Contents & Goals

Last Lecture:
- Motivation, Overview

This Lecture:
- Educational Objectives:
 - Get acquainted with one (simple but powerful) formal model of timed behaviour.
 - See how first order predicate-logic can be used to state requirements.

- Content:
 - Time-dependent State Variables
 - Requirements and System Properties in first order predicate logic
 - Classes of Timed Properties
Recall: Prerequisites

To design a (gas burner) controller that meets its requirements we need

- a formal model of behaviour in (quantitative) time,
- a language to concisely, conveniently specify requirements,
- a language to specify behaviour of controllers,
- a notion of “meet” and a methodology to verify meeting.

Real-Time Behaviour, More Formally...
Recall

State Variables (or Observables)

- We assume that the real-time systems we consider is characterised by a finite set of state variables (or observables)

\[\text{obs}_1, \ldots, \text{obs}_n \]

each equipped with a domain \(D(\text{obs}_i), 1 \leq i \leq n \).

- Example: gas burner

\[\begin{align*}
\pi, &\quad D(\pi) = \{0,1\} \quad \text{or} \quad G \\
\mathcal{F}, &\quad D(\mathcal{F}) = \{0,1\} \\
\mathcal{I}, &\quad D(\mathcal{I}) = \{0,1\} \\
\mathcal{H}, &\quad D(\mathcal{H}) = \{0,1\}
\end{align*} \]

Recall: System Evolution over Time

- One possible evolution (or behaviour) of the considered system over time is represented as a function

\[\pi : \text{Time} \rightarrow D(\text{obs}_1) \times \cdots \times D(\text{obs}_n). \]

- If (and only if) observable \(\text{obs}_i \) has value \(d_i \in D(\text{obs}_i) \) at time \(t \in \text{Time} \), \(1 \leq i \leq n \), we set

\[\pi(t) = (d_1, \ldots, d_n). \]

- For convenience, we use

\[\text{obs}_i : \text{Time} \rightarrow D(\text{obs}_i) \]

to denote the projection of \(\pi \) onto the \(i \)-th component.
Recall: What’s the time?

- There are two main choices for the time domain Time:
 - **discrete time**: Time = \(\mathbb{N}_0 \), the set of natural numbers.
 - **continuous or dense time**: Time = \(\mathbb{R}_0^+ \), the set of non-negative real numbers.

- Throughout the lecture we shall use the **continuous** time model and consider **discrete** time as a special case.
 - Because
 - plant models usually live in **continuous** time,
 - we avoid too early introduction of hardware considerations,
 - Interesting view: continuous-time is a well-suited abstraction from the discrete-time realms induced by clock-cycles etc.

Example: Gas Burner

One possible evolution of considered system over time is represented as function

\[\pi : \text{Time} \to D(\text{obs}_1) \times \cdots \times D(\text{obs}_n) . \]

If (and only if) observable \(\text{obs}_i \) has value \(d_i \in D(\text{obs}_i) \) at time \(t \in \text{Time} \), set:

\[\pi(t) = (d_1, \ldots, d_n) . \]

For convenience: use \(\text{obs}_i : \text{Time} \to D(\text{obs}_i) \).
Example: Gas Burner

Levels of Detail

- **Note:** Depending on the choice of observables we can describe a real-time system at various levels of detail.

 For instance,
 - if the gas valve has different positions, use
 \[G : \text{Time} \rightarrow \{0, 1, 2, 3\} \]
 (But: \(D(G)\) is never continuous in the lecture, otherwise we had a hybrid system.)
 - if the thermostat and the controller are connected via a bus and exchange messages, use
 \[B : \text{Time} \rightarrow \text{Msg}^* \]
 to model the receive buffer as a finite sequence of messages from \(\text{Msg}\).
 - etc.
Predicate Logic

\[
\phi ::= obs(t) = d \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \phi_1 \implies \phi_2 \mid \phi_1 \iff \phi_2 \\
\mid \forall t \in \text{Time} \bullet \phi \mid \forall t \in [t_1 + c_1, t_2 + c_2] \bullet \phi
\]

obs an observable, \(d \in D(\text{obs})\), \(t \in \text{Var logical variable}\), \(c_1, c_2 \in \mathbb{R}_0^+\) constants.

We assume the **standard semantics** interpreted over system evolutions

\[
obs_i : \text{Time} \rightarrow D(\text{obs}), 1 \leq i \leq n.
\]

That is, given a particular system evolution \(\pi\) and a formula \(\phi\), we can tell whether \(\pi\) satisfies \(\phi\) under a given valuation \(\beta\), denoted by \(\pi, \beta \models \phi\).
Recall: Predicate Logic, Standard Semantics

Evolution of system over time: \(\pi : \text{Time} \rightarrow \mathcal{D}(\text{obs}_1) \times \cdots \times \mathcal{D}(\text{obs}_n) \).

If \(\text{obs}_i \) has value \(d_i \in \mathcal{D}(\text{obs}_i) \) at \(t \in \text{Time} \), set: \(\pi(t) = (d_1, \ldots, d_n) \).

For convenience: use \(\text{obs}_i : \text{Time} \rightarrow \mathcal{D}(\text{obs}_i) \).

\[\varphi ::= \text{obs}(t) = d \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \implies \varphi_2 \mid \varphi_1 \iff \varphi_2 \]

- Let \(\beta : \text{Var} \rightarrow \text{Time} \) be a valuation of the logical variables.
- \(\pi, \beta \models \text{obs}_i(t) = d \) iff \(\text{obs}_i(\beta(t)) = d \) \(\land \); \(\forall (\beta(t)) = d \)
- \(\pi, \beta \models \neg \varphi \) iff \(\neg \neg \pi, \beta \models \varphi \)
- \(\pi, \beta \models \varphi_1 \lor \varphi_2 \) iff ...
- ...
- \(\pi, \beta \models \forall t \in \text{Time} \cdot \varphi \) iff for all \(t \in \text{Time}, \pi, \beta(t) \models \varphi \)
- \(\pi, \beta \models \forall t \in [t_1 + c_1, t_2 + c_2] \cdot \varphi \) iff for all \(t \in [t_1, t_2] + [c_1, c_2] \), \(\pi, \beta(t) \models \varphi \)

We write \(\pi, \beta \models \varphi \) and \(\pi, \beta \not\models \varphi \).

Predicate Logic

Note: we can view a closed predicate logic formula \(\varphi \) as a concise description of

\[\{ \pi : \text{Time} \rightarrow \mathcal{D}(\text{obs}_1) \times \cdots \times \mathcal{D}(\text{obs}_n) \mid \pi, \emptyset \models \varphi \}, \]

the set of all system evolutions satisfying \(\varphi \).

For example,

\[\forall t \in \text{Time} \cdot \neg(I(t) \land \neg G(t)) \]

describes all evolutions where there is no ignition with closed gas valve.
Requirements and System Properties

- So we can use first-order predicate logic to formally specify requirements. A requirement ‘Req’ is a set of system behaviours with the pragmatics that, whatever the behaviours of the final implementation are, they shall lie within this set. For instance, $\text{Req} :\iff \forall t \in \text{Time} \cdot \neg (I(t) \land \neg G(t))$ says: “an implementation is fine as long as it doesn’t ignite without gas in any of its evolutions”.

- We can also use first-order predicate logic to formally describe properties of the implementation or design decisions. For instance, $\text{Des} :\iff \forall t \in \text{Time} \cdot I(t) \implies \forall t' \in [t - 1, t + 1] \cdot G(t')$ says that our controller opens the gas valve at least 1 time unit before ignition and keeps it open for at least 1 time unit after.

Correctness

- Let ‘Req’ be a requirement,

- ‘Des’ be a design, and

- ‘Impl’ be an implementation.

Recall: each is a set of evolutions, i.e. a subset of $(\text{Time} \to \times_{i=1}^{n} D(\text{obs}_i))$, described in any form.

We say

- ‘Des’ is a correct design (wrt. ‘Req’) if and only if $\text{Des} \subseteq \text{Req}$.

- ‘Impl’ is a correct implementation (wrt. ‘Des’ (or ‘Req’)) if and only if $\text{Impl} \subseteq \text{Des}$ (or $\text{Impl} \subseteq \text{Req}$)

If ‘Req’ and ‘Des’ are described by formulae of first-order predicate logic, proving the design correct amounts to proving that ‘Des \implies Req’ is valid.
Safety Properties

- A safety property states that something bad must never happen [Lamport].
- Example: train inside level crossing with gates open.
- More general, assume observable $C : \text{Time} \rightarrow \{0, 1\}$ where $C(t) = 1$ represents a critical system state at time t.

Then

$$\forall t \in \text{Time} \bullet \neg C(t)$$

is a safety property.

- In general, a safety property is characterised as a property that can be falsified in bounded time.
- But safety is not everything...
Liveness Properties

- The simplest form of a liveness property states that something good eventually does happen.
- Example: gates open for road traffic.
- More general, assume observable \(G: \text{Time} \rightarrow \{0, 1\} \) where \(G(t) = 1 \) represents a good system state at time \(t \).

 Then
 \[
 \exists t \in \text{Time} \cdot G(t)
 \]
 is a liveness property.
- Note: not falsified in finite time.
- With real-time, liveness is too weak...

Bounded Response Properties

- A bounded response property states that the desired reaction on an input occurs in time interval \([b, e]\).
- Example: from request to secure level crossing to gates closed.
- More general, re-consider good thing \(G: \text{Time} \rightarrow \{0, 1\} \) and request \(R: \text{Time} \rightarrow \{0, 1\} \).

 Then
 \[
 \forall t_1 \in \text{Time} \cdot (R(t_1) \implies \exists t_2 \in [t_1 + 10, t_1 + 15] \cdot G(t_2))
 \]
 is a bounded liveness property.
- This property can again be falsified in finite time.
- With gas burners, this is still not everything...
Duration Properties

- A duration property states that for observation interval \([b, e]\) characterised by a condition \(A(b, e)\) the accumulated time in which the system is in a certain critical state has an upper bound \(u(b, e)\).

- Example: leakage in gas burner.

- More general, re-consider critical thing \(C : \text{Time} \to \{0, 1\}\). Then

\[
\forall b, e \in \text{Time} \quad (A(b, e) \implies \int_{b}^{e} C(t) \, dt \leq u(b, e))
\]

is a duration property.

- This property can again be falsified in finite time.

Duration Calculus
Duration Calculus: Preview

- Duration Calculus is an **interval logic**.
- Formulae are evaluated in an (implicitly given) interval.

Strangest operators:
- **everywhere** — Example: $\lceil G \rceil$
 (Holds in a given interval $[b, e]$ iff the gas valve is open almost everywhere.)
- **chop** — Example: $(\lceil \neg I \rceil; \lceil I \rceil; \lceil \neg I \rceil) \implies \ell \geq 1$
 (Ignition phases last at least one time unit.)
- **integral** — Example: $\ell \geq 60 \implies \int P \leq \frac{\ell}{20}$
 (At most 5% leakage time within intervals of at least 60 time units.)

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) **Symbols:**

$$f, g, \quad true, false, =, <, >, \leq, \geq, \quad x, y, z, \quad X, Y, Z, \quad d$$

(ii) **State Assertions:**

$$P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2$$

(iii) **Terms:**

$$\theta ::= x \mid \ell \mid f P \mid f(\theta_1, \ldots, \theta_n)$$

(iv) **Formulae:**

$$F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2$$

(v) **Abbreviations:**

$$\emptyset, [P], [P]^t, \ [P]^{-t}, \ \Diamond F, \ \Box F$$
References