselves
to the extension of CTL to timed CTL (TCTL). The extensions of LTL and CTL∗ are
analogous.
TCTL extends CTL, with the following main differences:

• For discrete systems we used an atomic proposition set and a labeling function to
assign atomic propositions to states. To be able to argue about the validity of the
atomic propositions in CTL, they are defined to be atomic CTL state formulae.

Besides such atomic propositions, for timed automata we also need to be able to
argue about the clock values in form of atomic clock constraints. Thus atomic clock
constraints are also defined to be atomic TCTL state formulae.

• Since timed automata model continuous time, there is no “next” operator in TCTL.

• Remember that a CTL “until” formula ψ1Uψ2 is satisfied by a path if ψ2 is satisfied
by a state somewhere on the path, and ψ1 holds in all the states before. In TCTL,
the “until” operator of CTL gets indexed with a time interval. TCTL “bounded
until” formulae have the form ψ1U [t1,t2]ψ2, where the time interval [t1, t2] puts a
restriction when ψ2 gets valid. A path satisfies the formula ψ1U [t1,t2]ψ2 if, when
measuring the time from the beginning of the path, ψ2 is valid at a time point
t ∈ [t1, t2], and ψ1 ∨ ψ2 holds all the time before. (Note that we do not require ψ1

to hold all the time before, but only the weaker statement ψ1 ∨ ψ2.)

• There is a difference between the CTL and the TCTL semantics of quantification
over paths. CTL quantification ranges over all paths. However, timed automata
have time-convergent paths that cannot be excluded by modeling. Since those
paths are not realistic, they are not considered in the TCTL semantics. Therefore,
TCLT quantification ranges over time-divergent paths, only.

The syntax of TCTL is as follows:

Definition 25 (Syntax of TCTL).
TCTL state formulae over a set AP of atomic propositions and a set C of clocks can be
built according to the abstract grammar

ψ ::= a | g | (ψ ∧ ψ) | (¬ψ) | (Eϕ) | (Aϕ)

with a ∈ AP , g ∈ ACC (C), and ϕ are TCTL path formulae. TCTL path formulae are
built according to the abstract grammar
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ϕ ::= ψ UJ ψ
with J ⊆ R≥0 is an interval with integer bounds (open right bound may be ∞), and where
ψ are TCTL state formulae. TCTL formulae are TCTL state formulae.

Similarly to CTL, we introduce further operators as syntactic sugar. Besides the “finally”
and “globally” operators, we consider TCTL formulae with intervals [0,∞) as CTL for-
mulae.

FJψ := trueUJψ
EGJψ := ¬AFJ¬ψ
AGJψ := ¬EFJ¬ψ

ψ1Uψ1 := ψ1U [0,∞)ψ2

Fψ := F [0,∞)ψ

Gψ := G[0,∞)ψ

Definition 26 (Semantics of TCTL).
Let T = (Loc, C,Lab,Edge, Inv , Init) be a timed automaton, AP a set of atomic propo-
sitions, and L : Loc → 2AP∪ACC (C) a state labeling function. The function |=TCTL (or
short |=) assigns a truth value to each TCTL state and path formulae as follows:

σ |=TCTL true
σ |=TCTL a iff a ∈ L(σ)
σ |=TCTL g iff σ |=CC g
σ |=TCTL ¬ψ iff σ 6|=TCTL ψ
σ |=TCTL ψ1 ∧ ψ2 iff σ |=TCTL ψ1 and σ |=TCTL ψ2

σ |=TCTL Eϕ iff π |=TCTL ϕ for some π ∈ Pathsdiv (σ)
σ |=TCTL Aϕ iff π |=TCTL ϕ for all π ∈ Pathsdiv (σ).

where σ ∈ Σ, a ∈ AP , g ∈ ACC (C), J ⊆ R≥0 a real-valued interval, ψ, ψ1 and ψ2 are
TCTL state formulae, and ϕ is a TCTL path formula.
For an infinite execution fragement π = σ0

α0→ σ1
α1→ σ2

α2→ . . . ∈ Pathsdiv (σ0) for some
σ0 ∈ Σ, the satisfaction relation for bounded until formulae is defined by

π |=TCTL ψ1 UJ ψ2 iff ∃i ≥ 0. σi + d |=TCTL ψ2 for some d ∈ [0, di]

with (
∑i−1

k=0 dk) + d ∈ J
and ∀j ≤ i. σj + d′ |=TCTL ψ1 ∨ ψ2 for any d′ ∈ [0, dj ] with
either j < i or d′ ≤ d.

where di = ExecTime(αi). We defineSat

Sat(ψ) = {σ ∈ Σ|σ |=TCTL ψ}.

and
T |=TCTL ψ iff ∀σ = (l, ν) ∈ Init ∩ Inv(l). σ |=TCTL ψ.

Note that TCLT quantification ranges over time-divergent paths, only.
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4.3 Model Checking TCTL for Timed Automata

After introducing timed automata and the logic TCTL to define properties of timed
automata, in this section we give a model checking algorithm to check if a TCTL formula
holds for a given timed automaton. The main problem for model checking TCTL for
timed automata lies in the infinite state space. We use abstraction to solve this problem.
The basic structure of the model checking algorithm is as follows:

Input: Non-zeno timed automaton T with clock set C,
a labeling function L over a set of atomic propositions AP , and
a TCTL formula ψ over AP and C

Output: The answer to the question if T |=TCTL ψ

1. Eliminate the timing parameters from ψ, resulting in a formula ψ̂ which contains
atomic clock constraints but no intervals on the temporal operators. If we see
atomic clock constraints as atomic propositions then ψ̂ is a CTL formula.

2. Make a finite abstraction of the state space, with the abstract states called regions.

3. Construct an abstract finite transition system RT S (region transition system)
with regions as abstract states, and label the regions with atomic propositions
and atomic clock constraints. We have T |=TCTL ψ iff RTA |=CTL ψ̂.

4. Apply CTL model checking to check whether RTA |=CTL ψ̂.

5. Return the result of the CTL model checking.

Assume in the following an input for the algorithm in form of a timed automaton T =
(Loc, C,Lab,Edge, Inv , Init), a set of atomic propositions AP , a labeling function L :
Loc → 2AP , and a TCTL formula ψ over AP and C.

4.3.1 Eliminating Timing Parameters

Let T ′ = T ⊕ z result from T by adding a fresh clock z which never gets reset. We use
this auxiliary clock to measure the time from the beginning of a path and express the
time bound of a bounded until as atomic clock constraint. For any state σ of T it holds
that

σ |=TCTL E (ψ1UJψ2) iff reset(z) in σ |=TCTL E ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2)
σ |=TCTL A(ψ1UJψ2) iff reset(z) in σ |=TCTL A ((ψ1 ∨ ψ2) U ((z ∈ J) ∧ ψ2)

We transform all subformulae of the TCTL formula ψ to be checked applying the above
equivalences, resulting in the formula ψ̂. Correctness of the transformation is straightfor-
ward for non-nested formulae. How we can use this transformation for nested formulae
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will be explained later when we introduce the slightly adapted CTL model checking
algorithm.

Example 26.
The TCTL formula EF≤2AG[2,3]a gets transformed into EF(z ≤ 2∧AG(2 ≤ z ≤ 3→ a).

4.3.2 Finite State Space Abstraction

Since the state space of a timed automaton is in general infinite, in order to do model
checking we want to define a finite abstraction. An abstraction represents a (possibly infi-
nite) number of states that behave “equivalent” by a single abstract state. That two states
behave “equivalent” means, that no observation can distinguish between their behaviour.
Here we do not formalize the notion of observation and observational equivalence, neither
the notion of bisimulation. Instead we define that two states may (but do not have to) be
equivalent only if they satisfy the same formulae of a given logic. This definition implies,
that model checking the concrete system without abstraction would yield the same result
as model checking the abstraction.
Up to the identity relation, an abstraction has in general less states than the concrete
system. For this reason, abstraction is widely used also for finite-state systems, since
model checking is faster and needs less memory for smaller systems than for larger ones.
For infinite-state systems, for which model checking is not possible, abstraction may give
us a finite-state system for which we can do model checking.
Before we deal with the abstraction for timed automata and TCTL, let us have a short
look at abstractions for the simpler case of labeled state transition systems and the logic
CTL∗. Assume a labeled state transition system LST S with state set Σ, a set of atomic
propositions AP , and a labeling function L : Σ → 2AP assigning subsets of AP to the
states of LST S. Assume furthermore two states σ1, σ2 ∈ Σ. The following conditions
assure that σ1 and σ2 satisfy the same CTL∗ formulae:

• To satisfy the same atomic CTL∗ formulae, i.e., atomic propositions, σ1 and σ2

must be labeled with the same set of atomic propositions, i.e., L(σ1) = L(σ2).

• To satisfy the same nested CTL∗ formulae, for each successor state of σ1 there
must be a successor state of σ2 such that the two successor states again satisfy the
same CTL∗ formulae, and vica versa, for each successor state of σ2 there must be
a successor state of σ1 satisfying the same CTL∗ formulae. Thus we require that if
there is a transition from σ1 to a state σ′1, than there is also a transition from σ2

to a state σ′2 that is equivalent to σ′1, and vice versa.

Due to this inductive definition, we say that equivalent states can “mimic” each other’s
behaviour in terms of atomic propositions.
The transition system LST S may be parallel composed with other LSTSs. In this
case label synchronization has to be considered. In order to be able to do the same
synchronization steps from equivalent states, we extend the previous requirements as
follows (the extensions are emphasized):
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• As before, to satisfy the same atomic CTL∗ formulae, i.e., atomic propositions, σ1

and σ2 must be labeled with the same set of atomic propositions, i.e., L(σ1) =
L(σ2).

• We require that if there is a transition from σ1 to a state σ′1 with label a, than there
is also a transition with the same label a from σ2 to a state σ′2 that is equivalent to
σ′1, and vice versa.

We say that equivalent states can “mimic” each other’s behaviour in terms of atomic
propositions and transition labels. For a LSTS, a bisimulation is defined to be an equiva-
lence relation on the state set satisfying the above conditions for each pair of equivalent
states.
Let us try to extend the above conditions to timed automata and for the logic TCTL.
Due to the discrete steps of timed automata, we will need similar conditions as above to
cover atomic propositions and discrete steps. However, timed automata has additionally
continuous steps, and TCTL may refer to atomic clock constraints. Thus we additionally
require that equivalent states can mimic also the time steps of each other, and that
equivalent states satisfy, in addition to atomic propositions, also the same atomic clock
constraints.
Assume now a timed automaton with state space Σ. Two states σ1 = (l1, ν1) ∈ Σ and
σ2 = (l2, ν2) ∈ Σ satisfy the same TCTL formulae if the following conditions hold (the
extensions are again emphasized):

• To satisfy the same atomic TCTL formulae, i.e., atomic propositions and atomic
clock constraints, σ1 and σ2 must be labeled with the same set of atomic proposi-
tions, i.e., L(l1) = L(l2), and must satisfy the same atomic clock constraints.

• We require that if there is a discrete transition from σ1 to a state σ′1 with label a,
than there is also a discrete transition with label a from σ2 to a state σ′2 that is
equivalent to σ′1, and vice versa.

• For each time step from σ1 in a successor state σ′1 there is also a time step from
σ2 to some σ′2 such that σ′2 is equivalent to σ′1, and vice versa.

The above conditions are similar to the definition of time-abstract bisimulation (which
does not consider atomic clock constraints). Note that for the time steps, the actual
duration of the mimicing time step is not important, as long as the successor states
cannot be distinguished by any TCTL formulae. This fact will become more clear below,
when defining the abstraction for timed automata.
The above conditions would still lead to an infinite abstract state space, since there are
infinitely many different clock constraints with different satisfying state sets. However,
we need a finite abstraction to check a certain TCTL property. Consequently, equivalent
states do not have to satisfy the same TCTL formulae but only the same subformulae of
the given TCTL property. Thus we can release the requirements for all clock constraints
to clock constraints appearing in the given timed automaton or in the given formula.

——- Draft version, please do not distribute ——- 55



CHAPTER 4. TIMED AUTOMATA

Assume a timed automaton T with locations Loc, clocks C, and state space Σ. Assume
furthermore an atomic proposition set AP , a labeling function L : Loc → 2AP , and a
TCTL formula ψ. Below we define an abstraction by an equivalence relation ∼=⊆ Σ× Σ
on the states of T . We use

• brc to denote the integral part of r ∈ R, i.e., max {c ∈ N | c ≤ r}, and

• frac(r) to denote the fractional part of r ∈ R, i.e., r − brc.

For clock constraints x < c with c ∈ N we have:

ν |= x < c ⇔ ν(x) < c ⇔ bν(x)c < c.

For clock constraints x ≤ c with c ∈ N we have:

ν |= x ≤ c ⇔ ν(x) ≤ c ⇔ bν(x)c < c ∨ (bν(x)c = c ∧ frac(ν(x)) = 0) .

That means, if we would require that equivalent states should satisfy the same clock
constraints over the clock set C, then only states (l, ν) and (l, ν ′) satisfying

bν(x)c = bν ′(x)c and frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

for all x ∈ C could be equivalent. However, as mentioned above, if we distinguish between
all possible integral parts in N, we would generate infinitely many equivalence classes.
Given the timed automaton T and the TCTL formula ψ, we are only interested in those
clock constraints that play a role in the satisfaction or violation of ψ by T . I.e., it is
sufficient if equivalent states satisfy the same clock constraints occurring in T or ψ.
Let cx be the largest constant which a clock x is compared to in T or in ψ. Then
there is no observation which could distinguish between the x-values in (l, ν) and (l, ν ′)
if ν(x) > cx and ν ′(x) > cx. I.e., equivalent states (l, ν) ∼= (l, ν ′) should satisfy

(ν(x) > cx ∧ ν ′(x) > cx) ∨(4.1) (
bν(x)c = bν ′(x)c ∧ frac(ν(x)) = 0 iff frac(ν ′(x)) = 0

)
for all x ∈ C.

Example 27.
Assume that T has two clocks x and y with cx = 3 and cy = 2, i.e., the largest constant
that x is compared to in T or in ψ is 3, and for y this is 2.
Then we can possibly observe different behaviour for states satisfying x = 0, 0 < x < 1,
x = 1, 1 < x < 2, x = 2, 2 < x < 3, x = 3, and x > 3. I.e., two states that satisfy two
different clock constraints from the above list must not be equivalent.
Similarly for y, only states satisfying the same clock constraint from the list y = 0,
0 < y < 1, y = 1, 1 < y < 2, y = 2, and y > 2 may be equivalent.
In the graphical representation below, valuations belonging to different points, line frag-
ments, or boxes must not be equivalent. This yields at least 48 equivalence classes.
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As the following example illustrates, we must make a further refinement of the abstrac-
tion.
Example 28.
Assume the following fraction of a timed automaton and the corresponding classification
of states according to the above observations:

. . .

. . .

y ≤ 1

. . .

. . .

x ≥ 2

x

y

0

1

2

0 1 2 3

If control is in the location with a valuation ν with, e.g., ν(x) = 1.2 and ν(y) = 0.5, then
the transition with condition x ≥ 2 cannot be taken, since the invariant y ≤ 1 forces the
control to leave the location before the value of x reaches 2. But if the valuation assigns,
e.g., ν(x) = 1.5 and ν(y) = 0.2, then the transition gets enabled before the invariant gets
violated.
Though the classification respects Equation 4.1, the valuations in the classes are not yet
of the same behaviour.

What we need is a refinement taking the order of the fractional parts of the clock values
into account. I.e., we must extend the condition of Equation 4.1 with the requirement
that states (l, ν) and (l, ν ′) may be equivalent only if for all clock pairs x, y ∈ C with
ν(x), ν ′(x) ≤ cx ∧ ν(y), ν ′(y) ≤ cy

frac(ν(x)) < frac(ν(y)) iff frac(ν ′(x)) < frac(ν ′(y)) ∧
frac(ν(x)) = frac(ν(y)) iff frac(ν ′(x)) = frac(ν ′(y)) ∧
frac(ν(x)) > frac(ν(y)) iff frac(ν ′(x)) > frac(ν ′(y)).

Because of symmetry requiring

frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)).

is sufficient.
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Example 29.
We extend the graphical representation of the clock equivalence classes from Example 27
taking the conditions of both Equations 4.1 and 4.2 into account. Below, the left picture
shows the devision of the state space into regions, whereas the right picture enumerates
the resulting regions.
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Definition 27.
For a timed automaton T and a TCTL formula ψ, both over a clock set C, we define the
clock equivalence relation ∼=⊆ Σ× Σ by (l, ν) ∼= (l′, ν ′) iff l = l′ and∼=

• for all x ∈ C, either ν(x) > cx ∧ ν ′(x) > cx or

bν(x)c = bν ′(x)c ∧ (frac(ν(x)) = 0 iff frac(ν ′(x)) = 0)

• for all x, y ∈ C if ν(x), ν ′(x) ≤ cx and ν(y), ν ′(y) ≤ cy then

frac(ν(x)) ≤ frac(ν(y)) iff frac(ν ′(x)) ≤ frac(ν ′(y)).

The clock region of an evaluation ν ∈ V is the set [ν] = {ν ′ ∈ V | ν ∼= ν ′}. The state
region of a state (l, ν) ∈ Σ is the set [(l, ν)] = {(l, ν ′) ∈ Σ | ν ∼= ν ′}. We also write (l, r)
for {(l, ν) | nu ∈ r}.

4.3.3 The Region Transition System

After we have defined state regions, next we define how to connect them by abstract
transitions, yielding an abstract transition system, which we call the region transition
system.
We extend the satisfaction relation for clock constraints to regions by defining

r |= g iff ∀ν ∈ r. ν |= g

(l, r) |= g iff r |= g.

for r being a clock region of T with clocks C and a TCTL formula ψ, and g ∈ ACC (T )∪
ACC (ψ). On the right-hand side, instead of the universal quantification we could have
also required just the existence of a valuation in r satisfying g, as it holds that

∀ν, ν ′ ∈ r. ν |= g ↔ ν ′ |= g.
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We also extend the reset operator to regions as follows:

reset(C) in r = {(l, reset(C) in ν) ∈ Σ | (l, ν) ∈ r}.

Note that reset(C) in r is again a region.

Definition 28.
The clock region r∞ = {ν ∈ V | ∀x ∈ C. ν(x) > cx} is called unbounded.
Let r, r′ be two clock regions. The region r′ is the successor clock region of r, denoted by
r′ = succ(r), if either

• r = r′ = r∞, or

• r 6= r∞, r 6= r′, and for all ν ∈ r:

∃d ∈ R>0. (ν + d ∈ r′ ∧ ∀0 ≤ d′ ≤ d. ν + d′ ∈ r ∪ r′).

The successor state region is defined as succ((l, r)) = (l, succ(r)).

Definition 29.
Let T = (Loc, C,Lab,Edge, Inv , Init) be a non-zeno timed automaton and let ψ̂ be an un-
bounded TCTL formula over C and a set AP of atomic propositions. The region transition
system of T for ψ̂ is a labelled state transition systemRT S(T , ψ̂) = (Σ′,Lab′,Edge ′, Init ′)
with

• Σ′ the finite set of all state regions,

• Lab′ = Lab ∪ {τ},

• Init ′ = {[σ] | σ ∈ Init},

and
(l, a, (g, C), l′) ∈ Edge

r |= g r′ = reset(C) in r r′ |= Inv(l′)

(l, [ν])
a→ (l′, [ν ′])

Rule Discrete

r |= Inv(l) succ(r) |= Inv(l)

(l, r)
τ→ (l, succ(r))

Rule Time

Assume a labeling function L : Σ→ 2AP of T . We define

• AP ′ = AP ∪ACC (T ) ∪ACC (ψ)

• L′((l, r)) = L(l) ∪ {g ∈ AP ′\AP | r |= g}

Example 30.
Assume the following timed automaton having a single clock x:
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l a : x ≥ 2, reset(x)

Without taking any TCTL formula into account, the abstraction distinguishes the follow-
ing equivalence classes:

r[0,0] = {(l, ν) ∈ Σ | ν(x) = 0}
r(0,1) = {(l, ν) ∈ Σ | 0 < ν(x) < 1}
r[1,1] = {(l, ν) ∈ Σ | ν(x) = 1}
r(1,2) = {(l, ν) ∈ Σ | 1 < ν(x) < 2}
r[2,2] = {(l, ν) ∈ Σ | ν(x) = 2}
r(2,∞) = {(l, ν) ∈ Σ | ν(x) > 2}

For the transitions, τ -transitions are defined from each region into its successor region:

r[0,0]
τ→ r(0,1) r(0,1)

τ→ r[1,1] r[1,1]
τ→ r(1,2)

r(1,2)
τ→ r[2,2] r[2,2]

τ→ r(2,∞) r(2,∞)
τ→ r(2,∞)

Discrete transitions are possible from the regions with x ≥ 2 into the region with x = 0:

r[2,2]
a→ r[0,0] r(2,∞)

a→ r[0,0]

The resulting region transition graph can be visualized as follows, where for clarity we
write into the states the locations and the constraints to which they correspond:

l
x = 0

l
0 < x < 1

l
x = 1

l
x > 2

l
x = 2

l
1 < x < 2

τ τ

τ

ττ

a
a

τ

Example 31.
Assume the same timed automaton as in the previous Example 30, but now addition-
ally consider the TCTL formula EF (0,2](x = 0). After removing the bound we get the
unbounded formula EF(0 < z ≤ 2 ∧ x = 0). Thus we have cx = 2 and cz = 2.
We get the following region transition system, where we omit unreachable abstract states.
Dotted lines in the coordinate system represent possible behaviours, moving through the
different regions.
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l α :x ≥ 2, reset(x)

∃F (0,2] (x = 0)
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The following graph shows again the region transition system where the abstract states
are annotated with the information determining the regions:

l

x = 0

z = 0

fr(x) = fr(z)

l

0 < x < 1

0 < z < 1

fr(x) = fr(z)

l

x = 1

z = 1

fr(x) = fr(z)

l

1 < x < 2

1 < z < 2

fr(x) = fr(z)

l

x = 2

z = 2

fr(x) = fr(z)

l

x > 2

z > 2

τ τ τ τ τ

τ

l

x = 0

z = 2

fr(x) = fr(z)

l

0 < x < 1

z > 2

l

x = 1

z > 2

l

1 < x < 2

z > 2

l

x = 2

z > 2

l

x = 0

z > 2

τ τ τ τ α

α
τ

α

τ

The next lemma states that infinite time-convergent paths of a timed automaton corre-
spond to finite paths in the region transition system.

Lemma 1.
For non-zeno T and π = s0 → s1 → . . . an infinite path of T :
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• if π is time-convergent, then there is an index j and a state region (l, r) such that
si ∈ (l, r) for all i ≥ j.

• if there is a state region (l, r) with r 6= r∞ and an index j such that si ∈ (l, r) for
all i ≥ j then π is time-convergent.

Theorem 2.
A non-zeno timed automaton T is timelock free iff its region transition system does not
have any deadlocks, i.e., reachable terminal states.

4.3.4 TCTL Model Checking

The procedure is quite similar to CTL model checking for finite automata. The only
difference concerns the handling of nested time bounds in TCTL formulae.
As in CTL model checking, we label the abstract states of the region transition system
with subformulae of the formula ψ to be checked, inside-out starting with the inner-most
subformulae. However, since we want to use a single auxiliary clock, we must additionally
represent the “restart” of the auxiliary clock at some places.
To explain the problem, consider the formula EF [0,1](a∧EF [1,2]b). Removing the bounds
yields EF(0 ≤ z ≤ 1∧a∧EF(1 ≤ z ≤ 2∧b)). The labeling with the atomic propositions
a and b is defined by the labeling function. The labeling with atomic clock constraints
is done upon the generation of the region transition system. The first step of the model
checking algorithm would label those regions with 1 ≤ z ≤ 2 ∧ b that are labeled with
1 ≤ z, z ≤ 2, and b. Now we come to the more interesting part: the algorithm would
determine all those regions from which a region labeled with 1 ≤ z ≤ 2∧b is reachable, and
may label them with EF(1 ≤ z ≤ 2∧b). Now we make two observations: Firstly, EF [1,2]b
is satisfied only by those determined regions that are labeled with z = 0. Secondly, the
start value z = 0 of the auxiliary clock is just a convention, we could also have started
with a value, e.g., z = 2 and check reachability of 3 ≤ z ≤ 4 ∧ b. Consequently, we
should label all those regions r with EF [1,2]b for that the region reset(z) in r is labeled
with EF(1 ≤ z ≤ 2 ∧ b). The labeling for the other subformulae is analogous. After
termination, the timed automaton satisfies the above TCTL formula iff each initial region
is labeled with it.
Lemma 2.
For a non-zeno timed automaton T and an unbounded TCTL formula ψ:

T |=TCTL ψ iff RT S(T , ψ) |=CTL ψ̂

Lemma 3.
The model checking problem for timed automata and TCTL is complete for PSPACE.

Exercises
Exercise 8.
Prove Theorem 2.
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Chapter 5

Rectangular Automata

In the previous chapter we have seen that TCTL for timed automata, a special class of
hybrid automata, is decidable, thus model checking is possible. In this chapter we discuss
a bit more general class, the class of rectangular automata, and analyse decidability. The
contents of this chapter are based on [HKPV98].
Rectangular automata build an interesting class of hybrid automata because on the one
hand they allow a more expressive modeling than timed automata and on the other hand
(under some additional conditions) both safety and liveness for rectangular automata are
decidable. However, they lie on the boundary of decidability in the sense that several
slight generalizations lead to undecidability.
In the previous chapters we used temporal logics supporting the specification of both
safety and liveness properties. From now on we restrict ourselves to safety properties,
stating that each reachable state of an automaton is included in a given set of safe states.
In the following Section 5.1 we define syntax and semantics of rectangular automata,
before discussing decidability in Section 5.2.

5.1 Syntax and Semantics of Rectangular Automata

In the following we first formally define the syntax and semantics of rectangular automata.
As rectangular automata are special hybrid automata, their states σ = (l, ν) ∈ Σ =
Loc × V also consist of a discrete component describing the current location, and of
a valuation component, assigning values to the real-valued variables. To simplify the
notation, in the following we assume that the real-valued variables Var = {x1, . . . , xd}
of the automata are ordered and write (l, v) ∈ Loc ×Rd for a state (l, ν) with ν(xi) = vi
for all i = 1, . . . , d.
To define rectangular automata we first need to define rectangular sets.

Definition 30 (Rectangular set).
A set R ⊂ Rd is rectangular if it is a cartesian product of (possibly unbounded) intervals,
all of whose finite endpoints are rational. The set of rectangular sets in Rd is denoted by
Rd.
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Given a set Loc of locations, a subset of the state space Loc × Rd is called a zone.
Each zone Z is decomposable into a collection

⋃
l∈Loc{l} × Zl of zones. The zone Z is

rectangular iff each Zl is rectangular. A zone is multirectangular, if it is a finite union
of rectangular zones.

Rectangular automata are hybrid automata whose invariants, activities, and transition
relations are all described by rectangular sets. For the invariants and transition guards
it means that those conditions may not compare the values of different variables to
each other, but to constant values only. Similarly, a transition may reset the value of
a variable to a non-deterministically chosen value from an interval, whose end-points
are constants, i.e., they do not depend on the values of other variables. Finally, the
activities assign constant lower and upper bounds to the derivatives, allowing also non-
linear behaviour. However, since the evolution of a variable may not depend on the value
of another variable, the set of states reachable via time steps from a rectangular set is
again a rectangular set.

Definition 31 (Syntax of rectangular automata).
A d-dimensional rectangular automaton (or short rectangular automaton) is a tuple H =
(Loc,Var ,Con,Lab,Edge,Act , Inv , Init) with

• a finite set Loc of locations;

• a finite set Var = {x1, . . . , xd} of d ordered real-valued variables; we write x =
(x1, . . . , xd) for the ordered sequence of the variables;

• a function Con : Loc → 2Var assigning a set of controlled variables to each location;

• a finite set Lab of synchronization labels;

• a set Edge ⊆ Loc × Lab × (Rd ×Rd × 2{1,...,n})× Loc of edges;

• a flow function Act : Loc → Rd;

• an invariant function Inv : Loc → Rd;

• initial states Init : Loc → Rd.

A rectangular automaton is initialized iff for all edges e = (l, a, pre, post , jump, l′) ∈ Edge
and all i ∈ {1, . . . , n} we have that Act(l)i 6= Act(l′)i implies i ∈ jump, where Act(l)i is
the projection of Act(l) to the ith dimension.

For the flows, the first time derivatives of the flow trajectories in location l ∈ Loc are
within the rectangular set Act(l). For the jumps, an edge e = (l, a, pre, post , jump, l′) ∈
Edge may move control from location l to location l′ starting from a valuation in pre,
changing the value of each variable xi ∈ jump to a nondeterministically chosen value
from post i (the projection of post to the ith dimension), and leaving the values of the
other variables unchanged.
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An initialized rectangular automaton has the property that whenever the flow of a vari-
able changes due to a discrete transition, the variable is re-initialized to a value from
an interval with constant bounds. The reachability problem for initialized rectangu-
lar automata is decidable. However, it becomes undecidable if the restriction of being
initialized is relaxed.

Example 32.
The following hybrid automaton is an initialized rectangular automaton:

v1

ċ ∈ [1, 3]
ḋ ∈ [−3,−2]

c := 0

d := 0

v4

ċ ∈ [1, 3]
ḋ ∈ [1, 2]

v3

ċ ∈ [−4,−2]
ḋ ∈ [1, 2]

v2

ċ ∈ [−4,−2]
ḋ ∈ [−3,−2]

a

c ≥ 0 ∧ d ≤ 2→ d := 1

b

c ≥ −3 ∧ d ≤ −2→ c :∈ [−1,−2]

c

d ≤ −5→ d := −4

d

c ≤ 5 ∧ d ≤ −3→ c := 4

Note that a timed automaton is a special rectangular automaton such that every variable
is a clock, the initial sets Init(l) are empty or are singletons for each location l ∈ Loc, and
the edges reset variables to 0 only. Furthermore, if we replace rectangular regions with
linear regions, we obtain linear hybrid automata, a super-class of rectangular automata,
which are the subject of the next chapter.
The semantics of rectangular automata is derived from the semantics of hybrid automata
as follows.

Definition 32 (Semantics of rectangular automata).
The operational semantics of a rectangular automaton H = (Loc,Var ,Con,Lab,Edge,
Act , Inv , Init) is given by the following two rules:

(l, a, pre, post, jump, l′) ∈ Edge

v ∈ pre v′ ∈ post ∀i /∈ jump.v′i = vi v′ ∈ Inv(l′)

(l, v)
a→ (l′, v′)

Rule Discrete

(t = 0 ∧ v = v′) ∨ (t > 0 ∧ (v′ − v)/t ∈ Act(l)) v′ ∈ Inv(l)

(l, v)
t→ (l, v′)

Rule Time

The one-step transition is given by → =
a→ ∪ t→, its transitive closure by →∗. A

path is a sequence σ0 → σ1 → σ2 . . .. starting in an initial state σ0 = (l0, v0) with
v0 ∈ Init(l0) ∩ Inv(l0). A state is reachable iff there exists a path leading to it.
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Note that, similarly to timed automata, the invariant sets of rectangular automata are
convex. Furthermore, though the time behaviour can be non-linear, for each non-linear
time flow there is a corresponding linear one leading to the same state in the same time.
Thus for the time steps we do not need to require the invariant to hold at each time
point during the time step, but it is sufficient to require that the invariant holds initially
and after each step.

Lemma 4.
For every multirectangular zone Z of a d-dimensional rectangular automaton H, and
every label lab ∈ Lab ∪ R≥0, the zones Post lab(Z) = {(l′, v′) ∈ Loc × Rd | ∃(l, v) ∈
Z. (l, v)

lab→ (l′, v′)} and Pre lab(Z) = {(l, v) ∈ Loc×Rd | ∃(l′, v′) ∈ Z. (l, v)
lab→ (l′, v′)} are

multirectangular.

Proof It suffices to prove the lemma for elementary regions of the form Z = ({l},R)
with R rectangular. We distinguish between discrete and time steps.
For discrete steps assume lab = a ∈ Lab. Let furthermore e = (l, a, pre, post , jump, l′) be
an edge. Then Posta(Z) = {l′} × S with

Si =


Ri ∩ prei ∩ post i ∩ Inv(l′)i if i 6∈ jump,
post i ∩ Inv(l′)i if i ∈ jump and Ri ∩ prei 6= 0,
∅ if i ∈ jump and Ri ∩ prei = 0.

Thus Posta(Z) is rectangular, and the union over all edges starting in l with label a is a
multirectangular zone.
For time steps, if lab = 0 then Post0(Z) = Z. Thus assume lab = t ∈ R with t > 0. Let
L = inf (Ri) + t · inf (Act(l)i) and U = sup(Ri) + t · sup(Act(l)i).
Then Post t(Z) = {l} × S with

Si =


Inv(l)i ∩ [L,∞) ∩ (−∞, U ] if Ri and Act(l)i are closed,
Inv(l)i ∩ (L,∞) ∩ (−∞, U ] if Ri or Act(l)iare left-open and

both are right-closed, and
Inv(l)i ∩ [L,∞) ∩ (−∞, U) if Ri or Act(l)iare right-open and

both are left-closed.

Thus Post t(Z) is a rectangular zone.

Note that the reachable zone of a rectangular automaton is in general an infinite union
of rectangular zones, and may thus be not multirectangular.

5.2 Decidability of Rectangular Automata

The reachability problem for initialized rectangular automata is decidable.

Lemma 5.
The reachability problem for initialized rectangular automata is complete for PSPACE.
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The proof makes use of the fact that the reachability problem for timed automata is
complete for PSPACE. It defines a transformation of initialized rectangular automata to
timed automata thereby proving PSPACE completeness. The transformation is done in
three steps:

Timed automaton
↑

Initialized stopwatch automaton
↑

Initialized singular automaton
↑

Initialized rectangular automaton
In the following we describe these steps. Note that the transformation does not only
prove decidability, but also gives us a model checking algorithm for initialized rectangular
automata, since we can apply the previously discussed model checking algorithm to the
resulting timed automaton.

5.2.1 From Initialized Stopwatch Automata to Timed Automata

Let us start with the first step transforming an initialized stopwatch automaton into a
timed automaton.

Definition 33.
• A rectangular automaton has deterministic jumps, if (1) Init(l) is empty or a
singleton for all l, and (2) the post-interval for each variable from the jump-set of
each edge is a singleton.

• A stopwatch is a variable with derivatives 0 or 1 only.

• A stopwatch automaton is a rectangular automaton with deterministic jumps and
stopwatch variables only.

Initialized stopwatch automata can be polynomially encoded by timed automata, as
shown below. This implies the decidability of initialized stopwatch automata. However,
the reachability problem for non-initialized stopwatch automata is undecidable.

Lemma 6.
The reachability problem for initialized stopwatch automata is complete for PSPACE.

The encoding works as follows. First notice, that a timed automaton is a stopwatch
automaton such that every variable is a clock.
Assume that H is a d-dimensional initialized stopwatch automaton with location set
LocH. Let κ be the set of rational constants used in the definition of H, and let κ⊥ =
κ ∪ {⊥}.
We define a d-dimensional timed automaton H′ with locations LocH′ = LocH × κ{1,...,d}⊥ .
Each location (l, f) of H′ consists of a location l of H and a function f : {1, . . . , d} → κ⊥.
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Each state q = ((l, f), v) of H′ represents the state α(q) = (l, u) of H, where ui = vi if
f(i) = ⊥, and ui = f(i) if f(i) 6= ⊥.
Intuitively, if the ith stopwatch of H is running (slope 1), then its value is tracked by the
value of the ith clock of H′; if the ith stopwatch is halted (slope 0) at value k ∈ κ, then
this value is remembered by the current location of H′.

5.2.2 From Initialized Singular Automata to Initialized Stopwatch Au-
tomata

Definition 34.
• A variable xi is a finite-slope variable if flow(l)i is a singleton in all locations l.

• A singular automaton is a rectangular automaton with deterministic jumps such
that every variable of the automaton is a finite-slope variable.

Lemma 7.
The reachability problem for initialized singular automata is complete for PSPACE.

The proof is again based on automata transformation. Initialized singular automata can
be rescaled to initialized stopwatch automata as follows.
Let B be a d-dimensional initialized singular automaton with ε-moves. We define a d-
dimensional initialized stopwatch automaton CB with the same location set, edge set,
and label set as B.
Each state q = (l, v) of CB corresponds to the state β(q) = (l, β(v)) of B with β : Rd →
Rd defined as follows:
For each location l of B, if ActB(l) = Πd

i=1[ki, ki], then β(v1, . . . , vd) = (l1 · v1, . . . , ld · vd)
with li = ki if ki 6= 0, and li = 1 if ki = 0;
β can be viewed as a rescaling of the state space. All conditions in the automaton B
occur accordingly rescaled in CB.
We have:

• The reachable set of Reach(B) of B is β(Reach(CB)).

• Lang(B) = Lang(CB)

5.2.3 From Initialized Rectangular Automaton to Initialized Singular
Automaton

Lemma 8.
The reachability problem for initialized rectangular automata is complete for PSPACE.

The proof is based on the translation of a d-dimensional initialized rectangular automaton
H into a (2n+ 1)-dimensional initialized singular automaton B, such that B contains all
reachability information about H.
The translation is similar to the subset construction for determinizing finite automata.
The idea is to replace each variable c of H by two finite-slope variables cl and cu: cl
tracks the least possible value of c, and cu tracks the greatest possible value of c.
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Chapter 6

Linear Hybrid Automata

In this chapter we discuss a further class of hybrid automata called linear hybrid au-
tomata. Linear hybrid automata are time-deterministic hybrid automata whose defini-
tions contain linear terms, only. They are more expressive than timed or rectangular
automata, and the reachability problem for linear hybrid automata is in general undecid-
able. However, bounded reachability, i.e., reachability within a fixed number of steps, is
still decidable and can be efficiently computed. Approximation and minimization tech-
niques can be additionally used for the successful analysis of linear hybrid automata.
We introduce linear hybrid automata in Section 6.1. Forward and backward analysis
techniques are discussed in the Sections 6.2 and 6.3, respectively. Approximation methods
for linear hybrid automata are described in Section 6.4, and we handle minimization in
Section 6.5
The contents of this chapter are based on [ACH+95].

6.1 Syntax and Semantics

Definition 35.
• A linear term over the set Var of variables is a linear combination of variables in

Var with integer (rational) coefficients.

• A linear formula over Var is a Boolean combination of (in)equalities between linear
terms over Var .

• A hybrid automaton is time deterministic iff for every location l ∈ Loc and every
valuation ν ∈ V there is at most one activity f ∈ Act(l) with f(0) = ν. The activity
f , then, is denoted by fl[ν], its component for x ∈ Var by fxl [ν]. fl[ν]

fx
l [ν]

The restrictions on the syntax of linear hybrid automata affect the activities, the invari-
ants, and the discrete edges.

Definition 36 (Syntax of linear hybrid automata).
A linear hybrid automaton is a time-deterministic hybrid automaton with the following
properties:
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l0
ẋ = 1
ẏ = 1
y ≤ 10

x = 0

∧y = 1

l1
ẋ = 1
ẏ = 1
x ≤ 2

l2
ẋ = 1
ẏ = −2
y ≥ 5

l3
ẋ = 1
ẏ = −2
x ≤ 2

y = 10→ x := 0

x = 2

y = 5→ x := 0

x = 2

Figure 6.1: Water-level monitor

• Activities Act(l) are given as sets of differential equations ẋ = kx, one for each
variable x ∈ Var , with kx an integer (rational) constant:

fxl [ν](t) = ν(x) + kx · t.

• Invariants Inv(l) are defined by linear formulae ψ over Var :

ν ∈ Inv(l) iff ν |= ψ

• For all edges, the transision relation is defined by a guarded set of nondeterministic
assignments:

ψ ⇒ {x := [αx, βx] | x ∈ Var},

where the guard ψ is a linear formula and αx, βx are linear terms. For the transition
relation µ ⊆ V 2 we have

(ν, ν ′) ∈ µ iff ν |= ψ ∧ ∀x ∈ Var . ν(αx) ≤ ν ′(x) ≤ ν(βx).

Figures 6.1 and 6.2 give two examples for linear hybrid automata.
The semantics of linear hybrid automata is given by the semantics of hybrid automata,
specified by the following rules for discrete and time steps:

(l, a, µ, l′) ∈ Edge (ν, ν ′) ∈ µ ν ′ ∈ Inv(l′)

(l, ν)
a→ (l′, ν ′)

Rule Discrete
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l1
ẋ = 1
ẏ = 1
ż = 1
x ≤ 1

x = 0 ∧ y = 0 ∧ z = 0

l2
ẋ = 1
ẏ = 1
ż = 0

x := 0

30 ≤ x→ x := 0

Figure 6.2: Leaking gas burner

f ∈ Act(l) f(0) = ν f(t) = ν ′

t ≥ 0 ∀0 ≤ t′ ≤ t.f(t′) ∈ Inv(l)

(l, ν)
t→ (l, ν ′)

Rule Time

For time-deterministic hybrid automata the time-step rule can be simplified using the
following predicate.

Definition 37.
For time-deterministic hybrid automata we define the “time can progress” predicate: tcpl[ν](t)

tcpl[ν](t) iff ∀0 ≤ t′ ≤ t. fl[ν](t′) ∈ Inv(l).

Thus for time-deterministic automata we can rewrite the time-step rule to

t ≥ 0 tcpl[ν](t)

(l, ν)
t→ (l, fl[ν](t))

Rule′ Time

6.2 Forward analysis

The reachability problem for linear hybrid automata is in general undecidable. How-
ever, bounded reachability is still decidable. Despite of undecidability, for the general
rechability analysis of linear hybrid automata there exist incomplete algorithms. In this
section we describe such a technique, a forward analysis approach based on fixed-point
computation.
In general, forward analysis techniques start from the initial state set R0 of a system,
and compute the state set R1 reachable from R0 within one computation step. For the
resulting set the same computation is repeated, i.e., the state set R2 reachable in one
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transition step from R1 is computed. The algorithm terminates if after a number of
steps no new states can be reached, i.e., if Rk ⊆

⋃k−1
i=0 Ri for some k > 0. Termination

corresponds to finding the least fixed-point for the one-step (forward) reachability starting
from the initial set. After termination we can check if all states in the determined
reachable set satisfy the required property. Note that the computation may in general
not terminate if the state space is infinite.
The one-step reachability for continuous steps is described by the following notion of
forward time closure:
Definition 38.
We define the forward time closure 〈P 〉↗l of P ⊆ V at l ∈ Loc as the set of valuations
reachable from P by letting time progress:〈P 〉↗l

ν ′ ∈ 〈P 〉↗l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν](t) ∧ ν ′ = fl[ν](t).

We extend the definition to regions R = ∪l∈Loc(l, Rl) as follows:〈R〉↗l

〈R〉↗ = ∪l∈Loc(l, 〈Rl〉↗l ).

For the discrete steps, the corresponding one-step relation is formalized by postconditions:
We define the postcondition poste[P ] of P with respect to an edge e = (l, a, µ, l′) as the
set of valuations reachable from P by e:poste[P ]

ν ′ ∈ poste[P ] iff ∃ν ∈ P. (ν, ν ′) ∈ µ.

An extension to regions R = ∪l∈Loc(l, Rl) is defined as follows:post [R]

post [R] = ∪e=(l,a,µ,l′)∈Edge(l′, poste[Rl]).

Note that, due to the τ -transitions, R ⊆ post [R]. Similarly, due to time steps of duration
0 we have R ⊆ 〈R〉↗.

Lemma 9.
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then for all l ∈ Loc
and e ∈ Edge, both 〈P 〉↗l and poste[P ] are linear sets of valuations.

The set of states reachable in a finite number of steps from the initial state set form the
reachable region of the automaton.

Definition 39.
Given a region I ⊆ Σ, the reachable region (I 7→∗) ⊆ Σ of I is the set of all states that(I, 7→∗)
are reachable from states in I:

σ ∈ (I 7→∗) iff ∃σ′ ∈ I. σ′ →∗ σ.

The following lemma states, that if the forward analysis procedure terminates, then the
result, being the least fixed-point of the one-step relation, gives us the set of all reachable
states.
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Lemma 10.
Let I = ∪l∈Loc(l, Il) be a region of the linear hybrid automaton A. The reachable region
(I, 7→∗) = ∪l∈Loc(l, Rl) is the least fixed-point of the equation

X = 〈I ∪ post [X]〉↗

or, equivalently, for all locations l ∈ Loc, the set Rl of valuations is the least fixed-point
of the set of equations

Xl = 〈Il ∪
⋃

e=(l′,a,µ,l)∈Edge

poste[Xl′ ]〉↗l .

6.3 Backward analysis

There is a similar backward approach for the fixed-point-based reachability analysis of
linear hybrid automata. Instead of starting from the initial set and computing successors
like in the forward approach, the backward search starts from a target set, defined as the
set of states violating the property to be proved, and computes stepwise predecessors.
The algorithm terminates if it finds the least fixed-point for the reversed one-step relation,
thereby determining the set of states from which the target set can be reached. If the
intersection of the resulting set with the initial set is empty, the property holds, otherwise
the property does not hold.
Analogously to the forward time closure for the time steps and the postcondition for
discrete steps in the forward approach, we define for the reversed steps a backward time
closure for time steps and a precondition for discrete steps.

Definition 40.
We define the backward time closure 〈P 〉↙l of P ⊆ V at l ∈ Loc as the set of valuations 〈P 〉↙l
from which it is possible to reach a valuation in P by letting time progress:

ν ′ ∈ 〈P 〉↙l iff ∃ν ∈ P. ∃t ∈ R≥0. tcpl[ν
′](t) ∧ ν = fl[ν

′](t).

We extend the definition to regions R = ∪l∈Loc(l, Rl) as follows: 〈R〉↙

〈R〉↙ = ∪l∈Loc(l, 〈Rl〉↙l ).

We define the precondition pree[P ] of P with respect to an edge e = (l, a, µ, l′) as the set pree[P ]

of valuations from which it is possible to reach a valuation from P by e:

ν ′ ∈ pree[P ] iff ∃ν ∈ P. (ν ′, ν) ∈ µ.

For regions R = ∪l∈Loc(l, Rl) we define pre[R]

pre[R] = ∪e=(l′,a,µ,l)∈Edge(l′, pree[Rl]).

Note that, due to the τ -transitions, R ⊆ pre[R]. Similarly, due to time steps of duration
0 we have R ⊆ 〈R〉↙.
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Lemma 11.
For all linear hybrid automata, if P ⊆ V is a linear set of valuations, then for all l ∈ Loc

and e ∈ Edge, both 〈P 〉↙l and pree[P ] are linear sets of valuations.

For a target state set we define its initial region as the set of states from which the target
set is reachable.
Definition 41.
Given a region R ⊆ Σ, the initial region ( 7→∗ R) ⊆ Σ of R is the set of all states from( 7→∗ R)

which a state in R is reachable:

σ ∈ (7→∗ R) iff ∃σ′ ∈ R. σ →∗ σ′.

The following lemma states that if the backward algorithm terminates, it determines the
states from which the target region is reachable.

Lemma 12.
Let R = ∪l∈Loc(l, Rl) be a region of the linear hybrid automaton A. The initial region
(7→∗ R) = ∪l∈Loc(l, Il) of R is the least fixed-point of the equation

X = 〈R ∪ pre[X]〉↙

or, equivalently, for all locations l ∈ Loc, the set Il of valuations is the least fixed-point
of the set of equations

Xl = 〈Rl ∪
⋃

e=(l,a,µ,l′)∈Edge

pree[Xl′ ]〉↙l .

6.4 Approximate analysis

If the (forward or backward) iterative techniques does not converge, we can compute
over-approximations of the sets

• (I 7→∗) of states which are reachable from the initial states I (forward analysis), or

• (7→∗ R) of states from which the region R is reachable (backward analysis).

Below we discuss two approaches for over-approximation: the first one is based on build-
ing convex hulls, and the second one is a widening technique.

1. Instead of computing the union of sets, we can compute their convex hull, i.e., the
smallest convex polyhedron containing the operands of the union (see Figure 6.3).
Though this set over-approximates the exact result, it may help the algorithms
to terminate. On the one hand, if with the over-approximation we can show the
correctness of the property we want to prove, then we are happy with the result:
if the property holds even for the over-approximation then if holds also for the
over-approximated reachable set. On the other hand, if the proof fails, then, due
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Figure 6.3: Two sets (left) and their convex hull (right)
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Figure 6.4: A sequence of three sets (left three pictures) and their widening (right)

to the over-approximation, it does not mean that the property does not hold: those
states of the over-approximation that violate the property may lie outside of the
exact, over-approximated set and are thus perhaps not reachable. In this case we
must try to find a more accurate over-approximation.

2. To enforce the convergence of iterations, we can apply a widening technique. The
basic idea is to extrapolate the limit of the state set sequence occurring in the non-
terminating fixed-point computation. The standard widening algorithm applies
the widening for at least one location in each loop of the hybrid automaton graph.
Figure 6.4 illustrates the widening technique.

6.5 Minimization

In this section we discuss another approach called minimization for the analysis of linear
hybrid automata, based on abstraction and abstraction refinement. We introduce a
forward method but it is also possible to define it for a backward search.
Assume a linear hybrid automaton and a safety property whose validity we want to check.
The property divides the state space of the hybrid automaton into a set of “good” states
that satisfy the property and a set of “bad” states that violate it. Let Rbad denote the set
of violating states. To check the validity of the property we check if a state from Rbad is
reachable.
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R’R

Figure 6.5: The next relation 7→ on regions

The abstraction is based on partitioning the state space of a linear hybrid automaton
into a finite set Π = {Rbad, R1, . . . , Rn} of regions with Rbad ∩ Ri = ∅ for all 1 ≤ i ≤ n,
Ri∩Rj = ∅ for all 1 ≤ i < j ≤ n, and Σ = Rbad∪

⋃n
i=1Ri. Each such partitioning induces

a LSTS being an abstraction of the linear hybrid automaton. The abstract states of the
LSTS are the regions of the partitioning. The regions containing at least one concrete
initial state are the abstract initial states. There is a transition from a region R to a
region R′ of the partitioning, denoted by R 7→ R′, iff from at least one state in R at least
one state in R′ is reachable in one step. Since we are only interested in the reachability
of bad states, we define no successors for Rbad. The abstract transitions are formalized
as follows:
Definition 42.
The next relation 7→ on regions is defined by7→

R 7→ R′ iff R 6= Rbad ∧ ∃σ ∈ R. ∃σ′ ∈ R′. σ → σ′.

Figure 6.5 illustrates the next relation.
Such an abstraction in general over-approximates the behaviour of the concrete system:
For each reachable state of the concrete system the region of the abstraction that contains
that state is also reachable. However, there may be regions reachable in the abstraction
that contain no states reachable in the concrete system.
That implies on the one hand, that if Rbad is not reachable in the abstraction then the
property holds for the concrete system. But on the other hand, from the reachability of
Rbad in the abstraction we cannot conclude that the property does not hold for the original
system. However, we can define a sufficient condition under that the second implication
also holds, i.e., a condition that assures that Rbad is reachable in the abstraction if and
only if the concrete system violates the property. This condition is that all regions
reachable in the abstraction have at least one state reachable in the concrete system.
The minimization algorithm starts with an initial partitioning and splits regions of the
partitioning iteratively until it satisfies that sufficient condition. Note that, since the
reachability problem for linear hybrid automata is not decidable, the refinement loop
does not always terminate. But in case it terminates, the abstraction is finite, and we
can answer the reachability question.
How can we be sure that a region R reachable in the abstraction contains at least one
state reachable in the concrete system? First we only know that all initial regions contain
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R’R R’R

Figure 6.6: Stability of regions: a stable region (left) and a non-stable one (right)

at least one initial state by definition. Now assume a reachable region R that contains at
least one state σ ∈ R reachable in the concrete system, and assume a successor region R′

of R with R 7→ R′. From R 7→ R′ we conclude that there is a state in R with a successor
state in R′, however, we do not know if this state is σ. But, if all states in R have a
successor state in R′, then also σ has a successor state σ′ ∈ R′, and from the reachability
of σ together with σ → σ′ we can conclude that there is at least one reachable state in
R′.

Definition 43.
Let Π be a partitioning of the state space Σ and let R,R′ ∈ Π. The region R is called
stable for R′ iff

R 7→ R′ implies ∀σ ∈ R. {σ} 7→ R′.

We call R stable iff it is stable for all regions in Π. We call Π stable iff all reachable
regions of Π are stable.

Figure 6.6 illustrates the stability of regions.
Now we come to the algorithm as specified by Figure 6.7. The set of initial states of
the concrete system is denoted by I, and Rbad is the set of “bad” states. The algorithm
stores the current partitioning in Π. Initially there are two regions in the patitioning:
the region Rbad contains all “bad” states and the region Σ\Rbad the “good” states.
The algorithm uses two sets reach and completed. In the set reach we store those reachable
regions of the current partitioning for which we know that they contain at least one
concrete state that is reachable in the concrete system. In the set completed ⊆ reach
we store regions from which we know that their successor regions are all in reach, i.e.,
regions that currently cannot be used to derive further in the concrete system reachable
regions. Initially, reach contains those regions of the initial partitioning that contain at
least one concrete intial state. The set completed is initially empty.
In each refinement step we determine a reachable region R ∈ reach from that we already
know that it has at least one reachable state, but we do not yet know if all of its successor
regions contain reachable states, i.e., such that R is not in completed. For all those
successor regions of R for which R is stable we can conclude that also they contain at
least one reachable state, thus we put them into the reach set.
If, after that update, all successor regions of R are in reach, i.e., they all have at least
one reachable state, then we put R into the completed set.
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minimize(Σ, Rbad) {
Π := {Rbad,Σ \ Rbad}; reach := {R ∈ Π|R ∩ I 6= ∅}; completed := ∅;
while (Rbad /∈ reach ∧ reach 6= completed) {

choose R ∈ (reach \ completed); S := ∅;
for each (R′ ∈ (Π \ reach) with R 7→ R′) {
reach′ := split(Π, R,R′);
if (reach′ = R) then reach := reach ∪ {R′};
else S := reach′;
}
if (S = ∅) then completed := completed ∪ {R};
else {

Π := (Π \ {R}) ∪ S;

reach := (reach \ {R}) ∪ {Si ∈ S | Si ∩ I 6= ∅};
completed := completed \ {R′ ∈ Π | ∃Si ∈ (S\reach). R′ 7→ Si};
}
}
return Rbad ∈ reach;

}

Figure 6.7: The minimization algorithm

Otherwise, if there is still a successor region R′ /∈ reach of R then R is not stable for
R′. We use such an R′, found at last, to split R into two parts, one containing all states
with a successor in R′ and a second part containing the rest. The splitting of a region is
formalized by the following definition:

Definition 44.
split(Π, R,R′)

split(Π, R,R′) :=

{
{R′′, R \ R′′} if R′′ = pre[< R′ >↙] ∩R ∧R′′ 6= ∅ ∧R′′ 6= R,
{R} otherwise.

Figure 6.8 illustrates the splitting mechanism.
We split R according to the splitting result remembered in S = {S1, S2}, and update the
partitioning. The reach set gets updated in that we remove R and add Si, i = 1, 2, if
they contain concrete initial states. Note that, though we know that there is a concrete
state either in S1 or in S2 that is reachable in the concrete system, we do not know which
of both sets contains it. Thus we can add S1 or S2 to reach only if they contain concrete
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Figure 6.8: The splitting of regions

l1
ẋ = 1
ẏ = 2

x = 0 ∧ y = 0

l2
ẋ = −1
ẏ = −1
0 ≤ x

Figure 6.9: Leaking gas burner

initial states. Note also that all other elements R′ 6= R in reach can stay in the set.
Previous predecessors of R are now predecessors of S1 and/or S2. For such predecessors
that are in completed we check if still all of their successors are in reach, and remove them
from completed if it is not the case. All other regions in completed remain in the set.
We observe that, since “bad” regions do not have outgoing transitions in the abstract
LSTS, they are never split. Thus there is always a single “bad” region in the partitioning.
Before each iteration we check if one of the termination conditions hold: If Rbad ∈ reach
then the system violates the property. Otherwise, if Rbad /∈ reach but reach = completed
then Rbad is not reachable in the abstraction, and the property holds.
Note that if the regions Rbad and I are linear, all regions that are constructed by the
procedure are linear.

Lemma 13.
The procedure in Figure 6.7 returns TRUE iff I 7→∗ Rbad.

Example 33.
Assume the linear hybrid automaton shown in Figure 6.9. We want to prove that 0 ≤ y
always holds.
We have

Rbad = (l1, y < 0) ∪ (l2, 0 ≤ x ∧ y < 0)

R1 = (l1, 0 ≤ y) ∪ (l2, 0 ≤ x ∧ 0 ≤ y)
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The algorithm initializes

Π = {Rbad, R1}
reach = {R1}

completed = ∅ .

Since Rbad /∈ reach and reach 6= completed the main loop is entered. We choose the
only element R1 ∈ reach. Its only successor region is Rbad. We first compute the time
predecessor of Rbad:

〈Rbad〉↙ = 〈(l1, y < 0) ∪ (l2, 0 ≤ x ∧ y < 0)〉↙

= 〈(l1, y < 0)〉↙ ∪ 〈(l2, 0 ≤ x ∧ y < 0)〉↙

To compute 〈(l1, y < 0)〉↙ assume a time step resulting in a state from (l1, y < 0). Then
the control is in l1 also before the time step. For the valuation, if x and y denote the
values before the time step, then after the time step the values change to x+ t and y+ 2t
for some 0 ≤ t, and we know that y + 2t < 0. We have to eliminate t from the equation
set

0 ≤ t ∧ y + 2t < 0,

i.e.,
0 ≤ t ∧ t < −y/2

which yield 〈(l1, y < 0)〉↙ = (l1, y < 0).
To compute 〈(l2, 0 ≤ x ∧ y < 0)〉↙ assume a time step resulting in a state from (l2, 0 ≤
x ∧ y < 0). Then before the time step control is in l2. Let again x and y denote the
variable values before the time step. The time step changes the values to x− t and y − t
for some 0 ≤ t. Due to the invariant 0 ≤ x and 0 ≤ x − t, and since the target state
should be from Rbad we have y − t < 0. Eliminating t from the equation system

0 ≤ x ∧ 0 ≤ x− t ∧ 0 ≤ t ∧ y − t < 0,

i.e.,
0 ≤ x ∧ t ≤ x ∧ 0 ≤ t ∧ y < t,

we get 0 ≤ x ∧ y < x. Thus 〈(l2, 0 ≤ x ∧ y < 0)〉↙ = (l2, 0 ≤ x ∧ y < x).
Collecting the above information, 〈Rbad〉↙ = (l1, y < 0) ∪ (l2, 0 ≤ x ∧ y < x).
Now we compute the discrete step predecessor of this set.

pre [〈Rbad〉↙] =
pre [(l1, y < 0) ∪ (l2, 0 ≤ x ∧ y < x)] =
(l1, y < 0)︸ ︷︷ ︸

τl1

∪ (l2, 0 ≤ x ∧ y < x)︸ ︷︷ ︸
τl2

∪ (l2, 0 ≤ x ∧ y < 0)︸ ︷︷ ︸
edge from l2 to l1

∪ (l1, 0 ≤ x ∧ y < x)︸ ︷︷ ︸
edge from l1 to l2

=

(l1, y < 0 ∨ 0 ≤ y < x) ∪ (l2, (0 ≤ x ∧ y < 0) ∨ (0 ≤ y < x))
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The intersection of this predecessor set with R1 yields

pre [〈Rbad〉↙] ∩R1 = [(l1, y < 0 ∨ 0 ≤ y < x) ∪ (l2, (0 ≤ x ∧ y < 0) ∨ (0 ≤ y < x))] ∩
[(l1, 0 ≤ y) ∪ (l2, 0 ≤ x ∧ 0 ≤ y)]

= (l1, 0 ≤ y < x) ∪ (l2, 0 ≤ y < x)

=: R2.

We define

R3 := R1\R2 = (l1, 0 ≤ x ≤ y) ∪ (l2, 0 ≤ x ∧ 0 ≤ y ∧ x ≤ y).

Thus we have split(Π, R1, Rbad) = {R2, R3}. The corresponding updates result in

Π = {Rbad, R2, R3}
reach = {R3}

completed = ∅

In the next iteration the termination conditions are still not met thus we execute the loop
once more. For R3 ∈ reach we have no successor regions, thus the region does not get
split and the update results in

Π = {Rbad, R2, R3}
reach = {R3}

completed = {R3}.

In the next iteration we detect that the termination condition reach = completed holds.
Since Rbad /∈ reach, the algorithm returns that the property holds.

The minimization of linear hybrid automata is a special case of a more general approach
frequently used for the reachability analysis of general hybrid systems. The general
approach defines an initial partitioning of the state space and refines it by region splitting
until it becomes fine enough to prove or violate the requested safety property. The
different instances of this general approach use different methods to determine the regions
to be split and the splitting itself.
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Chapter 7

General Hybrid Automata

In the previous chapter we have seen an approach for the reachability analysis of hybrid
systems with linear behavior based on fixed point computation. There we represented
the reachable sets by conjunctions of linear constraints. In this chapter we discuss the
analysis of general hybrid automata, and especially other representation techniques for
their state sets.

The reachability problem for hybrid automata is in general undecidable. Nevertheless,
incomplete algorithms exist for reachability analysis, which allow to check safety prop-
erties of the systems. Most algorithms compute over-approximations of the reachability
relation. Generally there are two kinds of approaches:

1. We can build a finite abstraction of the state space, and compute reachability for
the abstract system. We have already seen a typical example for this approach:
the region automata construction for timed automata. As this abstraction is based
on bisimulation, it is not over-approximating. Another example is the on-the-fly
refinement of the predicate abstraction during the fixed-point computation of the
last chapter. This abstraction is in general over-approximating. Spurious coun-
terexamples can be eliminated by (counterexample-guided) abstraction refinement
(realized by splitting the abstract states).

2. An alternative approach is to compute reachability for the original system, without
abstraction, but over-approximating the set of reachable states.

In this chapter we deal with the latter approach. The general forward reachability com-
putation procedure can be specified by the algorithm depicted on Figure 7.1. Note that
if the state space is infinite, then this algorithm does not always terminate.
In order to implement the above algorithm, we must solve two problems:

1. We must be able to store the current reachable sets R and Rnew, and build their
union, intersection, etc.

2. We must be able to compute Reach(P ) for a set P .
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Input: Set Init of initial states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪Rnew;
Rnew := Reach(Rnew)\R;

}
Output: Set R of reachable states.

Figure 7.1: General reachability computation algorithm

P P

Figure 7.2: An example reachability approximation for a hybrid automaton

Note that in general the reachable sets cannot be represented exactly, as for general hybrid
automata even the reachability relation due to a single time step can be undecidable.
We solve the above problems by

1. over-approximating the reachable sets by sets having certain geometric forms, such
that the needed operations can be done efficiently, and

2. over-approximate Reach(P ) in each step in the above procedure.

In this chapter we discuss the first point, and introduce representations of state sets. Af-
terwards, in the next chapter we discuss methods for the over-approximation of Reach(P ).
Putting the two together, we can implement the algorithm on Figure 7.1. To get an intu-
ition, an example reachability approximation using the reachability algorithm for some
hybrid automaton is visualized on Figure 7.2. The exact continuous behavior is depicted
on the left, while the approximation is drawn on the right.
The geometry chosen to represent reachable sets has a crucial effect on the practicability
of the whole procedure. Usually, the more complex the geometry,

1. the more costly is the storage of the sets,
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2. the more difficult it is to perform operations like union and intersection, and

3. the more elaborate is the computation of new reachable sets, but

4. the better the approximation of the set of reachable states.

Choosing the geometry has to be a compromise between these impacts. The representa-
tion should allow efficient computation of the operations for

• membership relation,

• union,

• intersection,

• subtraction,

• test for emptiness.

In the remaining part of this chapter we have a closer look at representation by

• orthogonal polyhedra in Section 7.1 and

• convex polyhedra in Section 7.2.
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Figure 7.4: An example grid

7.1 Orthogonal Polyhedra

The content of this section is based on the publications [BMP99] and [SK03].

7.1.1 Definition of orthogonal polyhedra

As state space domain we consider a bounded subset X = [0,m]d ⊆ Rd (m ∈ N+) ofX

the reals (can be extended to X = Rd+). Elements of X are denoted by x = (x1, . . . , xd),
the zero vector by 0, and the unit vector by 1. For our running example we define the
domain X = [0, 6]2, depicted on Figure 7.3.

Definition 45.
A d-dimensional grid associated with the domain X = [0,m]d ⊆ Rd (m ∈ N+) is a product
of d subsets of {0, 1, . . . ,m− 1}.

An example grid is depicted on Figure 7.4.
Definition 46.
The elementary grid associated with X = [0,m]d ⊆ Rd (m ∈ N+) is G = {0, 1, . . . ,m−G

1}d ⊆ Nd.

An example elementary grid is depicted on Figure 7.5 The grid admits a natural partial
order with (m− 1, . . . ,m− 1) on the top and 0 as bottom, as show on Figure 7.6.
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Figure 7.5: An example elementary grid
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Figure 7.6: The partial order on the grid points of an elementary grid
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Figure 7.8: The elementary box of a grid point

The set of subsets of the elementary grid G forms a
Boolean algebra (2G,∩,∪,∼) under the set-theoretic operations

• A ∪ B

• A ∩ B

• ∼ A = G\A

for A,B ⊆ G ⊂ Nd. An example cut of two subsets is shown on Figure 7.7.

Definition 47 (Elementary box).
The elementary box associated with a grid point x = (x1, . . . , xd) is B(x) = [x1, x1 +1]×B,B

. . . ,×[xd, xd + 1]. The set of elementary boxes is denoted by B.

An example of an elementary box of a grid point is shown on Figure 7.8.

Definition 48 (Orthogonal polyhedra).
An orthogonal polyhedron P is a union of elementary boxes, i.e., an element of 2B.

An example of an orthogonal polyhedron is shown on Figure 7.9.
The set of orthogonal polyhedra forms a Boolean algebra (2B,u,t,¬) with the operations
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6{B((2, 4))} ∪ {B((3, 4))} ∪

{B((2, 3))} ∪ {B((3, 3))} ∪

{B((2, 2))} ∪

{B((2, 1))}

Figure 7.9: An example orthogonal polyhedron

• A tB = A ∪B

• A uB = cl(int(A) ∩ int(B))

• ¬A = cl(X\A)

where

• int is the interior operator yielding the largest open set int(A) contained in A, and

• cl is the topological closure operator yielding the smallest closed set cl(A) contain-
ing A.

For the operations u and ¬A we need the interior and closure operations in order to
be closed under orthogonal polyhedra, i.e., for the result being an orthogonal polyhedra.
Intuitively, we use the standard set operations but want to compute the cut and negation
not in terms of points but in terms of elementary boxes.
Figure 7.10 gives an example for u. Without the interior operation the result would be
the line between the two elementary boxes. With the interior operation the result is the
empty set.
Figure 7.11 gives an example for the negation. Without building the closure of the set
negation the result would be an open set.
The bijection between G and B which associates every elementary box with its leftmost
corner generates an isomorphism between (2G,∩,∪,∼) and (2B,u,t,¬). Thus we can
switch between point-based and box-based terminology according to what serves better
the intuition, as illustrated on Figure 7.12.

7.1.2 Representation of orthogonal polyhedra

We need an representation of orthogonal polyhedra that allows efficient computation.
The representations we consider are based on the vertices of orthogonal polyhedra. Below
we give some definitions we need for the definition of a vertex.
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A uB = cl(int(A) ∩ int(B))

i

j

0 1 2 3
0

1

2

3([1, 2]× [1, 2]) u ([2, 3]× [1, 2]) =

cl(((1, 2)× (1, 2)) u ((2, 3)× (1, 2))) =

cl(∅) = ∅

Note: ([1, 2]× [1, 2]) ∩ ([2, 3]× [1, 2]) = [2, 2]× [1, 2]

Figure 7.10: An example for the cut of two orthogonal polyhedra

¬A = cl(∼ A)

i

j

0 1 2 3
0

1

2

3¬([0, 2]× [0, 3]) =

cl(∼ ([0, 2]× [0, 3])) =

cl((2, 3]× [0, 3])) = [2, 3]× [0, 3]

Note: ∼ ([0, 2]× [0, 3]) = (2, 3]× [0, 3]

Figure 7.11: An example for the negation of an orthogonal polyhedron
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Figure 7.12: Bijection between G and B
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Figure 7.13: The coloring function for an orthogonal polyhedron

Definition 49 (Color function).
Let P be an orthogonal polyhedron. The color function c : X → {0, 1} is defined by

c(x) =

{
1 if x is a grid point and B(x) ⊆ P
0 otherwise

for all x ∈ X.
If c(x) = 1 we say that x is black and that B(x) is full.
If c(x) = 0 we say that x is white and that B(x) is empty.

Note that c almost coincides with the characteristic function of P as a subset of X. It
differs from it only on right-boundary points. The coloring for an example orthogonal
polyhedron is shown in Figure 7.13.
The following definitions capture the intuitive meaning of a facet and a vertex and, in
particular, that the boundary of an orthogonal polyhedron is the union of its facets.

Definition 50 (i-predecessor).
The i-predecessor of a grid point x = (x1, . . . , xd) ∈ X is xi− = (x1, . . . , xi−1, xi −
1, xi+1, . . . , xd). We use xij− to denote (xi−)j−. When x has no i-predecessor, we write
⊥ for the predecessor value.

The above definition is illustrated in Figure 7.14.
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i

j

xij− xj−

xxi−

Figure 7.14: The predecessors of a grid point

Definition 51 (Neighborhood).
The neighborhood of a grid point x is the set

N (x) = {x1 − 1, x1} × . . .× {xd − 1, xd}

(the vertices of a box lying between x − 1 and x). For every i, N (x) can be partitioned
into left and right i-neighborhoods

N i−(x) = {x1 − 1, x1} × . . .× {xi − 1} × {xd − 1, xd}

and
N i(x) = {x1 − 1, x1} × . . .× {xi} × {xd − 1, xd}.

Definition 52 (i-hyperplane).
An i-hyperplane is a (d − 1)-dimensional subset Hi,z of X consisting of all points x
satisfying xi = z.

The above definition is illustrated in Figure 7.15.
Note that the facets of orthogonal polyhedra are d − 1-dimensional polyhedra, and as
such, they are subsets of i-hyperplanes. For the definition of facets we make use of the
fact that the coloring changes on facets. Thereby we need to pay attention to white
vertices lying on the boundaries to the “right”. For example, the orthogonal polyhedron
in Figure 7.13 has white grid points on the top and at the right that belong to facets or
are vertices.

Definition 53 (i-facet).
An i-facet of an orthogonal polyhedron P with color function c is

Fi,z(P ) = cl{x ∈ Hi,z|c(x) 6= c(xi−)}

for some integer z ∈ [0,m).
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i

j

z

Figure 7.15: An i-hyperplane of X

Definition 54 (Vertex).
A vertex is a non-empty intersection of d distinct facets. The set of vertices of an
orthogonal polyhedron P is denoted by V (P ).

In Figure 7.16 the vertices of an orthogonal polyhedron are marked red.

i

j

Figure 7.16: The vertices of an orthogonal polyhedron

Definition 55 (i-vertex-predecessor).
An i-vertex-predecessor of a grid point x = (x1, . . . , xd) ∈ X is a vertex of the form
(x1, . . . , xi−1, z, xi+1, . . . , xd) for some integer z ∈ [0, xi]. When x has no i-vertex-
predecessor, we write ⊥ for its value.
The first i-vertex-predecessor of x, denoted by xi←, is the one with the maximal z.

Figure 7.17 shows the first i-vertex-predecessors of some points for our example orthog-
onal polyhedron.
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i
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xxi←

y = yi←

zzi←

Figure 7.17: The first i-vertex-predecessors of some points and an orthogonal polyhe-
dron

A representation scheme for 2B (2G) is a set E of syntactic objects such that there
is a surjective function φ from E to 2B, i.e., every syntactic object represents at most
one polyhedron and every polyhedron has at least one corresponding object. If φ is an
injection we say that the representation is canonical, i.e., every polyhedron has a unique
representation.
There are different representation schemes we could consider. A naive way would be an
explicit representation consisting of the enumeration of the color values on every grid
point, i.e., a d-dimensional zero-one array with md entities. However, such a representa-
tion would be both for storage and computation very inefficient.
Another possibility would be a Boolean representation, specifying an orthogonal poly-
hedron as a Boolean combination of inequalities of the form xi ≥ z. Note that this
representation is non-canonical.
In this section we consider the following vertex-based representations:

• Vertex representation: An orthogonal polyhedron P is represented by the set
{(x, c(x)) | x is a vertex of P}, i.e., the vertices of P along with their color. This
representation is canonical.

Note that the vertices alone would not yield a unique representation scheme. Fig-
ure 7.18 shows two orthogonal polyhedra having the same vertex sets but assigning
different colors to the vertices.

Note also that not every set of points and colors is a valid representation of a
polyhedron.

• Neighborhood representation: An orthogonal polyhedron is represented by its ver-
tices along with the colors of all the 2d points in the neighborhoods of the vertices.

• Extreme vertex representation: This representation keeps the vertices and the parity
of the number of black points in the neighborhood of the vertices. In fact, it suffices
to keep only vertices with odd parity.

94 ——- Draft version, please do not distribute ——-



CHAPTER 7. GENERAL HYBRID AUTOMATA

Figure 7.18: Two vertex representations agreeing on the vertices but having different
vertex colors

Why we choose the above representations, especially in the case of the neighborhood and
the extreme vertex representations, will become clear in the following when we define
the algorithms for the required operations on orthogonal polyhedra. We do not discuss
all needed operations. Instead, we describe the algorithms for the membership problem
and for the computation of the intersection of two orthogonal polyhedra, only.

7.1.3 Membership problem

Next we discuss how to solve the membership problem for orthogonal polyhedra, based
on the three different representation schemes suggested above. Given a representation of
a polyhedron P and a grid point x, the membership problem is the problem to determine
c(x), that is, whether B(x) ⊆ P .

Membership problem for the vertex representation

We make use of the following observations:

• A point x is on an i-facet iff

∃x′ ∈ N i(x). c(x′i−) 6= c(x′).

• A point x is a vertex iff

∀i ∈ {1, . . . , d}. ∃x′ ∈ N i(x). c(x′i−) 6= c(x′).

• A point x is not a vertex iff

∃i ∈ {1, . . . , d}. ∀x′ ∈ N i(x). c(x′i−) = c(x′).

Given an orthogonal polyhedron in vertex representation, we can compute the color of a
non-vertex grid point recursively, using the following lemma:
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Lemma 14 (Color of a non-vertex).
Let x be a non-vertex. Then there exists a direction j ∈ {1, . . . , d} such that

∀x′ ∈ N j(x)\{x}. c(x′j−) = c(x′).(7.1)

Let j be such a direction. Then c(x) = c(xj−).

Proof A point x is not a vertex iff there is a dimension in that the point is not on a
facet, i.e.,

∃i ∈ {1, . . . , d}. ∀x′ ∈ N i(x). c(x′i−) = c(x′).(7.2)

Thus j always exists. Assume a j satisfying 7.1 and an i satisfying 7.2. If i = j,
then the case is straightforward. Otherwise, if i 6= j, for i we have c(xi−) = c(x) and
c(xij−) = c(xj−). For j we have c(xij−) = c(xi−). By the transitivity of “=” we get
c(x) = c(xj−).

i

j

xij− xj−

xxi−

Consequently we can calculate the color of a non-vertex x based on the color of all points
in N (x) − {x}: just find some j satisfying the conditions of the above lemma and let
c(x) = c(xj−).

Theorem 3.
For a domain X = [0, n]d, the membership problem for vertex representation can be solved
in time O(ndd2d) using space O(nd).

Proof We start at x and recursively determine the membership of all the 2d−1 points in
N (x)\{x}. Termination of the recursion is guaranteed because we go down in the partial
order on 2G and either encounter vertices or reach the origin. We must recursively
determine the color of at most nd grid points. For each of them we must check at most
d dimensions if they satisfy the condition of the lemma on the color of a non-vertex.
Checking the condition in a dimension invokes 2d−1 − 1 color comparisons.

However, this algorithm is not very efficient, because in the worst-case one has to calculate
the color of all the grid points between 0 and x. We can improve it using the notion
of an induced grid : let the i-scale of P be the set of the i-coordinates of the vertices
of P , and let the induced grid be the Cartesian product of its i-scales. The induced
grid is the smallest (coarsest) grid containing all the vertices. Every rectangle in the
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induced grid has a uniform color. Calculating the color of a point reduces to finding its
closest “dominating” point on the induced grid and applying the algorithm to that grid in
O(ndd2d) time, where n is the number of grid points in the induced grid. The approach
is illustrated in Figure 7.19.

x
′

x

Figure 7.19: Membership problem on an induced grid

Membership problem for the neighborhood representation

The solution of the membership problem for the neighborhood representation is based
on projection.

Definition 56 (i-slice and i-section).
Let P be an orthogonal polyhedron and z an integer in [0,m).

• The i-slice of P at z is the d-dimensional orthogonal polyhedron Ji,z(P ) = P u
{x|z ≤ xi ≤ z + 1}.

• The i-section of P at z is the (d− 1)-dimensional orthogonal polyhedron Ji,z(P ) =
Ji,z(P ) ∩Hi,z.

x x x

The membership of x = (x1, . . . , xd) can be reduced to membership in Ji,xi(P ), which is
a (d − 1)-dimensional problem: a x is contained in an orthogonal polyhedron P iff it is
contained in the i-section of P at xi. By successively reducing dimensionality for every
i we obtain a point whose color is that of x.
For the computation of an i-section of an orthogonal polyhedron P we first observe that
the vertices of the i-section are points x in the corresponding i-hyperplane that lie on a
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facet of P in each dimension j 6= i. I.e., a point x in the corresponding i-hyperplane is a
vertex of the i-section iff (1) x has a first i-vertex-predecessor y = xi← 6= ⊥ such that (2)
for each dimension j 6= i there is a j-facet to the right of y in dimension i. The second
condition assures that this facet intersects with the i-hyperplane.
The neighborhood representation provides us with the vertices and the colors of their
neighbors. This coloring information can be used to determine in which directions (rela-
tive to the vertex) the faces defining the vertex lie and thus to check the second condition.
Let us take as an example the two-dimensional case. Figure 7.20 lists all 16 possible
neighborhood colorings of a grid point x for d = 2. The colorings in the first row define
non-vertex grid points, whereas the second and third rows contain vertices. Let i be the
horizontal and j the vertical dimension. For the vertices, i.e., the points in the second
and third rows, we can observe that there is a j-facet to the right of x (i.e., to the right
in dimension i) iff the color of x differs from the color of xj−, i.e., the grid point below
x (the point to the left from x in dimension j). This is the case for all grid points in the
third row, whereas the grid points of the second row do not fulfill this condition.

x x x x x x

x x x x

x x x x x x

Figure 7.20: Possible neighborhood colorings in the two-dimensional case

We can use this information to define a projection operation. We introduce an O(n log n)
membership algorithm for the neighborhood representation, based on successive projec-
tions of P into polyhedra of smaller dimension.
We use the following lemma to calculate the neighborhood representation of an i-section.

Lemma 15 (Vertex of a section).
Let P be an orthogonal polyhedron and let P ′ be its i-section at xi = z. A point x is a
vertex of P ′ iff y = xi← 6= ⊥ and for every j 6= i there exists x′ ∈ N i(y) ∩ N j(y) such
that c(x′j−) 6= c(x′).
Moreover, when this condition is true, the neighborhood of x relative to Ji,z(P ) is given
by N i(y).

Proof Assume x is a vertex of P ′. Then there is a facet of P orthogonal to i that goes
through x. This is possible only if there is a vertex xi← = y = (x1, . . . , xi−1, z, xi+1, . . . , xd)
left to x in the dimension i. The vertex y lies on a facet in all dimensions j 6= i, implying
the existence of an x′ ∈ N i(y)∩N j(y) such that c(x′j−) 6= c(x′). Finally, since the facet
goes from y to the right in i through x, we have that c(N i(y)) = c(N i(x)).
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Assume conversely y = xi← exists and it satisfies the condition. Then c(N i(x)) =
c(N i(y)), because otherwise, by the above reasoning, there would be a vertex between x
and y. Hence x satisfies the condition.

The resulting projection algorithm is illustrated on an example in Figure 7.21.

x1

x

P

x

P
′

= J1,x1(P )

x2

J2,x2(P
′
)

Figure 7.21: Solving the membership problem by projection for the neighborhood rep-
resentation

Theorem 4 (Membership problem for the neighborhood representation).
The membership problem for the neighborhood representation can be solved in time
O(nd2(log n+ 2d)).

Proof For a d-dimensional orthogonal polyhedron P with n vertices we can determine
those vertices y which are xi← for some x ∈ Hi,z in O(nd log n) steps.
There are most n such points. With the above lemma we can determine in O(d2d) time
whether one such point is a vertex of the section. Hence it takes O(nd(log n + 2d)) to
get rid of one dimension.
This is repeated d times until P is contracted into a point.

A similar algorithm with the same complexity can be used to calculate the color of all
the points in a neighborhood of x. The algorithm takes double slices (d-dimensional thick
sections of width two) of P , and successively reduces P into the neighborhood of x. This
variation of the algorithm is used for doing Boolean operations.

Membership problem for the extreme vertex representation

The extreme vertex representation can be viewed as a compaction of the neighborhood
representation. Instead of maintaining all the neighborhood of each vertex, it suffices
to keep only the parity of the number of black points in that neighborhood – in fact it
suffices to keep only vertices with odd parity.

Definition 57 (Extreme point).
We use parity(x) to denote the parity of the number of black points in the neighborhood
N (x) of a grid point x. The grid point x is said to be extreme if parity(x) = 1.
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Lemma 16.
An extreme point is a vertex.

Proof By induction on the dimension d. The base case d = 1 is immediate. For d > 1,
choose i ∈ {1, . . . , d}. Exactly one of N i−(x) and N i(x) contains an odd number of
black points. Assume w.l.o.g. that it is N i(x). By induction hypothesis x is a vertex in
Ji,xi(P ). I.e., for every j 6= i there exists x′ ∈ N j(x) such that c(x′j−) 6= c(x′). Since
one cannot have c(x′) = c(x′i−) for all x′ ∈ N i(x), x is a vertex of P .

The converse is not true, i.e., vertices in general need not be extreme.
An extreme vertex representation consists in representing an orthogonal polyhedron by
the set of its extreme vertices. (Additionally, the color of the origin is stored in a bit.
From this information the colors of all extreme vertices can be inferred.)
Note that for d = 1 all vertices are extreme and hence the vertex and extreme vertex
representations coincide. Figure 7.22 gives some two-dimensional representation exam-
ples, where the extreme vertices of the objects are marked red. For the objects in the
left and in the middle all vertices are extreme. For the object in the right all 4 vertices
in the middle are not extreme.

Figure 7.22: Examples for the extreme vertex representation

The membership problem is solved again by projection. To define a projection operation
we need again a rule to determine which points of an i-section are extreme vertices of
the projection.
Let us again first give an intuition in the two-dimensional case for the role of the parity of
a vertex in the projection. The last two lines in Figure 7.20 list all possible neighborhoods
of vertices of a two-dimensional orthogonal polyhedron. All but the last two vertices are
extreme. Note that these last two cases are the only ones representing vertices where
two facets meet each other.
Intuitively, the basic idea for the solution of the membership problem for the extreme
vertex representation is the following: We again use projection. Given a point x on the
i-hyperplane, we count its extreme i-vertex-predecessors to determine if x is an extreme
vertex of the i-section. If there is an even number 2n of such vertices, than we can
conclude that n facets started and ended at those vertices but there is no “open” facet to
the left in i and thus the considered point x does not lie on any facet that goes orthogonal
through the i-hyperplane. Consequently, x is not a vertex of the i-section. Otherwise,
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if there is an odd number of such extreme i-vertex-predecessors, we can conclude that
there is a facet going orthogonal through the i-hyperplane and x lies on that a facet.
Furthermore, since the first i-extreme-vertex-predecessor of x lies on facets in all other
dimensions j 6= i, it holds also for x, and thus x is a vertex of the i-section.

Lemma 17 (Extreme vertices of a section).
Let P be an orthogonal polyhedron and let P ′ = Ji,z(P ). A point x is an extreme vertex
of P ′ iff it has an odd number of extreme i-vertex-predecessors.

Figure 7.23: Extreme vertices of sections

7.1.4 Computing the Intersection of Orthogonal Polyhedra

We assume two polyhedra P1 and P2 with n1 and n2 vertices, respectively. The inter-
section of P1 and P2 may have vertices of P1 and P2 as well as some new vertices, as
illustrated in Figure 7.24.

Lemma 18.
Let x ∈ G be a vertex of P1 ∩ P2. Then for every dimension i, x is on an i-facet of P1

or on an i-facet of P2.
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Figure 7.24: The intersection of two orthogonal polyhedra

That means, each “new” vertex of the intersection, not being a vertex of P1 or P2, must
lie in each dimension i on an i-facet of one of the intersecting polyhedra. Since in all
three representations we have information about the vertices but not explicitely about
the facets, the computation of the intersection of facets must be based on the available
information about the vertices.
Lemma 19.
Let x be a vertex of P1 ∩ P2 which is not an original vertex.
Then there exists a vertex y1 of P1 and a vertex y2 of P2 such that x = max (y1, y2),
where max is applied componentwise.

Note that due to symmetry, we could also use the minimum instead of the maximum in
the above lemma.
Thus the candidates for being vertices of P1 ∩ P2 are restricted to members from the set

V (P1) ∪ V (P2) ∪ {x|∃y1 ∈ V (P1). ∃y2 ∈ V (P2). x = max (y1, y2)},

whose number is not greater then n1 + n2 + n1n2.
Figure 7.25 shows those candidates for the example intersection of Figure 7.24.

Figure 7.25: Vertex candidates of an intersection of two orthogonal polyhedra

The algorithm for computating the intersection of two polyhedra P1 and P2 works as
follows:

• Initialize V (P1) ∪ V (P2) as the set of potential vertices of the intersection.

• For every pair of vertices calculate their max and add it to the potential vertex set.

• For each point in the potential vertex set:
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– Compute the color of its neighborhood in both P1 and P2.

– Calculate the intersection of the neighborhood coloring pointwise.

– Use the vertex rules to determine, whether the point is a vertex of the inter-
section.

Remember the vertex rule: A point x is a vertex iff

∀i ∈ {1, . . . , d}. ∃x′ ∈ N i(x). c(x′i−) 6= c(x′).

Figure 7.26 shows the computation for our example. The first picture shows the candi-
dates. The next 4 rows illustrate the check of 4 of the candidates. The last row shows
the result.
The algorithm for the intersection computation works similarly for all 3 representations.
The only difference occurs in the computation of the colors for the neighborhood of the
candidates and in the storage of the result.
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Figure 7.26: Example intersection computation
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7.2 Convex Polyhedra

After orthogonal polyhedra next we discuss state set representation by convex polyhedra.
Some polyhedra are depicted in Figure 7.27

Figure 7.27: Polyhedra

Definition 58.
A (convex) polyhedron in Rd is the solution set to a finite number of inequalities with
real coefficients in d real variables. A bounded polyhedron is called polytope.

In the following we restrict ourselves to convex polytopes. An extension to convex poly-
hedra is possible, but a bit more involved.
We introduce two representation forms for convex polytopes. Defining a polytope by its
facets yields an H-representation, whereas the V-representation stores the vertices1.

Definition 59 (Closed halfspace).
A d-dimensional closed halfspace is a set H = {x ∈ Rd | c · x ≤ z} for some c ∈ Rd,
called the normal of the halfspace, and a z ∈ R.

Definition 60 (H-polyhedron, H-polytope).
A d-dimensional H-polyhedron P =

⋂n
i=1Hi is the intersection of finitely many closed

halfspaces. A bounded H-polyhedron is called an H-polytope.

The facets of a d-dimensional H-polytope are d− 1-dimensional H-polytopes.
An H-polytope

P =

n⋂
i=1

Hi =

n⋂
i=1

{x ∈ Rd | ci · x ≤ zi}

can also be written in the form

P = {x ∈ Rd | Cx ≤ z}.

We call (C, z) the H-representation of the polytope. Each row ci of C is the normal
vector to the ith facet of the polytope. Note that each H-polytope P has a finite number
of vertices which we denote by V (P ).

1H stays for halfspace and V for vertex.
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Definition 61.
A set S is called convex, if

∀x, y ∈ S. ∀λ ∈ [0, 1] ⊆ R. λx+ (1− λ)y ∈ S.

H-polyhedra are convex sets.

Definition 62 (Convex hull).
Given a set V ⊆ Rd, the convex hull CH (V ) of V is the smallest convex set that containsCH (V )

V .

For a finite set V = {v1, . . . , vn} the convex hull can be computed by

CH (V ) = {x ∈ Rd | ∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.
n∑
i=1

λi = 1 ∧
n∑
i=1

λivi = x}.

Definition 63 (V-polytope).
A V-polytope P = CH (V ) is the convex hull of a finite set V ⊂ Rd. We call V the
V-representation of the polytope.

Note that all V-polytopes are bounded. Note furthermore that both representations are in
general not canonical as they may be non-redundant: The H-representation may contain
redundant subsumed inequations, and the V-representation may contain redundant inner
points that are not vertices. This implies that there may be different representations of a
single polyhedron. Such superfluous data do not pose theoretical problems, but of course
increase the effort of computations. Redundant information can be removed by solving
(a set of) linear programms.
For each H-polytope, the convex hull of its vertices defines the same set in the form
of a V-polytope, and vice versa, each set defined as a V-polytope can be also given
as an H-polytope by computing the halfspaces defined by its facets. This is stated by
Motzkin’s theorem. However, the translations between the H- and the V-representations
of polytopes can be exponential in the state space dimension d.
Given a convex polytope, the sizes of the H- and V-representations can strongly differ.
For example, on the one hand the d-dimensional cube

{x = (x1, . . . , xd) ∈ Rd | ∀1 ≤ i ≤ d. − 1 ≤ xi ≤ 1}

has 2d facets and 2d vertices. On the other hand, the d-dimensional crosspolytope

{x = (x1, . . . , xd) ∈ Rd |
d∑
i=1

|xi| ≤ 1}

has 2d vertices and 2d facets.
If we represent reachable sets of hybrid automata by polytopes, we again need certain
operations on convex polytopes. In the following we discuss
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• the membership problem,

• the intersection, and the

• the union of two polytopes.

As we will see, the computations have different complexities in the different representa-
tions. Many operations are easily solvable in one of the representation and hard in the
other one and vice versa. One could think of converting polytopes for each needed oper-
ation into the representation for which the operation is cheap (indeed this is sometimes
done). However, note that the conversion can have exponential costs.

• The membership problem can be solved in linear time in d in the H-representation.
Given an H-polytope defined by Cx ≤ z and a point p ∈ Rd, to check if p is
contained in the polytope just substitute p for x in Cx ≤ z to check if the inequation
holds.
For the V-representation we have to solve a linear programming problem. Given a
V-polytope defined by the vertex set V , we have to check satisfiability of

∃λ1, . . . , λn ∈ [0, 1] ⊆ Rd.
n∑
i=1

λi = 1 ∧
n∑
i=1

λivi = x .

Alternatively we can also convert the V-polytope into an H-polytope by computing
its facets and check membership for the H-representation.

• The intersection for two polytopes P1 and P2 in the H-representation is again
cheap: Given an H-polytope defined by C1x ≤ z1 and C2x ≤ z2, their intersection

is represented by theH-polytope with
(
C1

C2

)
x ≤

(
z1

z2

)
. Note that the resulting

representation is in general not minimal.
Again, the intersection computation for the V-representation is more complex (NP-
hard); we do not discuss it here. Assume two V-polytopes P1 and P2 having the
vertex sets V1 respectively V2. We can convert the polytopes to H-polytopes,
compute their intersection, and convert the result back to a V-polytope.

• For the union, note that the union of two convex polytopes is in general not a
convex polytope. The standard way to make the union computation closed under
convex polytopes is to take the convex hull of the union.
This time the computation for the V-representation is more efficient. Assume two
V-polytopes defined by the vertex sets V1 and V2. The V-representation of their
union is given by V1 ∪ V2. Note again that the representation is not redundant
(however, it can be made minimal with additional effort).
To compute the union of two H-polytopes defined by C1x ≤ z1 and C2x ≤ z2

is more complex (NP-hard), and we do not handle it here. Alternatively we can
convert the polytopes to V-polytopes, compute the union, and compute back the
result.
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τ -transition, 17, 19, 46

abstraction, 38
timed automaton, 53–58

activity, 22, 45
∼of a rectangular automaton, 64

always operator, see globally operator
atomic proposition, 31, 47
atomic propositions, 13
automaton

hybrid, see hybrid automaton
linear hybrid, see linear hybrid au-

tomaton
rectangular, see rectangular automa-

ton
singular, see singular automaton
stopwatch, see stopwatch automaton

bisimulation, 54
bouncing ball, 11, 27
bounded until operator, 51

clock, 43, 45, 46
clock constraint, 43

atomic ∼, 43
semantics, 44
syntax, 43

clock reset, 43
semantics, 44
syntax, 44

computation tree, 32
computation tree logic, see CTL
continuous system, 9
continuous transition, 21–23, 46

linear hybrid automaton, 71

rectangular automaton, 65
controlled variable, 17, 19, 24, 46
convex, 45, 46, 65
CTL, 34–36

semantics, 35
syntax, 35

CTL∗, 36–37
semantics, 36
syntax, 36

deterministic jump, 67
differential equation, 23
discrete system, 9
discrete transition, 12, 17, 21, 22, 45, 46,

48
linear hybrid automaton, 70
rectangular automaton, 65

discrete-time system, 40–42

eventually operator, see finally operator
example

railroad crossing, 48
examples

bouncing ball, 11, 27
pedestrian light, 13, 14
railroad crossing, 15, 29
thermostat, 9, 26
water-level monitor, 10, 26
while program, 18

execution, see path

finally operator, 33, 35, 36, 40
finite-state system, 9, 38
forward time closure, 72

globally operator, 33, 35, 36, 40
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graphical representation
hybrid automaton, 23
labeled state transition system, 13
labeled transition system, 18
timed automaton, 47

HA, see hybrid automaton
hybrid automaton, 21–30

activity, 22
controlled variable, 24
invariant, 22
parallel composition, 28
path, 23
reachability problem, 43
reachable state, 23
semantics, 22
syntax, 22

hybrid behaviour, 21
hybrid system, 9

induced transition system, 18, 23, 47
infinite-state system, 38, 54
initialized, 64
interleaving, 19
interval, 51
invariant, 22, 45, 46
∼of a rectangular automaton, 64

labeled state transition system, 12–16
parallel composition, 13
path, 12
reachable state, 13
semantics, 12
syntax, 12

labeled transition system, 16–21
controlled variable, 17, 19
parallel composition, 19
path, 17
reachable state, 17
semantics, 17
state, 17
syntax, 17

labeling function, 13, 31, 38, 47
linear formula, 69

linear hybrid automaton, 69–71
approximation, 74–75
backward analysis, 73–74
forward analysis, 71–73
minimization, 75–81
semantics, 70
syntax, 69

linear temporal logic, see LTL
linear term, 69
liveness property, 34
location, 16
logic

CTL, see CTL
CTL∗, see CTL∗

LTL, see LTL
propositional, 31
relation of LTL, CTL, and CTL∗, 37
TCTL, see TCTL
temporal, 32–37
timed temporal ∼, see TCTL

LSTS, see labeled state transition sys-
tem

LTL, 32–34
semantics, 34
syntax, 32

LTS, see labeled transition system

model checking, 38–40
linear hybrid automaton, 71–81
TCTL, 52, 62
timed automaton, 43

next operator, 36, 40, 41, 52
next time operator, 33, 35
non-determinism, 10, 26, 64, 70
non-zenoness, 50

sufficient condition, 50

operator
bounded until, 51
finally, 33, 35, 36, 40
globally, 33, 35, 36, 40
next, 36, 40, 41, 52
next time, 33, 35
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until, 33, 35, 36, 40, 41, 51

parallel composition
hybrid automaton, 28
labeled state transition system, 13
labeled transition system, 19
timed automaton, 46, 47

path
hybrid automaton, 23
labeled state transition system, 12
labeled transition system, 17
rectangular automaton, 65
time-convergent, 49, 50
time-divergent, 49, 50
timed automaton, 46
zeno, 49, 50

pedestrian light, 13, 14
postcondition, 72
property

liveness, 34
safety, 34

propositional logic
semantics, 31
syntax, 31

quantifier, 34, 35, 51

railroad crossing, 15, 29, 48
reachability problem

hybrid automaton, 43
timed automaton, 43

reachable state
timed automaton, 46

real-time system, 50
rectangular automaton, 63–66

activity, 64
decidability, 66–68
initialized, 64
invariant, 64
path, 65
reachable state, 65
semantics, 65
syntax, 64

rectangular set, 63

region, 72
reachable, 72
timed automaton, 53

region transition system, 53, 58–62
RTS, see region transition system
run, see path

safety property, 34
semantics

clock constraint, 44
clock reset, 44
CTL, 35
CTL∗, 36
hybrid automaton, 22
labeled state transition system, 12
labeled transition system, 17
linear hybrid automaton, 70
LTL, 34
propositional logic, 31
rectangular automaton, 65
TCTL, 52
timed automaton, 46

shared variable, 46
singular automaton, 68
state

abstract, 53
labeled state transition system, 12
labeled transition system, 17
reachable
hybrid automaton, 23
labeled state transition system, 13
labeled transition system, 17
rectangular automaton, 65
timed automaton, 46

stopwatch, 67
stopwatch automaton, 67
stutter transition, see τ -transition
synchronization, 19, 46
syntax

clock constraint, 43
clock reset, 44
CTL, 35
CTL∗, 36
hybrid automaton, 22
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labeled state transition system, 12
labeled transition system, 17
linear hybrid automaton, 69
LTL, 32
propositional logic, 31
rectangular automaton, 64
TCTL, 51
timed automaton, 46

system
continuous, 9
discrete, 9
discrete-time, 40–42
finite state, 9, 38
hybrid, 9
infinite state, 38, 54
real-time, 50
time-critical, 50

TCTL, 50–52
model checking, 52, 62
semantics, 49, 52
syntax, 51

thermostat, 9, 26
tick, 40
time
∼lock, 49, 50
bound, 40
continuous, 43, 49
convergence, 49, 50
discrete, 40
divergence, 49, 50

time delay, 44
time deterministic, 69, 71
time step, see continuous transition
time-critical system, 50
time-invariant, 22, 24
timed automaton, 43–50

graphical representation, 47
model checking, 52, 62
parallel composition, 46, 47
path, 46
reachability problem, 43
reachable state, 46
semantics, 46

syntax, 46
timed computation tree logic, see TCTL
timed temporal logic, see TCTL
transition, 46

continuous, see continuous transition
discrete, see discrete transition

transition relation, 17, 45
∼of a rectangular automaton, 64
linear hybrid automaton, 70

transition system
induced, 18, 23, 47
labeled ∼, see labeled transition sys-

tem
labeled state∼, see labeled state tran-

sition system
region ∼, see region transition sys-

tem

until operator, 33, 35, 36, 40, 41, 51
bounded ∼, 51

valuation, 17, 44
variable, 17

clock, 45, 46
controlled, 17, 19, 24, 46
finite-slope, 68
shared, 46

water-level monitor, 10, 26
while program, 18

zenoness, 49, 50
zone, 63, 66

multirectangular, 63
rectangular, 63
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