Real-Time Systems

Lecture 16: The Universality Problem for TBA

2011-07-19

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

... vs. Timed Automata

Timed Languages

New: Given a timed word $(a, 1), (b, 2), (a, 3), (b, 4), (a, 5), (b, 6), \dots,$ does A accept it?

 ξ is a computation path and run of \mathcal{A} .

New: acceptance criterion is visiting accepting state infinitely often.

Definition. A timed language over an alphabet Σ is a set of timed words over $\Sigma.$

Definition. A timed word over an alphabet Σ is a pair (σ,τ) where $\sigma=\sigma_1,\sigma_2,\dots\in\Sigma^{\omega}$ is an <u>infinite</u> word over Σ , and τ is a time sequence.

Influste segumes of letters four &

(i) Monotonicity: $\tau \text{ increases strictly monotonically, i.e. } \tau_i < \tau_{i+1} \text{ for all } i \geq 1.$ (ii) Progress: For every $t \in \mathbb{R}^+_0$, there is some $i \geq 1$ such that $\tau_i > t$. Definition. A time sequence $\tau=\tau_1,\tau_2,\dots$ is an infinite sequence of time values $\tau_i\in\mathbb{R}^+_0$, satisfying the following constraints:

Contents & Goals

Last Lecture:

Using Uppaal to check whether a TA satisfies a DC requirement:
Testable DC properties

This Lecture:

- Educational Objectives: Capabilities for following tasks/questions.
 What's a TBA and what's the difference to (extended) TA?
 What's undeclabel for finned (Bitch) automata?
 What's the idea of the proof?

- Timed Bichi Automata and timed regular languages [Alur and Dill, 1994].

 The University Problem is undecidable for TBA [Alur and Dill, 1994].

 Why this is infortunate.

 Timed regular languages are not everything.

2/31

Timed Büchi Automata [Alur and Dill, 1994]

Example: Timed Language

Timed word over alphabet Σ: a pair (r, r) where

or = a_1, a_2,... is an infinite word over Σ, and

or is a time sequence (strictly (I) monotonic, non-Zeno).

$$\begin{split} L_{crt} = \{ & \{ ((ab)^\omega, \tau) \mid \exists \ i \ \forall j \geq i : (\tau_{2j} < \tau_{2j-1} + 2) \} \\ & \text{Thurstong that there } \\ & \text{of a be of the a before} \end{split}$$
a could be 'openor heaps' b would be 'openor Alather light'

A b a b a b ... a b a b a b ...

The to the

Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant. $\delta ::= x \leq c \mid c \leq x \mid -\delta \mid \delta_1 \wedge \delta_2$

Definition. A timed Büchi automaton (TBA) $\mathcal A$ is a tuple (Σ,S,S_0,X,E,F) , where

 Σ is an alphabet, • S is a finite set of states, $S_0 \subseteq S$ is a set of start states,

* X is a finite set of clocks, and * $E \subseteq S \times S \times \Sigma \times 2^{N} \times \phi(X)$ gives the set of transitions. An edge (s,s',a,λ,h) represents transition from state s to state s' on input symbol. The set $A \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

• $F \subseteq S$ is a set of accepting states.

Example: TBA

(Accepting) TBA Runs

 $A = (\Sigma, S, S_0, X, E, F)$ $(s, s', a, \lambda, \delta) \in E$

 $s_0 \xrightarrow{a} s_2 \xrightarrow{b, x < 2} s_3$ a, x := 0· E={ (50,51, 4. B, toue), (5, 53, 6, 8, 44), (5, 53, 6, 8, x<2), (3, 53, 9, 8x}, 44) (s,, so, 6, 0, sw.),

8/31

Example: (Accepting) Runs

(Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s},\bar{\nu})$, of a TBA (Σ,S,S_0,X,E,F) over a timed word (σ,τ) is an infinite sequence of the form

with $s_i \in S$ and $\nu_i: X \to \mathbb{R}^+_0$, satisfying the following requirements:

 $r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \dots$

• Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.

- Consecution: for all $i \ge 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that

 $\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0].$

 $\begin{array}{ll} r: \langle s_0, \iota_0 \rangle \xrightarrow{\sigma_1} \langle s_1, \iota_1 \rangle \xrightarrow{\sigma_2} \langle s_2, \iota_2 \rangle \xrightarrow{\sigma_3} \dots \text{ initial and } (s_{\ell-1}, s_\ell, \sigma_\ell, \lambda_\ell, \delta_\ell) \in E, \text{ s.t.} \\ (\iota_{\ell-1} + (\tau_\ell - \tau_{\ell-1})) \models \delta_i, \iota_\ell = (\iota_{\ell-1} + (\tau_\ell - \tau_{\ell-1}))[\lambda_i := 0]. \text{ Accepting iff } \inf(r) \cap F \neq \emptyset. \end{array}$

Timed word: $(a, 1), (b, \$), (a, 3), (b, 4), (a, 5), (b, 6), \dots$ $\underbrace{s_1 \atop a} \underbrace{s_0 \atop x := 0} \underbrace{s_2 \atop s_2} \underbrace{b, x < 2}_{a, x := 0} \underbrace{s_3}_{s_3}$

• Can we construct any num'l sit accepting?

• $\{x_{k_1,k_2}, x_{k_2}, x_{$

 Can we construct a (non-)accepting run? $\int_{1}^{1} (-1)^{2} \left(-1 \right) \left(-1 \right)$

Definition. A run $r=(\bar{s},\bar{\nu})$ of a TBA over timed word (σ,τ) is called (an) accepting (run) if and only if $inf(r)\cap F\neq\emptyset$.

The set $\inf(r)\subseteq S$ consists of those states $s\in S$ such that $s=s_i$ for infinitely many $i\geq 0.$

10/31

The Language of a TBA

 $\{(\sigma,\tau)\mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$ For short: $L(\mathcal{A})$ is the language of $\mathcal{A}.$ Definition. For a TBA $\mathcal A$, the language $L(\mathcal A)$ of timed words it accepts is defined to be the set 00

Definition. A timed language L is a timed regular language if and only if $L=L(\mathcal{A})$ for some TBA \mathcal{A} .

11/31

K • Consecution: for all $i \ge 1$, there is an edge in E of the form $(s_{i-1}, s_i|\widehat{\mathcal{O}}_{j-k}, \delta_i)$ such that $(s_{i-1}, s_i|\widehat{\mathcal{O}}_{j-k}, \delta_i)$ such that $(s_{i-1}, s_i|\widehat{\mathcal{O}}_{j-k}, \delta_i)$ such that $s_i = 0$.

• $s_i = (s_{i-1}, s_i|\widehat{\mathcal{O}}_{j-k}, \delta_i)$ is $s_i = 0$.

• $s_i = (s_{i-1}, s_i|\widehat{\mathcal{O}}_{j-k}, \delta_i)$ is $s_i = (s_i, s_{i-1})$. Definition. A run r, denoted by $(\bar{s},\bar{\nu})$, of a TBA (Σ,S,S_0,X,E,F) over a timed word (σ,τ) is an infinite sequence of the form with $s_i \in S$ and $\nu_i : X$ • Initiation: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$. $r: \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_+} \langle s_1, \nu_1 \rangle \xrightarrow{\mathfrak{Q}_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3} \cdots$ and $\nu_i: \mathscr{X} \to \mathbf{R}_0^+$, satisfying the following requirements:

Example: Language of a TBA

$L(\mathcal{A}) = \{(\sigma,\tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma,\tau)\}.$

. L(A) \leq L(E)⁻¹ Poids span² (5(2) \leq L(A), then there is an electrophian pair (\leq j0) spec (5(1)). · Lat (L(A): " pile som" (517) 6 Lat. (softeet in accepting run in ot. $L(\mathcal{A}) = L_{crt} \ (= \{ ((ab)^{\omega}, \tau) \mid \exists i \ \forall j \ge i : (\tau_{2j} < \tau_{2j-1} + 2) \})$

Question: Is L_{crt} timed regular or not?

12/31

The Universality Problem is Undecidable for TBA [Alur and Dill, 1994]

13/31

The Universality Problem

- Given: A TBA A over alphabet Σ.

 $\begin{array}{l} \bullet \ \, \text{Question: Does} \ \, \mathcal{A} \ \, \text{accept all timed words over} \ \, \Sigma? \\ \text{In other words: Is} \ \, L(\mathcal{A}) = \{(\sigma,\tau) \ | \ \, \sigma \in \Sigma^\omega, \tau \ \, \text{time sequence}\}. \end{array}$

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is $\Pi^1_1\text{-hard}.$

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)

- B' such that $L(B')=\overline{L(B)}$ is effectively computable. Language emptyness is decidable for Büchi Automata.

Recall: With classical Büchi Automata (untimed), this is different:

• Let B be a Büchi Automatan over Σ .

• B is universal if and only if $\overline{L(B)} = \emptyset$.

14/31

Proof Idea

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is $\Pi^1_t\text{-hard}.$

- \circ Consider a language L_{wandec} which consists of the recurring computations of a 2-counter machine M.
- Construct a TBA A from M which accepts the complement of L_{undec} , i.e. with

$L(A) = L_{undec}$.

- ullet Then ${\mathcal A}$ is universal if and only if L_{undec} is empty...
- \dots which is the case if and only if M doesn't have a recurring computation.

15/31

The Universality Problem

- Given: A TBA A over alphabet Σ .
 Question: Does A accept all timed words over Σ ?
 In other words: Is $L(A) = \{(\sigma,\tau) \mid \sigma \in \Sigma^{\omega}, \tau \text{ time sequence}\}.$

D=fabc?

A: 309

COS6 ... is amirace!

14/31

Once Again: Two Counter Machines (Different Flavour)

A two-counter machine M• has two counters C,D and

- jumps, here even non-deterministically.
- A configuration of M is a triple (i, c, d):
- program counter $i\in\{1,\ldots,n\}$, values $c,d\in\mathbb{N}_0$ of C and D.
- $\bullet\,$ A computation of M is an infinite consecutive sequence

 $\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \dots$

that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called **recurring** iff $i_j=1$ for infinitely many $j\in\mathbb{N}_0.$

Step 1: The Language of Recurring Computations

Step 1: The Language of Recurring Computations

Step 1: The Language of Recurring Computations

 $\langle i,c,d \rangle$ represented by $b_1 a_1^c a_2^d$

Let L_{undec} be the set of the timed words (σ,τ) with • $\langle i_1,c_1,d_1 \rangle, \langle i_2,c_2,d_2 \rangle, \dots$ is a recurring computation of M. • σ is of the form $b_{i_1}a_1^{c_1}a_2^{d_1}b_{i_2}a_1^{c_2}a_2^{d_2}...$

For all j ∈ N₀,

the time of b_{ij} is j.

 \bullet Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M. In particular such that $L_{undec} = \emptyset$ if and only if M has no recurring computation.

- Choose $\Sigma = \{b_1, \dots, b_n, a_1, a_2\}$ as alphabet.
- \bullet We represent a configuration $\langle i,c,d\rangle$ of M by the sequence

$$b_i \underbrace{a_1 \dots a_1}_{c \text{ times}} \underbrace{a_2 \dots a_2}_{d \text{ times}} = b_1 a_1^c a_2^d$$

17/31

Let L_{undec} be the set of the timed words (σ, τ) with $\langle i,c,d \rangle$ represented by $b_1 a_1^c a_2^d$

18/31

18/31

• if $c_{j+1}=c_j-1$ then for every a_1 at time t in the interval [j,j+1] except for the last one, there is an a_1 at time t+1.

And analogously for the a_2 's.

• if $c_{j+1}=c_j$ then for every a_1 at time t in the interval [j,j+1] there is an a_1 at time t+1, • if $c_{j+1}=c_j+1$ then for every a_1 at time t in the interval [j+1,j+2] except for the last one, there is an a_1 at time t-1.

Step 2: Construct "Observer" for L_{undec}

Step 2: Construct "Observer" for Lundec

Wanted: A TBA A such that

 $L(A) = \overline{L_{undec}}$

Step 2: Construct "Observer" for L_{undec}

Wanted: A TBA ${\cal A}$ such that

 $L(A) = \overline{L_{undec}}$

 $L(A) = \overline{L_{undec}}$

What are the reasons for a timed word not to be in L_{undec} ?

- (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$.
- (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode (1,0,0).
- (iii) The timed word is not recurring, i.e. it has only finitely many b_i .
- (iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

(iv) The configuration encoded in [j+1,j+2[doesn't faithfully represent the effect of instruction b_t on the configuration encoded in [j,j+1[. (iii) The timed word is not recurring, i.e. it has only finitely many b_i . (ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$. (i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[$. What are the reasons for a timed word not to be in L_{undec} ?

Plan: Construct a TBA \mathcal{A}_0 for case (i), a TBA \mathcal{A}_{nnt} for case (ii), a TBA \mathcal{A}_{recur} for case (iii), and one TBA \mathcal{A}_i for each instruction for case (iv).

 $A = A_0 \cup A_{init} \cup A_{recur} \cup \bigcup_{1 \leq i \leq n} A_i$

19/31

Step 2.(i): Construct A_0

(i) The b_i at time $j\in\mathbb{N}$ is missing, or there is a spurious b_i at time $t\in]j,j+1[$.

[Alur and Dill, 1994]: "It is easy to construct such a timed automaton." $\,$

Step 2.(iv): Construct A_i **Example:** assume instruction 7 is: Increment counter D and jump non-deterministically to instruction 3 or 5. Once again: stepwise. \mathcal{A}_T is $\mathcal{A}_T^1 \cup \cdots \cup \mathcal{A}_T^6$. (iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

23/зг

Step 2.(ii): Construct A_{init}

Step 2.(iii): Construct Arecur

(iii) The timed word is not recurring, i.e. it has only finitely many b_i .

• \mathcal{A}_{recur} accepts words with only finitely many b_i .

(ii) The prefix of the timed word with times $0 \le t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.

 $\{(\sigma_j,\tau_j)_{j\in\mathbb{N}_0}\mid (\sigma_0\neq b_1)\vee (\tau_0\neq 0)\vee (\tau_1\neq 1)\}.$

21/31

20/31

22/31

Step 2.(iv): Construct A_i

Step 2.(iv): Construct A_i

Increment counter D and jump non-deterministically to instruction 3 or 5. Once again: Stepwise. \mathcal{A}_7 is $\mathcal{A}_7^1\cup\cdots\cup\mathcal{A}_7^6$.

. \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."

Example: assume instruction 7 is:

(iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

(iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5. Once again: stepwise. \mathcal{A}_7 is $\mathcal{A}_1^1\cup\cdots\cup\mathcal{A}_7^6$.

• A_7^1 accepts words with b_7 at time j but neither b_3 nor b_6 at time j+1. "Easy to construct."

23/31

Step 2.(iv): Construct A_i

(iv) The configuration encoded in [j+1,j+2] doesn't faithfully represent the effect of instruction b_i on the configuration encoded in [j,j+1].

Example: assume instruction 7 is: Increment counter D and jump non-deterministically to instruction 3 or 5. Once again: stepwise. \mathcal{A}_{7} is $\mathcal{A}_{7}^{1} \cup \cdots \cup \mathcal{A}_{7}^{6}$.

• \mathcal{A}_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time j+1. "Easy to construct."

A⁴₇,...,A⁶₇ accept words with missing decrement of D.

Aha, And...?

Consequences: Language Inclusion

• Given: Two TBAs A_1 and A_2 over alphabet B.
• Question: Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure:

Characterise the allowed behaviour as A₂ and model the design as A₁.
 Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

A²₇ accepts words which encode unexpected increment of counter C.

23/31

Consequences: Complementation

Consequences: Language Inclusion

• Given: Two TBAs A_1 and A_2 over alphabet B.
• Question: Is $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$?

Possible applications of a decision procedure:

 Automatically check whether the behaviour of the design is a subset of the allowed behaviour. ullet Characterise the allowed behaviour as \mathcal{A}_2 and model the design as $\mathcal{A}_1.$

 \bullet If language inclusion was decidable, then we could use it to decide universality of ${\cal A}$ by checking

where \mathcal{A}_{univ} is any universal TBA (which is easy to construct). $\mathcal{L}(\mathcal{A}_{univ}) \subseteq \mathcal{L}(\mathcal{A})$

- Given: A timed regular language W over B (that is, there is a TBA A such that $\mathcal{L}(A)=W$).
 Question: Is \overline{W} timed regular?

Possible applications of a decision procedure:

$$L(A_1) \cap L(A_3) = \emptyset$$
,

- that is, whether the design has any non-allowed behaviour.
- Characterise the allowed behaviour as \mathcal{A}_2 and model the design as \mathcal{A}_1 .
 Automatically construct \mathcal{A}_3 with $L(\mathcal{A}_3)=\overline{L(\mathcal{A}_2)}$ and check

$$L(A_1) \cap L(A_3) = 0$$

Taking for granted that:
 The interaction automator is effectively computable.
 The interaction automator is effectively computable.
 The emptyness problem for Bickli automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)

24/31

25/31

Consequences: Complementation

- * Given: A timed regular language W over B (that is, there is a TBA $\mathcal A$ such that $\mathcal L(\mathcal A)=W$).
 Question: Is $\overline W$ timed regular?

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA A such that L(A)=W). Question: Is \overline{W} timed regular?
- If the class of timed regular languages were closed under comple-mentation, "the complement of the inclusion problem is recursively enumerable. This contradicts the III₁-hardness of the inclusion prob-lem." [Alur and Dili, 1994]

27/sı

Beyond Timed Regular

With clock constraints of the form

$$x + y \le x' + y'$$

we can describe timed languages which are not timed regular.

In other words:

- There are strictly timed languages than timed regular languages.
- There exists timed languages L such that there exists no $\mathcal A$ with $L(\mathcal A)=L$.

 $\{((abc)^\omega,\tau)\mid \forall j.(\tau_{3j}-\tau_{3j-1})=2(\tau_{3j-1}-\tau_{3j-2})\}$

here exists timed languages
$$L$$
 such that there exists no ${\cal A}$ with $L({\cal A})=L$

Consequences: Complementation

- Given: A timed regular language W over B (that is, there is a TBA A such that L(A) = W).
 Question: Is W timed regular?
- If the class of timed regular languages were closed under comple-mentation, "the complement of the inclusion problem is recursively enumerable. This contradicts the II]-hardness of the inclusion prob-lem." [Alur and Dill, 1994]

A non-complementable TBA A:

Complement language: $\mathcal{L}(\mathcal{A}) = \{ (a^{\omega}, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \ \exists j > i : (t_j = t_i + 1) \}$

 $\overline{\mathcal{L}(\mathcal{A})} = \{(a^\omega, (t_t)_{t \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1}\}.$

27/за

28/31

Beyond Timed Regular

References

[Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2):183–235. [Olderog and Diets, 2008] Olderog, E.R. and Diets, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

References

30/31