Contents & Goals

Last Lecture:
- Using Uppaal to check whether a TA satisfies a DC requirement:
 Testable DC properties

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata?
 - What’s the idea of the proof?

- Content:
 - Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994].
 - Why this is unfortunate.
 - Timed regular languages are not everything.
Timed Büchi Automata

[Alur and Dill, 1994]

... vs. Timed Automata

\[\xi = (\text{off}, 0), 0 \xrightarrow{\text{press?}} (\text{off}, 1), 1 \xrightarrow{\text{press?}} (\text{light}, 0), 1 \xrightarrow{3} (\text{light}, 3), 4 \xrightarrow{\text{press?}} (\text{bright}, 3), 4 \xrightarrow{\ldots} \]

\(\xi \) is a computation path and run of \(A \).

New: Given a timed word

\((a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \ldots \),

does \(A \) accept it?

New: acceptance criterion is visiting accepting state infinitely often.
Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

(i) **Monotonicity:**
\[\tau_i \text{ increases strictly monotonically, i.e. } \tau_i < \tau_{i+1} \text{ for all } i \geq 1. \]

(ii) **Progress:** For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ.

Example: Timed Language

Timed word over alphabet Σ: a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega$ is an infinite word over Σ, and
- τ is a time sequence (strictly (!) monotonic, non-Zeno).

$$L_{\text{crt}} = \{((ab)^\omega, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2)\}$$
Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

- $F \subseteq S$ is a set of accepting states.

Example: TBA

\[A = (\Sigma, S, S_0, X, E, F) \]

\[(s, s', a, \lambda, \delta) \in E \]
(Accepting) TBA Runs

Definition. A run r, denoted by ($\tilde{s}, \tilde{\nu}$), of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an infinite sequence of the form

$$r : (s_0, \nu_0) \xrightarrow{\sigma_1}{\tau_1} (s_1, \nu_1) \xrightarrow{\sigma_2}{\tau_2} (s_2, \nu_2) \xrightarrow{\sigma_3}{\tau_3} \ldots$$

with $s_i \in S$ and $\nu_i : X \rightarrow \mathbb{R}_0^+$, satisfying the following requirements:

- **Initiation**: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- **Consecution**: for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]$.

The set $\text{inf}(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \geq 0$.

Definition. A run $r = (\tilde{s}, \tilde{\nu})$ of a TBA over timed word (σ, τ) is called (an) accepting (run) if and only if $\text{inf}(r) \cap F \neq \emptyset$.
Example: (Accepting) Runs

\[
\begin{align*}
\tau : \langle s_0, \nu_0 \rangle & \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \ldots \text{ initial and } (s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i) \in E, \text{ s.t. } \\
(\nu_{i-1} + (\tau_i - \tau_{i-1})) & = \delta_i, \nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]. \text{ Accepting iff } \inf(\tau) \cap F \neq \emptyset.
\end{align*}
\]

Timed word: \((a, 1), (b, 1), (a, 3), (b, 4), (a, 5), (b, 6), \ldots\)

- Can we construct any run? Is it accepting?
 \[
 \tau : \langle s_0, x=0 \rangle \xrightarrow{a} \langle s_1, x=0 \rangle \xrightarrow{b} \langle s_2, x=L_1 \rangle \xrightarrow{a} \langle s_3, x=x \rangle \rightarrow \ldots
 \]
 \[\text{valid run, } \inf(\tau) \cap F = \emptyset \]

- Can we construct a non-run?
 \[
 \tau : \langle s_0, 0 \rangle \xrightarrow{a} \langle s_1, 1 \rangle \text{ is non-run since } \inf(\tau) \cap F \neq \emptyset
 \]

- Can we construct a (non-)accepting run?
 \[
 \tau : \langle s_0, 0 \rangle \xrightarrow{a} \langle s_1, 1 \rangle \xrightarrow{b} \langle s_2, 2 \rangle \xrightarrow{a} \langle s_3, 3 \rangle \rightarrow \ldots
 \]

The Language of a TBA

Definition. For a TBA \(A\), the language \(L(A)\) of timed words it accepts is defined to be the set

\[
\{(\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau)\}.
\]

For short: \(L(A)\) is the language of \(A\).

Definition. A timed language \(L\) is a timed regular language if and only if \(L = L(A)\) for some TBA \(A\).
Example: Language of a TBA

\[L(A) = \{ (\sigma, \tau) \mid A \text{ has an accepting run over } (\sigma, \tau) \}. \]

Claim:

\[L(A) = L_{\text{crt}} \left(= \{ ((ab)^{i}, \tau) \mid \exists i \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2) \} \right) \]

- If \(\text{crt} \in L(A) \): "pick some" \((s_{i}, c) \in \text{crt}) \). Construct an accepting run in \(A \).
- If \(L(A) \subseteq \text{crt} \): "pick some" \((s_{i}, c) \in L(A) \), thus there be an accepting run \((s_{i}, \omega) \)

Question: Is \(L_{\text{crt}} \) timed regular or not?

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
The Universality Problem

- **Given:** A TBA A over alphabet Σ.
- **Question:** Does A accept all timed words over Σ?
 In other words: Is $L(A) = \{ (\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence} \}$.

\[
\Sigma = \{a, b, c\} \\
\text{... is universal}
\]

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

(“The class Π^1_1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

Recall: With classical Büchi Automata (untimed), this is different:

- Let B be a Büchi Automaton over Σ.
- B is universal if and only if $\overline{L(B)} = \emptyset$.
- B' such that $L(B') = \overline{L(B)}$ is effectively computable.
- Language emptiness is decidable for Büchi Automata.
Proof Idea

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

Proof Idea:
- Consider a language L_{undec} which consists of the recurring computations of a 2-counter machine M.
- Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with $L(A) = \overline{L_{\text{undec}}}$.
- Then A is universal if and only if L_{undec} is empty.

...which is the case if and only if M doesn’t have a recurring computation.

Once Again: Two Counter Machines (Different Flavour)

A two-counter machine M
- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

- A configuration of M is a triple $\langle i, c, d \rangle$:
 program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

- A computation of M is an infinite consecutive sequence
 $\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$

 that is, $\langle i_j+1, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called recurring iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.
Step 1: The Language of Recurring Computations

- Let M be a 2CM with n instructions.

Wanted: A timed language $\mathcal{L}_{\text{undec}}$ (over some alphabet) representing exactly the recurring computations of M. In particular such that $\mathcal{L}_{\text{undec}} = \emptyset$ if and only if M has no recurring computation.

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.

- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

\[
\begin{align*}
 b_1 a_1 \cdots a_1 a_2 \cdots a_2 &= b_1 a_1^c a_2^d \\
&\quad \text{c times d times}
\end{align*}
\]

Let $\mathcal{L}_{\text{undec}}$ be the set of the timed words (σ, τ) with
Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2} \ldots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.

For all $j \in \mathbb{N}_0$,

- the time of b_{i_j} is j.
- if $c_{j+1} = c_j$ then for every a_1 at time t in the interval $[j, j+1]$ there is an a_1 at time $t+1$,
- if $c_{j+1} = c_j + 1$ then for every a_1 at time t in the interval $[j+1, j+2]$ except for the last one, there is an a_1 at time $t-1$,
- if $c_{j+1} = c_j - 1$ then for every a_1 at time t in the interval $[j, j+1]$ except for the last one, there is an a_1 at time $t+1$,

And analogously for the a_2’s.

Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that

$L(A) = L_{\text{undec}}$
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that

$$L(A) = L_{\text{undec}}$$

What are the reasons for a timed word **not to be** in L_{undec}?

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[.$

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

(iv) The configuration encoded in $[j + 1, j + 2[$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1[.$

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$A = A_0 \cup A_{\text{init}} \cup A_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} A_i$$
Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in [j, j+1]$.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”

Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

- It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

- A_{recur} accepts words with only finitely many b_i.

Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_1^7 \cup \cdots \cup A_6^7$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$.
 "Easy to construct."

- A_7^2 is

\[
\begin{array}{c}
\text{\large A_7} \\

\text{\large l_0} \\
\text{\large b_7} \\
\text{\large $x := 0$} \\
\text{\large l_1} \\
\text{\large a_1} \\
\text{\large $x < 1$} \\
\text{\large l_2} \\
\text{\large $x \neq 1$} \\
\end{array}
\]
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j+1, j+2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j+1]$.

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_7^1 \cup \cdots \cup A_7^6$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j+1$. “Easy to construct.”
- A_7^2 is

- A_7^3 accepts words which encode unexpected increment of counter C.
- A_7^4, \ldots, A_7^6 accept words with missing decrement of D.

Aha, And...?
Consequences: Language Inclusion

- **Given:** Two TBAs A_1 and A_2 over alphabet B.
- **Question:** Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

- If language inclusion was decidable, then we could use it to decide universality of A by checking

 \[\mathcal{L}(A_{\text{univ}}) \subseteq \mathcal{L}(A) \]

 where A_{univ} is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check
 \[L(A_1) \cap L(A_3) = \emptyset, \]
 that is, whether the design has any non-allowed behaviour.
- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA A:

\[
L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}
\]

Complement language:

\[
\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1}\}.
\]
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:
- There are strictly timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[
\begin{align*}
\ell_0 & \xrightarrow{a,x:=0} \ell_1 \\
\ell_0 & \xrightarrow{b,y:=0} \ell_2 \\
\ell_1 & \xrightarrow{c,2x=3y} \ell_2
\end{align*}
\]

\[
\{(abc)^\omega, \tau) \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2})\}
\]
References
