Real-Time Systems

Lecture 13: Regions and Zones

2012-07-05

Dr. Bernd Westphal
Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:
- Location reachability decidability (by region construction)

This Lecture:
- **Educational Objectives**: Capabilities for following tasks/questions.
 - Is constraint reachability decidable?
 - What’s a zone? In contrast to a region?
 - Motivation for having zones?
 - What’s a DBM? Who needs to know DBMs?

- **Content**:
 - The Constraint Reachability Problem
 - Zones
 - Difference Bound Matrices
Recall: Putting It All Together

Let $A = (L, B, X, I, E, \ell_{ini})$ be a timed automaton, $\ell \in L$ a location.

- $R(A)$ can be constructed effectively.
- There are finitely many locations in L (by definition).
- There are finitely many regions by Lemma 4.28.
- So $Conf(R(A))$ is finite (by construction).
- It is decidable whether (C_{init} of $R(A)$ is empty) or whether there exists a sequence

$$\langle \ell_{ini}, [\nu_{ini}] \rangle \xrightarrow{\alpha_{R(A)}} \langle \ell_1, [\nu_1] \rangle \xrightarrow{\alpha_{R(A)}} \cdots \xrightarrow{\alpha_{R(A)}} \langle \ell_n, [\nu_n] \rangle$$

such that $\ell_n = \ell$ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]

The location reachability problem for timed automata is **decidable.**
The Constraint Reachability Problem

- **Given:** A timed automaton \mathcal{A}, one of its control locations ℓ, and a clock constraint φ.
- **Question:** Is a configuration $⟨\ell, \nu⟩$ reachable where $\nu \models \varphi$, i.e. is there a transition sequence of the form

$$⟨\ell_{ini}, \nu_{ini}⟩ \xrightarrow{λ_1} ⟨\ell_1, \nu_1⟩ \xrightarrow{λ_2} ⟨\ell_2, \nu_2⟩ \xrightarrow{λ_3} \ldots \xrightarrow{λ_n} ⟨\ell_n, \nu_n⟩ = ⟨\ell, \nu⟩$$

in the labelled transition system $T(\mathcal{A})$ with $\nu \models \varphi$?

- **Note:** we just observed that $R(\mathcal{A})$ loses some information about the clock valuations that are possible in/from a region.

Theorem 4.34. The constraint reachability problem for timed automata is decidable.

The Delay Operation

- Let $[\nu]$ be a clock region.
- We set

$$\text{delay}[\nu] = \{\nu' + t \mid \nu' \equiv \nu \text{ and } t \in \text{Time}\}.$$
The Delay Operation

- Let $[\nu]$ be a clock region.
- We set

$$delay[\nu] = \{\nu' + t \mid \nu' \cong \nu \text{ and } t \in \text{Time}\}.$$

Note: $delay[\nu]$ can be represented as a finite union of regions.

For example, with our two-clock example we have

$$delay[x = y = 0] = \{[x = y = 0] \cup [0 < x = y < 1] \cup [x = y = 1] \cup [1 < x = y]\}.$$

Zones

(Presentation following [Fränzle, 2007])
Recall: Number of Regions

Lemma 4.28. Let X be a set of clocks, $c_x \in \mathbb{N}_0$ the maximal constant for each $x \in X$, and $c = \max\{c_x \mid x \in X\}$. Then

$$(2c + 2)^{|X|} \cdot (4c + 3)^{\frac{1}{2}|X| \cdot (|X| - 1)}$$

is an upper bound on the number of regions.

- In the desk lamp controller,

all regions are reachable in $\mathcal{R}(L)$, but we convinced ourselves that it’s actually only important whether $\nu(x) \in [0, 3]$ or $\nu(x) \in (3, \infty)$.

So: seems there are even equivalence classes of undistinguishable regions.

Wanted: Zones instead of Regions

- In $\mathcal{R}(L)$ we have transitions:

 $$(\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{0\}), \quad (\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{0, 1\}), \quad \ldots,$$

 $$(\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{2, 3\}), \quad (\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{3\})$$

 Which seems to be a complicated way to write just:

 $$(\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, [0, 3])$$

- Can’t we constructively abstract L to:

 $$(\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{0\}) \xrightarrow{\text{press?}} (\text{off}, \{0, 1\}) \xrightarrow{\text{press?}} (\text{off}, \{2, 3\}) \xrightarrow{\text{press?}} (\text{off}, \{3\}) \xrightarrow{\text{press?}} (\text{off}, [0, \infty])$$
What is a Zone?

Definition. A (clock) zone is a set $z \subseteq (X \rightarrow \text{Time})$ of valuations of clocks X such that there exists $\varphi \in \Phi(X)$ with

$\nu \in z$ if and only if $\nu \models \varphi$.

Example:

$\varphi': x \leq 0 \land y \geq 2$ is a clock zone by

$\varphi = (x \leq 2) \land (x > 1) \land (y \geq 1) \land (y < 2) \land (x - y \geq 0)$

- Note: Each clock constraint φ is a symbolic representation of a zone.
- But: There's no one-on-one correspondence between clock constraints and zones. The zone $z = \emptyset$ corresponds to $(x > 1 \land x < 1), (x > 2 \land x < 2), \ldots$
More Examples: Zone or Not?

Zone-based Reachability

Given:

Assume a function

\[\text{Post}_e : (L \times \text{Zones}) \rightarrow (L \times \text{Zones}) \]

such that \(\text{Post}_e((\ell, z)) \) yields the configuration \((\ell', z')\) such that

- zone \(z' \) denotes exactly those clock valuations \(\nu' \)
- which are reachable from a configuration \((\ell, \nu), \nu \in z \),
- by taking edge \(e = (\ell, \alpha, \varphi, Y, \ell') \in E \).

Then \(\ell \in L \) is reachable in \(\mathcal{A} \) if and only if

\[\text{Post}_{e_1}(\ldots(\text{Post}_{e_1}(\langle \ell_{\text{ini}}, z_{\text{ini}} \rangle) \ldots)) = \langle e, z \rangle \]

for some \(e_1, \ldots, e_n \in E \).
Zone-based Reachability: In Other Words

Given:

- \(\text{on} \)
 - press? \(x = 0 \)
 - press? \(x \leq 3 \)
 - press? \(x > 3 \)
- \(\text{light} \)
- \(\text{off} \)
- \(\text{bright} \)
- \(\text{bright} \)

and initial configuration \(\{ \text{off}, \{0\} \} \)

Wanted: A procedure to compute the set
- \(\langle \text{light}, \{0\} \rangle \)
- \(\langle \text{light}, [0, 3] \rangle \)
- \(\langle \text{off}, [0, \infty) \rangle \)

- Set \(R := \{ \langle \ell_{\text{ini}}, z_{\text{ini}} \rangle \} \subset L \times \text{Zones} \)
- Repeat
 - pick
 - a pair \(\langle \ell, z \rangle \) from \(R \) and
 - an edge \(e \in E \) with source \(\ell \)
 such that \(\text{Post}_e(\langle \ell, z \rangle) \) is not already subsumed by \(R \)
 - add \(\text{Post}_e(\langle \ell, z \rangle) \) to \(R \)
until no more such \(\langle \ell, z \rangle \in R \) and \(e \in E \) are found.

Stocktaking: What’s Missing?

- Set \(R := \{ \langle \ell_{\text{ini}}, z_{\text{ini}} \rangle \} \subset L \times \text{Zones} \)
- Repeat
 - pick
 - a pair \(\langle \ell, z \rangle \) from \(R \) and
 - an edge \(e \in E \) with source \(\ell \)
 such that \(\text{Post}_e(\langle \ell, z \rangle) \) is not already subsumed by \(R \)
 - add \(\text{Post}_e(\langle \ell, z \rangle) \) to \(R \)
until no more such \(\langle \ell, z \rangle \in R \) and \(e \in E \) are found.

Missing:
- Algorithm to effectively compute \(\text{Post}_e(\langle \ell, z \rangle) \) for given configuration \(\langle \ell, z \rangle \in L \times \text{Zones} \) and edge \(e \in E \).
- Decision procedure for whether configuration \(\langle \ell', z' \rangle \) is subsumed by a given subset of \(L \times \text{Zones} \).

Note: Algorithm in general terminates only if we apply widening to zones, that is, roughly, to take maximal constants \(c_x \) into account (not in lecture).
What is a Good “Post”?

- If \(z \) is given by a constraint \(\varphi \in \Phi(X) \), then the zone component \(z' \) of
 \(\text{Post}_e(t, z) = (t', z') \) should also be a constraint from \(\Phi(X) \).
 (Because sets of clock valuations are soo unhandily...)

Good news: the following operations can be carried out by manipulating \(\varphi \).

- The **elapse time** operation:

 \[
 \uparrow: \Phi(X) \rightarrow \Phi(X)
 \]

 Given a constraint \(\varphi \), the constraint \(\uparrow (\varphi) \), or \(\varphi \uparrow \) in postfix notation, is
 supposed to denote the set of clock valuations

 \[
 \{ \nu + t \mid \nu \models \varphi, t \in \text{Time} \}.
 \]

 In other symbols: we want

 \[
 \llbracket \uparrow (\varphi) \rrbracket = \llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \models [\varphi], t \in \text{Time} \}.
 \]

 To this end: remove all upper bounds \(x \leq c, x < c \) from \(\varphi \) and add diagonals.

Good News Cont’d

Good news: the following operations can be carried out by manipulating \(\varphi \).

- **elapse time** \(\varphi \uparrow \) with

 \[
 \llbracket \varphi \uparrow \rrbracket = \{ \nu + t \mid \nu \models \varphi, t \in \text{Time} \}
 \]

- **zone intersection** \(\varphi_1 \land \varphi_2 \) with

 \[
 \llbracket \varphi_1 \land \varphi_2 \rrbracket = \{ \nu \mid \nu \models \varphi_1 \text{ and } \nu \models \varphi_2 \}
 \]

- **clock hiding** \(\exists x . \varphi \) with

 \[
 \llbracket \exists x . \varphi \rrbracket = \{ \nu \mid \text{there is } t \in \text{Time such that } \nu[x := t] \models \varphi \}
 \]

- **clock reset** \(\varphi[x := 0] \) with

 \[
 \llbracket \varphi[x := 0] \rrbracket = [x = 0 \land \exists x . \varphi]
 \]
This is Good News...

...because given \(\langle \ell, z \rangle = \langle \ell, \varphi_0 \rangle \) and \(e = (\ell, \alpha, \varphi, \{y_1, \ldots, y_n\}, \ell') \in E \) we have

\[
\text{Post}_e(\langle \ell, z \rangle) = \langle \ell', \varphi_5 \rangle
\]

where

- \(\varphi_1 = \varphi_0 \uparrow \) let time elapse starting from \(\varphi_0 \): \(\varphi_1 \) represents all valuations reachable by waiting in \(\ell \) for an arbitrary amount of time.
- \(\varphi_2 = \varphi_1 \land I(\ell) \) intersect with invariant of \(\ell \): \(\varphi_2 \) represents the reachable good valuations.
- \(\varphi_3 = \varphi_2 \land \varphi \) intersect with guard: \(\varphi_3 \) are the reachable good valuations where \(e \) is enabled.
- \(\varphi_4 = \varphi_3[y_1 := 0] \ldots [y_n := 0] \) reset clocks: \(\varphi_4 \) are all possible outcomes of taking \(e \) from \(\varphi_3 \)
- \(\varphi_5 = \varphi_4 \land I(\ell') \) intersect with invariant of \(\ell' \): \(\varphi_5 \) are the good outcomes of taking \(e \) from \(\varphi_3 \)

Example

- \(\varphi_1 = \varphi_0 \uparrow \) let time elapse.
- \(\varphi_2 = \varphi_1 \land I(\ell) \) intersect with invariant of \(\ell \)
- \(\varphi_3 = \varphi_2 \land \varphi \) intersect with guard
- \(\varphi_4 = \varphi_3[y_1 := 0] \ldots [y_n := 0] \) reset clocks
- \(\varphi_5 = \varphi_4 \land I(\ell') \) intersect with invariant of \(\ell' \)
Difference Bound Matrices

- Given a finite set of clocks X, a DBM over X is a mapping
 \[M : (X \cup \{x_0\} \times X \cup \{x_0\}) \rightarrow (\{<,\leq\} \times \mathbb{Z} \cup \{(<,\infty)\}) \]
- $M(x, y) = (\sim, c)$ encodes the conjunct $x - y \sim c$ (x and y can be x_0).

If M and N are DBM encoding φ_1 and φ_2 (representing zones z_1 and z_2), then we can efficiently compute $M \uparrow$, $M \wedge N$, $M[x := 0]$ such that
- all three are again DBM,
- $M \uparrow$ encodes $\varphi_1 \uparrow$,
- $M \wedge N$ encodes $\varphi_1 \wedge \varphi_2$, and
- $M[x := 0]$ encodes $\varphi_1[x := 0]$.

And there is a canonical form of DBM — canonisation of DBM can be done in cubic time (Floyd-Warshall algorithm).

Thus: we can define our ‘Post’ on DBM, and let our algorithm run on DBM.
Pros and cons

- **Zone-based** reachability analysis usually is explicit wrt. discrete locations:
 - maintains a list of location/zone pairs or
 - maintains a list of location/DBM pairs
 - confined wrt. size of discrete state space (\mathcal{R})
 - avoids blowup by number of clocks and size of clock constraints through symbolic representation of clocks

- **Region-based** analysis provides a finite-state abstraction, amenable to finite-state symbolic MC
 - less dependent on size of discrete state space
 - exponential in number of clocks

- H.-J. Behr et al.: flight (Oj)
- Suj. Scholl: fully symbolic

Extended Timed Automata
Example (Partly Already Seen in Uppaal Demo)

Templates:

- \mathcal{L}:

\mathcal{L}:

- press?
 - light
 - x := 0
 - x \leq 3
 - x $>$ 3

- \mathcal{L}:

\mathcal{U}:

- press!
 - $v := 0$
 - $y := 0$
 - $v = 1$
 - $y < 1$

- \mathcal{U}:

System:

$\lambda \rightarrow$

Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables. E.g. count number of open doors, or intermediate positions of gas valve.

- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straightforward:
 - If we have control locations $L_0 = \{\ell_1, \ldots, \ell_n\}$,
 - and want to model, e.g., the valve range as a variable v with $D(v) = \{0, \ldots, 2\}$,
 - then just use $L = L_0 \times D(v)$ as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the $\lambda \rightarrow$.

L is still finite, so we still have a proper TA.
Data-Variables

- When modelling controllers as timed automata, it is sometimes desirable to have (local and shared) variables. E.g. count number of open doors, or intermediate positions of gas valve.
- Adding variables with finite range (possibly grouped into finite arrays) to any finite-state automata concept is straightforward:
 - If we have control locations $L_0 = \{\ell_1, \ldots, \ell_n\}$, and want to model, e.g., the valve range as a variable v with $D(v) = \{0, \ldots, 2\}$, then just use $L = L_0 \times D(v)$ as control locations, i.e. encode the current value of v in the control location, and consider updates of v in the $\lambda \rightarrow$.
 - L is still finite, so we still have a proper TA.
- But: writing $\lambda \rightarrow$ is tedious.
- So: have variables as “first class citizens” and let compilers do the work.

- Interestingly, many examples in the literature live without variables: the more abstract the model is, i.e., the fewer information it keeps track of (e.g. in data variables), the easier the verification task.

Data Variables and Expressions

- Let $(v, w \in) V$ be a set of (integer) variables.
- $(\psi_{int} \in) \Psi(V)$: integer expressions over V using func. symb. $+,-,\ldots$
- $(\varphi_{int} \in) \Phi(V)$: integer (or data) constraints over V using integer expressions, predicate symbols $=,<,\leq,\ldots$, and boolean logical connectives.

- Let $(x, y \in) X$ be a set of clocks.
- $(\varphi \in) \Phi(X, V)$: (extended) guards, defined by
 $$\varphi ::= \varphi_{clk} \mid \varphi_{int} \mid \varphi_1 \land \varphi_2$$
 where $\varphi_{clk} \in \Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int} \in \Phi(V)$ an integer (or data) constraint.

Examples: Extended guard or not extended guard? Why?
(a) $x < y \land v > 2$, (b) $x < y \lor v > 2$, (c) $v < 1 \lor v > 2$, (d) $x < v$
Modification or Reset Operation

- **New:** a modification or reset operation is
 \[x := 0, \quad x \in X, \]
 or
 \[v := \psi_{\text{int}}, \quad v \in V, \quad \psi_{\text{int}} \in \Psi(V). \]
- By \(R(X, V) \) we denote the set of all resets.
- By \(\vec{r} \) we denote a finite list \(\langle r_1, \ldots, r_n \rangle \), \(n \in \mathbb{N}_0 \), of reset operations \(r_i \in R(X, V) \);
 \(\langle \rangle \) is the empty list.
- By \(R(X, V)^* \) we denote the set of all such lists of reset operations.

Example: Modification or not? Why?
(a) \(x := y \), (b) \(x := v \), (c) \(v := x \), (d) \(v := w \), (e) \(v := 0 \)
References
