- 14 - 2012-07-10 - main -

Real-Time Systems

Lecture 14: Extended Timed Automata

2012-07-10

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Contents & Goals

Last Lecture:

- Decidability of the location reachability problem: zones.
- Extended TA: data variables.

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 - By what are TA extended? Why is that useful?
 - What's an urgent/committed location? What's the difference?
 - What's an urgent channel?
 - Where has the notion of "input action" and "output action" correspondences in the formal semantics?

• Content:

- Extended TA:
 - Structuring Facilities
 - Restriction of Non-Determinism
- The Logic of Uppaal

Recall: Example (Partly Already Seen in Uppaal Demo)

• Let $(v,w\in)V$ be a set of (integer) variables. $(\psi_{int}\in)\Psi(V)$: integer expressions over V using func. symb. $+,-,\dots$ $(\varphi_{int}\in)\Phi(V)$: integer (or data) constraints over V using integer expressions, predicate symbols $=,<,\leq,\dots$, and boolean logical connectives. $(ind, v, \eta, \lambda, \exists) \in), \dot{v}, \dots$ • Recall: $\Phi(X)$ for clocks X (simple clock instant)
• Let $(x,y\in)X$ be a set of clocks. $(\varphi\in)\Phi(X,V)$: (extended) guards, defined by $\varphi::=\varphi_{clk}\mid\varphi_{int}\mid\varphi_1\wedge\varphi_2$ where $\varphi_{clk}\in\Phi(X)$ is a simple clock constraint (as defined before) and $\varphi_{int}\in\Phi(V)$ an integer (or data) constraint. Yes C0

Examples: Extended guard or not extended guard? Why?

(a) $(x,y) \in E$ 0 (b) $(x,y) \in E$ 1 (c) $(x,y) \in E$ 1 (d) $(x,y) \in E$ 1 (eq. $(x,y) \in E$ 1) $(x,y) \in E$ 2 (eq. $(x,y) \in E$ 1) $(x,y) \in E$ 2 (eq. $(x,y) \in E$ 2) $(x,y) \in E$ 2 (eq. $(x,y) \in E$ 3)

Modification or Reset Operation

New: a modification or reset operation is

$$x:=0, \qquad x\in X,$$

or

$$v := \psi_{int}, \quad v \in V, \quad \psi_{int} \in \Psi(V).$$

- By R(X, V) we denote the set of all resets.
- By \vec{r} we denote a finite list $\langle r_1, \dots, r_n \rangle$, $n \in \mathbb{N}_0$, of reset operations $r_i \in R(X, V)$; $\langle \rangle$ is the empty list.
- By $R(X,V)^*$ we denote the set of all such lists of reset operations.

Modification or Reset Operation

(e,a,e,y,e)

• New: a modification or reset (operation) is

$$x := 0, \qquad x \in X,$$

or

$$v := \psi_{int}, \quad v \in V, \quad \psi_{int} \in \Psi(V).$$

- By R(X, V) we denote the set of all resets.
- By \vec{r} we denote a finite list $\langle r_1, \dots, r_n \rangle$, $n \in \mathbb{N}_0$, of reset operations $r_i \in R(X, V)$; $\langle \rangle$ is the empty list.
- By $R(X,V)^*$ we denote the set of all such lists of reset operations.

Examples: Modification or not? Why?

Structuring Facilities

global decl.: clocks, variables, channels, constants

- Global declarations of of clocks, data variables, channels, and constants.
- Binary and broadcast channels: chan c and broadcast chan b.
- Templates of timed automata.
- Instantiation of templates (instances are called process).
- System definition: list of processes.

Restricting Non-determinism

• Urgent locations — enforce local immediate progress.

• Committed locations — enforce atomic immediate progress.

Urgent channels — enforce cooperative immediate progress.
 urgent chan press;

- 2012 07 10 - Setable - 11

8/37

Urgent Locations: Only an Abbreviation...

Replace

with

where z is a fresh clock:

- ullet reset z on all in-going egdes,
- add z=0 to invariant.

N=3 • 1 |U|=20 • 3 and and. and cost one • 20

 ${\bf Question}:$ How many fresh clocks do we need in the worst case for a network of N extended timed automata?

Definition 4.39. An extended timed automaton is a structure

$$\mathcal{A}_e = (L, C, B, U, X, V, I, E, \ell_{ini})$$

where L, B, X, I, ℓ_{ini} are as in Def. 4.3, except that location invariants in I are downward closed, and where

- $C \subseteq L$: committed locations,
- $U \subseteq B$: urgent channels,
- V: a set of data variables,
- $E \subseteq L \times B_{!?} \times \Phi(X, V) \times R(X, V)^* \times L$: a set of directed edges such that

$$(\ell, \alpha, \varphi, \vec{r}, \ell') \in E \land \operatorname{chan}(\alpha) \in U \implies \varphi = true.$$

Edges $(\ell, \alpha, \varphi, \vec{r}, \ell')$ from location ℓ to ℓ' are labelled with an action α , a guard φ , and a list \vec{r} of reset operations.

10/37

Operational Semantics of Networks

Definition 4.40. Let $A_{e,i} = (L_i, C_i, B_i, U_i, X_i, V_i, I_i, E_i, \ell_{ini,i}),$ $1 \le i \le n$, be extended timed automata with pairwise disjoint sets of clocks X_i .

The operational semantics of $\mathcal{C}(\mathcal{A}_{e,1},\ldots,\mathcal{A}_{e,n})$ (closed!) is the labelled transition system

$$\begin{split} \mathcal{T}_e(\mathcal{C}(\mathcal{A}_{e,1},\dots,\mathcal{A}_{e,n})) \\ &= (\mathit{Conf},\mathsf{Time} \cup \{\tau\},\{\xrightarrow{\lambda} \mid \lambda \in \mathsf{Time} \cup \{\tau\}\},C_{ini}) \end{split}$$

- $X = \bigcup_{i=1}^{n} X_i$ and $V = \bigcup_{i=1}^{n} V_i$, V• $Conf = \{\langle \vec{\ell}, \nu \rangle \mid \ell_i \in L_i, \nu : X \cup V \rightarrow \mathsf{Time}, \ \nu \models \bigwedge_{k=1}^{n} I_k(\ell_k) \}$
- $C_{ini} = \{\langle \vec{\ell}_{ini}, \nu_{ini} \rangle\} \cap Conf$,

and the transition relation consists of transitions of the following three types.

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.

$$\begin{array}{c|c}
\bullet & \gamma := v \mid f(v_1, ..., v_m) \\
& \vee \in V, \quad f \in \mathcal{I} \\
\bullet & \mathcal{Q}(v) \subseteq \mathcal{I} \\
\bullet & \mathcal{I}: \mathcal{F} \longrightarrow \mathcal{V}(\mathcal{Z}^n \longrightarrow \mathcal{I}) \\
\bullet & \mathcal{V}: V \longrightarrow \mathcal{D}(v) \\
\hline
\bullet & \mathcal{V}[f(v_1 ... v_n)] := I(f) \left(v(v_n), ..., v(v_n)\right)
\end{array}$$

12/37

Helpers: Extended Valuations and Timeshift

- Now: $\nu: X \cup V \to \mathsf{Time} \cup \mathcal{D}(V)$
- Canonically extends to $\nu: \Psi(V) \to \mathcal{D}$ (valuation of expression).
- " \models " extends canonically to expressions from $\Phi(X, V)$.
- Extended timeshift $\nu + t$, $t \in \text{Time}$, applies to clocks only:
 - $(\nu + t)(x) := \nu(x) + t, x \in X$,
 - $(\nu+t)(v) := \nu(v), v \in V.$
- Effect of modification $r \in R(X,V)$ on ν , denoted by $\underline{\nu[r]}$:

$$\begin{split} \nu[x:=0](a) := \begin{cases} 0 \text{, if } a = x, \\ \nu(a) \text{, otherwise} \end{cases} \\ \nu[v:=\psi_{int}](a) := \begin{cases} \nu(\psi_{int}) \text{, if } a = v, \\ \nu(a) \text{, otherwise} \end{cases} \end{split}$$

$$\nu[v := \psi_{int}](a) := \begin{cases} \nu(\psi_{int}), & \text{if } a = i \\ \nu(a), & \text{otherwise} \end{cases}$$

• We set $\nu[\langle r_1,\ldots,r_n\rangle]:=\nu[r_1]\ldots[r_n]=(((\underline{\nu[r_1]})[r_2])\ldots)[r_n].$

- An internal transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu \rangle$ occurs if there is $i \in \{1, \dots, n\}$
 - there is a τ -edge $(\ell_i, \tau, \varphi, \vec{r}, \ell'_i) \in E_i$,

 - $\nu \models \varphi$, location of the i-th dictornation in $\vec{\ell}^5$ $\vec{\ell}' = \vec{\ell}[\ell_i := \ell_i']$, modification of i-th position $\nu' = \nu[\vec{r}]$,

 - $\nu' \models I_i(\ell'_i)$,
 - () if $\ell_k \in C_k$ for some $k \in \{1,\dots,n\}$ then $\ell_i \in C_i$.

13/37

Operational Semantics of Networks: Synchronisation Transition

- A synchronisation transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell'}, \nu \rangle$ occurs if there are $i, j \in \{1, \dots, n\}$ with $i \neq j$ such that
 - there are edges $(\ell_i, b!, \varphi_i, \vec{r_i}, \ell_i') \in E_i$ and $(\ell_j, b?, \varphi_j, \vec{r_j}, \ell_i') \in E_j$,
 - $\nu \models \varphi_i \wedge \varphi_j$,

 - $\vec{\ell}'=\vec{\ell}[\ell_i:=\ell_i'][\ell_j:=\ell_j'],$ $\nu'=\underbrace{\nu[\vec{r}_i][\vec{r}_j],}$ "sender updates are applied first"
 - $\nu' \models I_i(\ell'_i) \land I_j(\ell'_i)$,
 - (\clubsuit) if $\ell_k \in C_k$ for some $k \in \{1, \ldots, n\}$ then $\ell_i \in C_i$ or $\ell_j \in C_j$.

Operational Semantics of Networks: Delay Transitions

- A delay transition $\langle \vec{\ell}, \nu \rangle \xrightarrow{t} \langle \vec{\ell}, \nu + t \rangle$ occurs if
 - $\nu + t \models \bigwedge_{k=1}^{n} I_k(\ell_k)$,

usquit chaunels

- (\$\ldot\$) there are no $i,j\in\{1,\ldots,n\}$ and $b\in U$ with $(\ell_i,b!,\varphi_i,\vec{r_i},\ell_i')\in E_i$ and $(\ell_j,b!,\varphi_j,\vec{r_j},\ell_j')\in E_j$,
- (\clubsuit) there is no $i \in \{1, \ldots, n\}$ such that $\ell_i \in C_i$.

14 - 2012-07-10 - Setasem -

15/37

Restricting Non-determinism: Example

Restricting Non-determinism: Urgent Location

		Property 1	Property 2	Property 3	
etasem –		$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \Longrightarrow (x \ge y \Longrightarrow y \le 0))$	=
				$(x \ge y \implies y \le 0))$	
10 – S	\mathcal{N}	V	X	X	_
14 – 2012-07-	${\cal N}$, q_1 urgent	$\sqrt{}$	✓	V	_
	\mathcal{N} , q_1 comm.				=
ï	\mathcal{N} , b urgent				17/37

Restricting Non-determinism: Committed Location

		Property 1	Property 2	Property 3
ı		$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$
– 14 – 2012-07-10 – Setasem				$(x \ge y \implies y \le 0))$
	\mathcal{N}	<	X	×
	${\cal N}$, q_1 urgent	~	~	✓
	\mathcal{N} , q_1 comm.	X	✓	✓
	\mathcal{N} , b urgent			

18/37

Restricting Non-determinism: Urgent Channel

		Property 1	Property 2	Property 3	
etasem –		$\exists \lozenge w = 1$	$\forall \Box \mathcal{Q}. q_1 \implies y \le 0$	$\forall \Box (\mathcal{P}.p_1 \land \mathcal{Q}.q_1 \implies$	
				$(x \ge y \implies y \le 0))$	_
10 – S	\mathcal{N}	V	X	X	_
- 14 - 2012-07-	${\cal N}$, q_1 urgent	V	✓	✓	_
	\mathcal{N} , q_1 comm.	X	✓	✓	_
	\mathcal{N} , b urgent	/	X	/	19/37

Extended vs. Pure Timed Automata

$$\begin{split} \mathcal{A}_e &= (L,C,B,U,X,V,I,E,\ell_{ini})\\ (\ell,\alpha,\varphi,\vec{r},\ell') &\in L \times B_{!?} \times \Phi(X,V) \times R(X,V)^* \times L \\ \text{vs.} \end{split}$$

$$\mathcal{A} = (L, B, X, I, E, \ell_{ini})$$
$$(\ell, \alpha, \varphi, Y, \ell') \in E \subseteq L \times B_{?!} \times \Phi(X) \times 2^X \times L$$

- \mathcal{A}_e is in fact (or specialises to) a **pure** timed automaton if
 - $C = \emptyset$,
 - $U = \emptyset$,
 - $V = \emptyset$,
 - for each $\vec{r} = \langle r_1, \dots, r_n \rangle$, every r_i is of the form x := 0 with $x \in X$.
 - $I(\ell), \varphi \in \Phi(X)$ is then a consequence of $V = \emptyset$.

21/37

Operational Semantics of Extended TA

Theorem 4.41. If A_1, \ldots, A_n specialise to pure timed automata, then the operational semantics of

$$\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$$

and

$$\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n),$$

where $\{b_1,\ldots,b_m\}=\bigcup_{i=1}^n B_i$, coincide, i.e.

$$\frac{\mathcal{T}_e(\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n))}{\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)} = \underbrace{\mathcal{T}(\mathsf{chan}\,b_1,\ldots,b_m\bullet(\mathcal{A}_1\parallel\ldots\parallel\mathcal{A}_n))}_{\mathsf{proc}}.$$

- louising - 01 70 5105 - 11

23/37

Recall

Theorem 4.33. [Location Reachability] The location reachability problem for **pure** timed automata is **decidable**.

Theorem 4.34. [Constraint Reachability] The constraint reachability problem for **pure** timed automata is **decidable**.

• And what about tea `Wextended timed automata?

- 14 - 2012-07-10 - Seta -

Extended Timed Automata add the following features:

Data-Variables

- \bullet As long as the domains of all variables in V are finite, adding data variables doesn't hurt.
- If they're infinite, we've got a problem (encode two-counter machine).

• Structuring Facilities

• Don't hurt — they're merely abbreviations.

• Restricting Non-determinism

- Restricting non-determinism doesn't affect the configuration space.
- Restricting non-determinism only **removes** certain transitions, so makes region automaton even smaller.

25/37

The Logic of Uppaal

- 5012 07 10 - Seta

Consider $\mathcal{N} = \mathcal{C}(\mathcal{A}_1, \dots, \mathcal{A}_n)$ over data variables V.

• basic formula:

$$atom ::= \mathcal{A}_i.\ell \mid \varphi$$

where $\ell \in L_i$ is a location and φ a constraint over X_i and V.

• configuration formulae:

$$term ::= atom \mid \neg term \mid term_1 \wedge term_2$$

• existential path formulae:

("exists finally", "exists globally")

$$e\text{-}formula ::= \exists \lozenge \ term \mid \exists \Box \ term$$

• universal path formulae: ("always finally", "always globally", "leads to")

$$a\text{-}formula ::= \forall \lozenge \ term \ | \ \forall \square \ term \ | \ term_1 \ \longrightarrow \ term_2$$

• formulae:

- 14 - 2012-07-10 - Sutl -

$$F ::= e$$
-formula | a -formula

27/37

Configurations at Time t

- Recall: **computation path** (or path) **starting in** $\langle \vec{\ell}_0, \nu_0 \rangle, t_0$: $\xi = \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \xrightarrow{\lambda_1} \langle \vec{\ell}_1, \nu_1 \rangle, t_1 \xrightarrow{\lambda_2} \langle \vec{\ell}_2, \nu_2 \rangle, t_2 \xrightarrow{\lambda_3} \dots$ which is **infinite or maximally finite**. 3.0
- Given ξ and $t\in {\sf Time},$ we use $\xi(t)$ to denote the set

$$\{\langle \vec{\ell}, \nu \rangle \mid \exists i \in \mathbb{N}_0 : t_i < t < t_{i+1} \land \vec{\ell} = \vec{\ell}_i \land \nu = \nu_i + t - t_i \}.$$

of configurations at time t.

- Why is it a set?
- \$(0) = { < \vec{e}_0 , v_0 >}
- Can it be empty?
- 3(0.27)= { < (0, 10, 22 >)

Satisfaction of Uppaal-Logic by Configurations

• We define a satisfaction relation

$$\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models F$$

between time stamped configurations

$$\langle \vec{\ell}_0, \nu_0 \rangle, t_0$$

of a network $\mathcal{C}(\mathcal{A}_1,\ldots,\mathcal{A}_n)$ and formulae F of the Uppaal logic.

- It is defined inductively as follows: in \vec{l}_0 location in \vec{l}_0 or \vec{l}_0 or \vec{l}_0 iff \vec{l}_0 : $\vec{l$

- $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \varphi$ iff $\nu_0 \not\models \varphi$ $\langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \neg term$ iff $\langle \vec{c}, \nu_0 \rangle, t_0 \not\models term_1 \wedge term_2$ iff $\langle \vec{c}, \nu_0 \rangle, t_0 \not\models term_1 \wedge term_2$ iff $\langle \vec{c}, \nu_0 \rangle, t_0 \not\models term_1 \wedge term_2$ iff $\langle \vec{c}, \nu_0 \rangle, t_0 \not\models term_1 \wedge term_2$ iff

29/37

Satisfaction of Uppaal-Logic by Configurations

iff \exists path ξ of \mathcal{N} starting in $\langle \vec{\ell}_0, \nu_0 \rangle, t_0$ $\exists t \in \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in \mathit{Conf}: t_0 \leq t \land \langle \vec{\ell}, \nu \rangle \in \underline{\xi(t)} \land \langle \vec{\ell}, \nu \rangle, t \models \mathit{term}$

Example: $\exists \Diamond \varphi$

Satisfaction of Uppaal-Logic by Configurations

Exists globally:

 $\begin{array}{c} \text{ wole: uniffectly quantifying}\\ \text{ over all observates in}\\ \text{iff} \quad \exists \ \mathsf{path} \ \xi \ \ \mathsf{of} \ \mathcal{N} \ \ \mathsf{starting in} \ \ \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \ \ \vec{\mathsf{Jbt}})\\ \longrightarrow \forall \ t \in \ \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in Conf:\\ t_0 \leq t \wedge \langle \vec{\ell}, \nu \rangle \in \underline{\xi(t)} \ \Longrightarrow \ \langle \vec{\ell}, \nu \rangle, t \models term \end{array}$ • $\langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models \exists \Box term$

Example: $\exists \Box \varphi$

31/37

- Always globally:
 - $\begin{array}{c|c} \bullet & \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \models \forall \Box \ term & \text{iff} \ \langle \vec{\ell}_0, \nu_0 \rangle, t_0 \not\models \exists \Diamond \neg term \\ \\ & & \downarrow \\ & & \forall \text{tim} \bullet \text{ker} \end{array}$

Satisfaction of Uppaal-Logic by Configurations

Leads to:

(tz: "Al (teun, =) AT teun,)"

 $\begin{array}{c} \bullet \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \models term_1 \longrightarrow term_2 \ \ \text{iff} \quad \forall \ \mathsf{path} \ \xi \ \mathsf{of} \ \mathcal{N} \ \mathsf{starting} \ \mathsf{in} \ \langle \vec{\ell_0}, \nu_0 \rangle, t_0 \\ \forall \ t \in \mathsf{Time}, \langle \vec{\ell}, \nu \rangle \in \mathit{Conf} : \\ t_0 \leq t \land \langle \vec{\ell}, \nu \rangle \in \xi(t) \\ \land \langle \vec{\ell}, \nu \rangle, t \models term_1 \\ \mathsf{implies} \ \langle \vec{\ell}, \nu \rangle, t \models \forall \lozenge \ term_2 \\ \end{array}$

Satisfaction of Uppaal-Logic by Networks

We write

$$\mathcal{N} \models e\text{-}formula$$

if and only if

for some
$$\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models e\text{-}formula,$$
 (1)

33/37

34/37

and

$$\mathcal{N} \models a$$
-formula

if and only if

for all
$$\langle \vec{\ell}_0, \nu_0 \rangle \in C_{ini}, \langle \vec{\ell}_0, \nu_0 \rangle, 0 \models a\text{-}formula,$$
 (2)

where C_{ini} are the initial configurations of $\mathcal{T}_e(\mathcal{N})$.

- If $C_{ini}=\emptyset$, (1) is a contradiction and (2) is a tautology.
- If $C_{ini} \neq \emptyset$, then

$$\mathcal{N} \models F$$
 if and only if $\langle \vec{\ell}_{ini}, \nu_{ini} \rangle, 0 \models F$.

- 14 - 2012 07 10 - 5.1+1

- 14 - 2012-07-10 - Sutl -

35/37

References

- 14 - 2012-07-10 - main -

36/37

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
- Formal Specification and Automatic Verification. Cambridge University Press.

14 - 2012-07-10 - main -