Real-Time Systems

Lecture 04: Duration Calculus II

2012-05-09

Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:
- Started DC Syntax and Semantics: Symbols, State Assertions

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - Read (and at best also write) Duration Calculus terms.
- Content:
 - Duration Calculus continued
Duration Calculus Cont’d

Duration Calculus: Overview

We will introduce three (or five) syntactical “levels”:

(i) Symbols:

\[0, 1, \ldots, \pi, g, \text{true, false, =, <, >, ≤, ≥, } x, y, z, \text{ X, Y, Z, d}\]

(ii) State Assertions:

\[P ::= 0 \mid 1 \mid X = d \mid \neg P \mid P_1 \land P_2\]

(iii) Terms:

\[\theta ::= x \mid \ell \mid f \mid f(\theta_1, \ldots, \theta_n)\]

(iv) Formulae:

\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2\]

(v) Abbreviations:

\[[], [P], [P]^t, [P]^{≤t}, \diamond F, \Box F\]
Terms: Syntax

- **Duration terms** (DC terms or just terms) are defined by the following grammar:

\[\theta ::= x | \ell | \int P | f(\theta_1, \ldots, \theta_n) \]

where \(x \) is a global variable, \(\ell \) and \(\int \) are special symbols, \(P \) is a state assertion, and \(f \) a function symbol (of arity \(n \)).

- \(\ell \) is called length operator, \(\int \) is called integral operator

- Notation: we may write function symbols in **infix notation** as usual, i.e. write \(\theta_1 + \theta_2 \) instead of \(+((\theta_1, \theta_2)) \).

Definition 1. [Rigid]
A term **without** length and integral symbols is called rigid.

Example: \(x + (y - 2) \cdot \ell \) is rigid

Terms: Semantics

- Closed **intervals** in the time domain

\[\text{Intv} := \{ [b, e] | b, e \in \text{Time and } b \leq e \} \]

Point intervals: \([b, b]\)

- Let \(\text{GVar} \) be the set of global variables.
 A **valuation** of \(\text{GVar} \) is a function
 \[\mathcal{D}: \text{GVar} \rightarrow \mathbb{R} \]

 We use \(\text{Val} \) to denote the set of all valuations of \(\text{GVar} \), i.e. \(\text{Val} = (\text{GVar} \rightarrow \mathbb{R}) \).
The semantics of a term is a function
\[I[\theta] : \text{Val} \times \text{Intv} \rightarrow \mathbb{R} \]
i.e. \(I[\theta](V, [b, e]) \) is the real number that \(\theta \) denotes under interpretation \(I \) and valuation \(V \) in the interval \([b, e]\).

The value is defined \textit{inductively} on the structure of \(\theta \):
\[
\begin{align*}
I[x](V, [b, e]) &= V(x), \\
I[\ell](V, [b, e]) &= e - b, \\
I[fP](V, [b, e]) &= \int_{b}^{e} \frac{P_{f}(t)}{t} \, dt, \\
I[f(\theta_{1}, \ldots, \theta_{n})](V, [b, e]) &= \hat{f} \left(I[f\theta_{1}](V, [b, e]), \ldots, I[f\theta_{n}](V, [b, e]) \right)
\end{align*}
\]

So, \(I[fP](V, [b, e]) \) is \(\int_{b}^{e} P_{f}(t) \, dt \) — but does the integral always exist?

IOW: is there a \(P_{f} \) which is not (Riemann-)integrable? Yes. For instance
\[
P_{f}(t) = \begin{cases}
1, & \text{if } t \in \mathbb{Q} \\
0, & \text{if } t \notin \mathbb{Q}
\end{cases}
\]

To exclude such functions, DC considers only interpretations \(I \) satisfying the following condition of \textit{finite variability}:

For each state variable \(X \) and each interval \([b, e]\) there is a \textit{finite partition} of \([b, e]\) such that the interpretation \(X_{I} \) is constant on each part.

Thus on each interval \([b, e]\) the function \(X_{I} \) has only finitely many points of discontinuity.
Terms: Example

\[L = G \land \neg F \]

\[\theta = x \cdot \int L = \langle x, IL \rangle \]

\[V(x) = 20. \]

Remark 2.5. The semantics \(I[\theta] \) of a term is insensitive against changes of the interpretation \(I \) at individual time points.

Let \(I_1, I_2 \) be interpretations such that \(I_1(x, t) = I_2(x, t) \) for all \(x \) and all \(t \) in \(\bigcup_{t \in T} W(t) \), except for \(t \in T_{12} \).

Then, \(I_1[I[\theta]](V, [b, e]) = I_2[I[\theta]](V, [b, e]) \).

Remark 2.6. The semantics \(I[\theta](V, [b, e]) \) of a rigid term does not depend on the interval \([b, e]\).
Duration Calculus: Overview

We will introduce three (or five) syntactical "levels":

(i) Symbols:

\(a \in \mathbb{R}, f, g, \quad true, false, =, <, >, \leq, \geq, \quad x, y, z, \quad X, Y, Z, \quad d \)

(ii) State Assertions:

\[P ::= 0 \mid 1 \mid X = d \mid \neg P_1 \mid P_1 \land P_2 \]

(iii) Terms:

\[\theta ::= x \mid \ell \mid \int P \mid f(\theta_1, \ldots, \theta_n) \]

(iv) Formulae:

\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2 \]

(v) Abbreviations:

\[[], [P], [P]^t, [P]^{\leq t}, \diamond F, \Box F \]

Formulae: Syntax

- The set of DC formulae is defined by the following grammar:

\[F ::= p(\theta_1, \ldots, \theta_n) \mid \neg F_1 \mid F_1 \land F_2 \mid \forall x \bullet F_1 \mid F_1 ; F_2 \]

where \(p \) is a predicate symbol, \(\theta_i \) a term, \(x \) a global variable.

- chop operator: ‘;’
- atomic formula: \(p(\theta_1, \ldots, \theta_n) \)
- rigid formula: all terms are rigid
- chop free: ‘;’ doesn’t occur
- usual notion of free and bound (global) variables

Note: quantification only over (first-order) global variables, not over (second-order) state variables.
Formulae: Priority Groups

- To avoid parentheses, we define the following five priority groups from highest to lowest priority:
 - \(\neg \) (negation)
 - \(; \) (chop)
 - \(\land, \lor \) (and/or)
 - \(\Rightarrow, \iff \) (implication/equivalence)
 - \(\exists, \forall \) (quantifiers)

Examples:
- \(\neg F ; F \lor H \)
- \(\forall x \left(F \land G \right) \)

Syntactic Substitution...

...of a term \(\theta \) for a variable \(x \) in a formula \(F \).

- We use
 \[F[x := \theta] \]
 to denote the formula that results from performing the following steps:
 (i) transform \(F \) into \(\tilde{F} \) by (consistently) renaming bound variables such that no free occurrence of \(x \) in \(\tilde{F} \) appears within a quantified subformula \(\exists z \bullet G \) or \(\forall z \bullet G \) for some \(z \) occurring in \(\theta \),
 (ii) textually replace all free occurrences of \(x \) in \(\tilde{F} \) by \(\theta \).

Examples:
- \(F := (x \geq y \Rightarrow \exists z \bullet z \geq 0 \land x = y + z) \), \(\theta_1 := \ell, \theta_2 := \ell + z \)
- \(F[x := \theta_1] = (\ell \geq y \Rightarrow \exists z \bullet z \geq 0 \land \ell = y + z) \)
- \(F[x := \theta_2] = (\ell \geq y \Rightarrow \exists z \bullet z \geq 0 \land \ell + z \geq y + \ell) \)
Formulae: Semantics

- The **semantics** of a *formula* is a function

\[I[F] : \text{Val} \times \text{Intv} \rightarrow \{ \text{tt}, \text{ff} \} \]

i.e. \(I[F](V, [b, e]) \) is the truth value of \(F \) under interpretation \(I \) and valuation \(V \) in the interval \([b, e]\).

- This value is defined **inductively** on the structure of \(F \):

\[
\begin{align*}
I[\theta_1, \ldots, \theta_n] & (V, [b, e]) = \left(I \in C2 (V, [b, e]) \right) \left(\theta_1, \ldots, \theta_n \right) \\
I[\neg F_1] & (V, [b, e]) = \text{tt} \iff I \in C2 (V, [b, e]) = \text{ff} \\
I[F_1 \land F_2] & (V, [b, e]) = \text{tt} \iff I \in C2 (V, [b, e]) = \text{ff} \\
I[\forall x \cdot F_1] & (V, [b, e]) = \text{tt} \iff \text{for all } a \in \mathbb{R}, I \in C2 (V, [b, e]) = \text{ff} \\
I[F_1 ; F_2] & (V, [b, e]) = \text{iff } \text{there is an } m \in [b, e] \text{ such that } I \in C2 (V, [b, e]) = \text{ff}.
\end{align*}
\]

Formulae: Example

\[
F := \int_{0}^{x=1} (t^2) = \int_{0}^{1} (t^2) = 1
\]

\[
\left\lfloor (x^2 \geq 0) \right\rfloor > 1
\]

\[
\left\lfloor (x^2 = 0) \right\rfloor > 1
\]

\[
\left\lfloor (x = 0) \right\rfloor > 1
\]
References