## **Cyber Physical Systems - Hybrid Control**

Lecture 2: Introduction: Hybrid Automata,

## Finite-State Machines (FSM)

Andreas Podelski

Literature: Edward A. Lee & Sanjit A. Seshia, Introduction to Embedded Systems leeseshia.org



Cyber-Physical Systems (CPS)

networked computational resources interacting with physical systems

# CPS vs. Embedded Systems

embedded systems view:

software on small computers => limited resources

technical problem: extract performance

CPS view:

computation and networking integrated with physical processes

technical problem: manage dynamics, time, and concurrency

#### Fundamental problems

#### time matters

• "as fast as possible" is not good enough

#### concurrency is intrinsic

- it's not an illusion (as in time sharing), and
- it's not (necessarily) about exploiting parallelism

#### environment is physical

- behavior obeys physical laws
- depends on continuous variables (force, acceleration, speed, position)

#### CPS is Multidisciplinary



# **First Challenge**

Models for the physical world and for computation diverge.

- physical: time continuum, differential equations, dynamics
- computational: algorithm, procedure, state transitions, logic

#### bridge the gap:

- use physical world models to specify behavior of systems
- use computational view to study dynamics of physical system

## Model

artifact that imitates the system

#### *mathematical model*:

- definitions in terms of mathematical formulas
- mathematical correctness statement
- formal, automatic correctness proof

formal: mathematical, logical, machine checkable automatic: push-button, scalable

#### Model = abstraction of **system dynamics**

- physical phenomena: differential equations
- o computation / discrete mode change: finite-state automata
- o combination:
  - hybrid automata



## Next: The Hybrid Automaton Model

#### Thermostat

State has both discrete and continuous components:

 $x \in \mathbb{R}$ temperature $h \in \{\mathsf{on}, \mathsf{off}\}$ heating mode

Flow in each mode is:

$$h = \mathsf{on} \land x < 82 \qquad \dot{x} = K(100 - x)$$
$$h = \mathsf{off} \land x > 68 \qquad \dot{x} = -Kx$$

Jumps between modes:

(happen instantaneously)

$$\begin{array}{ll} h = \mathsf{on} \land x \geq 80 & \longrightarrow & h := \mathsf{off} \\ h = \mathsf{off} \land x \leq 70 & \longrightarrow & h := \mathsf{on} \end{array}$$

# Dynamics of Thermostat



13

#### Hybrid Automaton for Thermostat



Automaton not deterministic: for some values of x, non-deterministic choice between continuous evolution and jump

# Hybrid Automata

### o Digital controller of physical "plant"

- thermostat
- controller for power plant
- intelligent cruise control in cars
- aircraft auto pilot
- o Phased operation of natural phenomena
  - bouncing ball
  - biological cell growth
- o Multi-agent systems
  - ground and air transportation systems
  - interacting robots (e.g., RoboSoccer)

Another example

# Nuclear reactor example

| Without rods  |                        |
|---------------|------------------------|
| \Alithe mod 1 | $\dot{T} = 0.1 T - 50$ |
| with roa 1    | $\dot{T} = 0.1 T - 56$ |
| With rod 2    |                        |
|               | $\dot{T} = 0.1 T - 60$ |



Rod 1 and 2 cannot be used simultaneously Once a rod is removed, you cannot use it for 10 minutes

Specification : Keep temperature between 510 and 550 degrees. If T=550 then either a rod is available or we shutdown the plant.

Example due to George Pappas, UPenn

## Nuclear reactor example (contd.)



Example due to George Pappas, UPenn

## Hybrid Automaton for Bouncing Ball



x – vertical distance from ground (position) v – velocity

c – coefficient of restitution,  $0 \cdot c \cdot 1$ 



Behavior of bouncing ball model in form of hybrid automaton = expected behavior?

Next: plot position x as a function of time t, where x starts at height  $x_{max}$ 

# Simulation of Bouncing Ball Automaton in Ptolemy II / HyVisual



# **Zeno Behavior**

## system makes infinite number of jumps in finite time



## A Run/Execution of a Hybrid Automaton

time

 $\mathbf{v}$ 

22

## Zeno Behavior: Formal Definition

time

$$\begin{array}{ll} \tau_{0} & (q_{0},\mathbf{x}_{0}) \\ \tau_{0}' & \rightsquigarrow (q_{0},\mathbf{x}_{0}') \\ = & \downarrow \\ \tau_{1} & (q_{1},\mathbf{x}_{1}) \\ \tau_{1}' & \rightsquigarrow (q_{1},\mathbf{x}_{1}') \\ \downarrow & & \downarrow \end{array} \qquad \begin{array}{l} \text{An execution of a hybrid automaton} \\ \text{with time set } \tau \text{ is zeno} \\ \text{iff } \langle \tau \rangle = \infty \text{ but } |\tau| < \infty. \end{array}$$

$$\begin{array}{l} \vdots \\ \tau_{N} & (q_{N},\mathbf{x}_{N}) \\ \tau_{N}' & \rightsquigarrow (q_{N},\mathbf{x}_{N}') \\ \downarrow \\ \vdots \end{array}$$

#### Analysis of Zeno Behavior of Bouncing Ball

If c < 1 all infinite executions are Zeno. The first bounce occurs at time:

$$\tau_1 = \tau_0 + \frac{v(\tau_0) + \sqrt{v^2(\tau_0) + 2gx(\tau_0)}}{g}$$

The second bounce occurs at time:

$$\tau_2 = \tau_0 + \tau_1 + \frac{2v(\tau_1)}{g}$$

where  $v(\tau_1) = -cv(\tau'_0) = \sqrt{v^2(\tau_0) + 2gx(\tau_0)}$ .

More generally, the Nth bounce occurs at time:

$$\tau_N = \tau_0 + \tau_1 + \frac{2v(\tau_1)}{g} \sum_{i=1}^N c^{i-1}$$

For  $c \in [0, 1)$ , we have  $\sum_{i=1}^{\infty} c^{i-1} = \frac{1}{1-c}$ .

Thus  $\lim_{N\to\infty} \tau_N < \infty$ .

## Why does Zeno Behavior Arise?

Our model is a mathematical artifact

Zeno behavior is possible mathematically

but impossible in real (in physical world).

Some assumption in the model is unrealistic ...

#### Hybrid Automaton for Bouncing Ball What's Unrealistic about this model?



x – vertical distance

c – coefficient of restitution, 0 < c < 1

v – velocity

#### Eliminating Zeno Behavior: Regularization



What happens as  $\varepsilon$  goes to 0?



## Simulation for $\varepsilon = 0.3$



## Simulation for $\varepsilon = 0.15$

## Next: Timed Automata

- sub-class of hybrid automata
- models of real-time systems

# Capturing a "Double-Click" of a Mouse with a Finite-State Machine (FSM)



# Capturing a "Double-Click" of a Mouse with a Timed Automaton



## **Timed Automata**

- RHS of all differential equations is  $1 ("\dot{x} = 1")$
- Single-speed clocks that precisely tracks real time
- Reset of a clock is possible in jump (" x := 0 ")

Systems modeled as Timed Automata:

o Real-time controllers

o Self-timed circuits (clock-less circuits)

o Network protocols with timing-dependent behavior

o Scheduling of jobs

## A 'Tick' Generator



What does x(t) look like?

## A 'Tick' Generator



## Timed Traces and Time-Abstract (Untimed) Traces

time

## Untimed vs. Timed Automata



Do these automata have the same untimed traces?

## **Two Problems**

Verification

o Does the system do what it's supposed to do?

Does the system satisfy its specifications?

#### Synthesis/Control

o Construct a system that satisfies its specifications

e.g. by synthesizing a controller

In both cases: we need to specify the objective

## **Untimed Specifications**

specifications that do not mention time "parking meter reaches 'safe' state when coins are added"



# Next: Finite-State Machines (FSM)

## Discrete System: Counter

#### count number of cars that enter or leave parking garage



Pure signal:  $up: \mathbb{R} \rightarrow \{absent, present\}$ Discrete actor:

*Counter*: 
$$(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$$
  
 $P = \{up, down\}$ 

#### Reaction

For any  $t \in \mathbb{R}$  where  $up(t) \neq absent$  or  $down(t) \neq absent$  the Counter **reacts**. It produces an output value in  $\mathbb{N}$  and changes its internal **state**.



*Counter*:  $(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$  $P = \{up, down\}$ 

## Input and Output Valuations at a Reaction

For  $t \in \mathbb{R}$  a port *p* has a **valuation**, which is an assignment of a value in  $V_p$  (the **type** of port *p*). A valuation of the input ports  $P = \{up, down\}$  assigns to each port a value in  $\{absent, present\}$ .

A **reaction** gives a valuation to the output port *count* in the set  $\{absent\} \cup \mathbb{N}$ .



### State Space

A practical parking garage has a finite number *M* of spaces, so the state space for the counter is

$$States = \{0, 1, 2, \cdots, M\}$$
.



## Finite State Machine (FSM)



Guard g is specified using the predicate

 $up \wedge \neg down$ 

which means that *up* has value *present* and *down* has value *absent*.

## Garage Counter Mathematical Model



Formally: (*States*, *Inputs*, *Outputs*, *update*, *initialState*), where

- *States* =  $\{0, 1, \dots, M\}$
- *Inputs* is a set of input valuations
- *Outputs* is a set of output valuations
- update : States × Inputs → States × Outputs

update function defined by labeled edges

• initialState = 0

## **FSM** Notation



## Guards for Pure Signals

trueTransition is always enabled. $p_1$ Transition is enabled if  $p_1$  is present. $\neg p_1$ Transition is enabled if  $p_1$  is absent. $p_1 \land p_2$ Transition is enabled if both  $p_1$  and  $p_2$  are present. $p_1 \lor p_2$ Transition is enabled if either  $p_1$  or  $p_2$  is present. $p_1 \land \neg p_2$ Transition is enabled if  $p_1$  is present and  $p_2$  is absent.

## Guards for Signals with Numerical Values

 $p_3$ Transition is enabled if  $p_3$  is present (not absent). $p_3 = 1$ Transition is enabled if  $p_3$  is present and has value 1. $p_3 = 1 \land p_1$ Transition is enabled if  $p_3$  has value 1 and  $p_1$  is present. $p_3 > 5$ Transition is enabled if  $p_3$  is present with value greater than 5.

## **Example:** Thermostat

**input:** *temperature* : ℝ **outputs:** *heatOn*, *heatOff* : pure



From this picture, one can construct the formal mathematical model.