Real-Time Systems

Ledure 16: The Universality Problem for TBA

201107-19

Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

... vs. Timed Automata

press?

o=@ =®

New: Given a

a«ir& (a,1),(b,2), (a,3), (b,;4), (a,5), (b,6),...,

does A accept it?

£ = (off,0),0 2 (off, 1), 1
2 light, 0y, 1 2 (light, 3),4
press?

2 bright, 3),4 < ..

& is a computation path and run of A.

210719

Contents & Goals

Last Lecture:

o Using Uppaal to check whether a TA satisfies a DC requirement:
Testable DC properties

This Lecture:
« Educational Objectives: Capabilities for following tasks/questions.
» What's a TBA and what's the difference to (extended) TA?
= What's undecidable for timed (Biichi) automata?
» What's the idea of the proof?

« Content:

« Timed Biichi Automata and timed regular languages [Alur and Dill, 1994]

» The Universality Problem is undecidable for TBA [Alur and Dill, 1994]
« Why this is unfortunate.
» Timed regular languages are not everything.

Timed Langua@s

Definition. A time sequence T = 71,7,... is an infinite sequence of
time values 7; € Ry, satisfying the following constraints:

(i) Monotonici
7 increases strictly monotonic:

7i < Tip1 forall i > 1.

(ii) Progress: For every t € Ry, there is some i > 1 such that 7; > .

Lafiake Ji:tk%&.m?h

Definition. A timed s&.&z& an alphabet ¥ is a pair (o, 7) where

e o=01,00,-- €% isa e word over %, and

o 7 is a time sequence.

Definition. A timed language over an alphabet ¥ is a set of timed
words over X.

Timed Bichi Automata

[Alur andDill, 1994

2
Example: Timed Langua@
Timed word over alphabet X: a pair (o,7) where
© 0 =01,00,... is an infinite word over %, and
© 7 is a time sequence (strictly (1) monotonic, non-Zeno).
awdd be J»m._os bans”
b andd be ' Qsiemun flethes Lglh'
Lere = {((ab)*,7) [30 Vj > i (r) < 751 +2)}
)
Tty dpeshop
W at o he o bafore
>rh?a&...h¢;ﬁab_
nLb W & G U o B
[a—
, — 1< T,
i i i % T ok i)
e Komeshomg A I’4 B
doct wodles oo bt 2 A
i ks 4fder the o befoc
5/31 '

Timed Biichi Automata

Definition. The set $(X) of clock constraints over X is defined
inductively by
Su=a<cle<a|-0|6 A%

where z € X and ¢ € Q is a rational constant.

Defii n. A timed a tuple

(2,5, 50, X, E, F), where

automaton (TBA) A

+ S is an alphabet,

« S'is a finite set of states, Sy C S is a set of start states,

* X is a finite set of clocks, and

o EC S xS x%x2% x ®(X) gives the set of tran:
An edge (s, s, a,), 6) represents a transition from state s to state
5" on input symbol a. The set A C X gives the clocks to be reset
with this transition, and § is a clock constraint over X .

ions.

o F CSisa set of accepting states.

(Accepting) TBA Runs

De

over a

n. A run r, denoted by (5,7), of a TBA (£, 5, So, X, E, F)
med word (a,7) is an infinite sequence of the form
72 {80, 0) = (s1,01) T (sp,0) 2.

= = =

with s; € S and v; : X — Ry, satisfying the following requirements:

o Initiation: so € Sp and v(z) =0 for all z € X.

» Consecution: for all i > 1, there is an edge in E of the form
(8i—1, 8i, 04, Ai, 0;) such that

1+ (i — Ti—1)) satisfies &; and

o vi = (vic1 + (7 — 1im1)) i == 0]

The set inf(r) C S consists of those states s € S such that s = s; for
itely many i > 0.

Definition. A run r = (5, 7) of a TBA over timed word (a, 7) is called
(an) accepting (run) if and only if inf (r) N F # 0.

Example: TBA

A= (%,8,5, X,E, F)

(5,5',a,\,0) € B

o= 8 0 €1 (35,51,4. 8, 4o,
0§, s (51,5%,6,0,%0¢),
oS- 150 (50,5207, %3, 4ne),
(53,6, 8, xc2),
: M.w% (s, 52,00 B)]

m

e 831
Example: (Accepting) Runs
7 (s0,00) 2 (s1,01) 22+ (s2,v2) T initial and (si-1,80,0i, Xi, 81) € B st
(s (ri=7i1)) = 8 vi = (vim1 (7= 7i1)) [N = 0] Accepting iff inf (r)0F # 0.
bz <2
ed word: (a, 1), (b,8), (a.3), (b,4), (a,5), (b,6),...
22
= Can we construct any run? ls it accepting? .
a .
I8 Ah.\..evm\:r;x.s%l.&?y A = (S xm0d > Ly xe 1D
b=l 530, 1 is acppeg s EaInF=issen
» Can we construct a non-run? ki
L& v o
¢ sa0) ol 1D h
« Can we construct a (non-)accepting run?
O LIS RS PO
10731

(Accepting) TBA Runs

Definition. A run r, denoted by (5, 7), of a TBA (X, S, So, X, E, F)
over a timed word (o,) is an infinite sequence of the form

2 = 5
-
7
with s; € S and v; : ¥'— Ry, satisfying the following requirements:

iation: sy/€ Sy and v(z) =0 for all & € X.
% o Consecutign: for all i > 1, there is an edge in E of the form
(si-1, :3 Ai, 6;) such that
o (Vim1+ (T — 7i-1)) satisfies §; and
o vi =f(vic1 + (1 —)N =0

it Yl wans s s pesed
s Suce teuding (5, T "
The Languag of a TBA

2011.07-19 - Siba —

Definition. For a TBA A, the language L(A) of timed words it
accepts is defined to be the set

{(0,7) | A has an accepting run over (o,7)}. Q

= (e}
the language of A.

For short: L(A)

Definition. A timed language L is a timed regular language if and
only if L = L(A) for some TBA A.

11

Example: Languag of a TBA

7 L(A) = {(0,7) | A has an accepting run over (o,7)}. 7

Claim:
L(A) = Lert (={((ab)”,7) | 3i V) > it (12 < mpjo1 +2)})
.him;‘a Spde swu’ () €Lyt . Costich am .E»L._.u o w A,
o LONELat ‘e st (50 LW, Hio Hue ic an accgpling i (s5)
R Rq_.L.

Question: Is L, timed regular or not?

1273

The Universality Problem

« Given: A TBA A over alphabet X.
» Question: Does A accept all timed words over 7

In other words: Is L(A) = {(c,7) | 0 € £“, 7 time sequence}.

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet ¥ accepts all timed words over ¥ is IT}-hard.

("The class I} consists of highly undecidable problems, including some nonarithmetical sets
stance [Rogers, 1967].)

(for an exposition of the analytical hierarchy consult, for

Recall; With classical Biichi Automata (untimed), this is different:
* Let B be a Biichi Automaton over X, conplament & X%
« Bis universal if and only if L(B) = 0.
« B’ such that L(B') = L(B) is effectively computabl

« Language emptyness is decidable for Biichi Automata.
14/2

The Universality Problemis Undeddabe for TBA

13/

Proof Idea

Theorem 5.2. The problem of deciding whether a timed automa-
ton over alphabet ¥ accepts all timed words over ¥ is IT}-hard.

Proof Idea:

« Consider a language Lunc
which consists of the recurring computations of a 2-counter machine M.

. with

« Construct a TBA A from M which accepts the complement of Lyec

L(A) = Lundec-

o Then A is universal if and only if L. is empty.

which is the case if and only if M doesn’t have a recurring computation

153

The Universality Problem

» Given: A TBA A over alphabet X.
» Question: Does A accept all timed words over %7
In other words: Is L(A) = {(0,7) | o € £, 7 time sequence}.

Defabd W
AW@%@& v iS Uwavesse/

1473

OnceAgain: Two Courter Machines (Different Flavour)

2011.07-19 — Suriv ~

EZCE
A two-counter machine M 1:ine ¢ g 23
2 dec C; gato 15
« has two counters C, D and 3. hedj o3

g of 1 instructions. _ sl cae A G420

« a finite program consi
= An instruction increments or decrement< one of the counters, or
ps, here even non-deterministically.
-

+ A configuration of)
program counter i € {1,...,n}, values ¢,d € INg of C and D.

s a triple (i,

» A computation of M is an infinite consecutive sequence
(1,0,0) = (o co, do), (ir, e1, da), (ia, €2, da)

that is, (ij41,¢+1,d41) is a result executing instruction i; at (i, ¢;,d;).

n of M is called recurring iff i; = 1 for infinitely many j € INy.

A computa
16/2

Sep 1. The Languag of Reaurring Computations

« Let M be a 2CM with n instructions.

Wanted: A timed language Lyqe. (over some alphabet) representing exactly
the recurring computations of M. In particular such that Lypngec = 0 if and
only if M has no recurring computation.

o Choose ¥ = {by,...,b,, a1, az} as alphabet.

« We represent a configuration (i,c,d) of M by the sequence

biay...ay as...ap = byafad

ctimes d times

173

Sep 2 Construct “ Observer” for L,ge.

Wanted: A TBA A such that
L(A) = Lundee

! 1973

Sep 1. The Languag of Reaurring Computations

Sep 1 The Languag of Reaurring Computations

7 (i, ¢, d) represented by bja§ag

Let Lyndec be the set of the timed words (o, 7) with

18/

Sep 2. Construct “ Observer” for Lge.

d) represented by bya§a$

f 6

Let Lyndec be the set of the timed words (o, 7) with
o is of the form bi, af'ad’ bi,a$?ag?
o (i1, c1,d1), (i2,c2,d2),. .. is a recurring computation of Al

» Forall j € Ng,
« the time of by, is j.
o if ¢j11 = c¢; then for every a; at time t in the
interval [j, j + 1] there is an a; at
o if ¢jp1 = ¢j + 1 then for every a; at time ¢ in the

an ap at time ¢ — 1,

41 =c; — 1 then for every a at time # in the
interval [j, j + 1] except for the last one,

an a; at time ¢+ 1,

And analogously for the ax's.

18/

Step 2. Construct “ Observer” for Luuge.

Wanted: A TBA A such that
L(A) = Lundee
What are the reasons for a timed word not to be in L,4c.7

(i) The b; at time j € IN is missing, or there is a spurious b; at time t €], 5 + 1].

) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0, 0)

(iii) The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the effect
of instruction b; on the configuration encoded in [j, j -+ 1|

1973

Wanted: A TBA A such that
L(A) = Lundee

What are the reasons for a timed word not to be in L g
(i) The b; at time j € IN is missing, or there is a spurious b; at time t €]j,j + 1[.

(

The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0,0)

The timed word is not recurring, i.e. it has only finitely many b;.

(iv) The configuration encoded in [j + 1, j + 2[doesn't faithfully represent the effect
of instruction b; on the configuration encoded in [j, j + 1].

Plan: Construct a TBA Ay for case (i), a TBA Ay for case
Areeur for case (i), and one TBA A; for each instruction for case (iv).

Then set
A= AU Ainit Uddreewr U | A
1<i<n
19m

Step 2.(jii): Construct Aecur

Step 2.(ii): Construct Ay,

Step 2.(i): Construct Ay

:_) The timed word is not recurring, i.c. it has only finitely many b;.

i (if) The prefix of the timed word with times 0 < ¢ < 1 doesn't encode (1,0,0). i

i (i) The b; at time j € IN is missing, or there is a spurious b; at time ¢ €]j, j+ 1 i

o Apecur accepts words with only finitely many b;.

: "It is easy to construct such a timed automaton.
o It accepts
{(o.7i)jeno | (00 #b1) V (10 # 0) V (1 # D)}
20731 b 2ln 0 2231
Sep 2.(iv): Construct A; Step 2.(iv): Construct A4, Step 2.(iv): Construct A;
(iv) The configuration encoded in [j + 1. + 2[doesn't faithfully represent the v) The configuration encoded in [j + 1, + 2[doesn't faithfully represent the (iv) The configuration encoded in [j + 1, + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [f, j + 1[. effect of instruction b; on the configuration encoded in [j, j + 1[. effect of instruction b; on the configuration encoded in [j,j + 1[.
Example: assume instruction 7 is: Example: assume instruction 7 i Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5. Increment counter D and jump non-deterministically to instruction 3 or 5. Increment counter D and jump non-deterministically to instruction 3 or 5.
Once again: stepwise. A7 is A} U -+ U AS. Once again: stepwise. A7 is A} U--- U AS. Once again: stepwise. A7 is A} U--- U AS.
» A} accepts words with by at time j but neither bs nor bs at time j + 1. » A} accepts words with by at time j but neither by nor bs at time j + 1.
“Easy to construct. Easy to construct.”
o Afis
. —az =1
a
<1
: : : 71
23/

23/m

23/m

Step 2.(iv): Construct A;

) The configuration encoded in [j + 1,j + 2[doesn't faithfully represent the
effect of instruction b; on the configuration encoded in [j,j + 1[.

[

Example: assume instruction 7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.
: stepwise. A7 is A} U+ U AS

Once agai

« A} accepts words with by at time j but neither bs nor bs at time j + 1.
Easy to construct.”

o AZis

A} accepts words which encode unexpected increment of counter C'.

, A2 accept words with missing decrement of D. ¥
2331

oA

Aha, And...?

Consequences. Languag Inclusion

« Given: Two TBAs A; and A, over alphabet B.
» Question: Is £(A;) C L(A2)?

Possible applications of a decision procedure:
» Characterise the allowed behaviour as A; and model the design as A;.
« Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

« If language inclusion was decidable, then we could use it to decide
universality of A by checking ®

L(Auniv) C L(A)

g where Ay, is any universal TBA (which is easy to construct)

24/
Consequences: Complementation
« Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).
+ Question: Is W timed regular?
Possible applications of a decision procedure:
» Characterise the allowed behaviour as A; and model the design as A;.
+ Automatically construct As with L(A3) = L(A;) and check
L(A1) N L(A3) =0,
that is, whether the design has any non-allowed behaviour.
_ « Taking for granted that:
o Thei i is effectively
E + The emptyness problem for Biichi automata is decidable.
3 (Proof by construction of region automaton [Alur and Dill, 1994].)
26/

! 25/

Consequences: Languag Inclusion

« Given: Two TBAs A; and A; over alphabet B.
» Question: Is £(A;) C L(A2)?

ns of a decision procedure:

Possible applica
» Characterise the allowed behaviour as A; and model the design as A;.
» Automatically check whether the behaviour of the design is a subset of the
allowed behaviour.

2531

Consequences. Complementation

« Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

» Question: Is W timed regular?

! 27/

Consequences:. Complementation

Consequences. Complementation

« Given: A timed regular language 1V over B

(that is, there is a TBA A such that £(A) = W).
« Question: Is IV timed regular?

¢ Beyond Timed Regular

o If the class of timed regular languages were closed under comple-

mentation, “the complement of the inclusion problem is recursively

enumerable. This contradicts the Il}-hardness of the inclusion prob-

lem." [Alur and Dill, 1994]

« Given: A timed regular language W over B
(that is, there is a TBA A such that L(A) = W).

« Question: Is W timed regular?

o If the class of timed regular languages were closed under comple-
mentation, “the complement of the inclusion problem is recursively
enumerable. This contradicts the Il}-hardness of the inclusion prob-
lem.” [Alur and Dill, 1994]

A non-complementable TBA A:
a a

L(A) = {(a”, (t:)ien,) | Ti € Wo Tj > iz (t; =t + 1)}

Complement language:

0110719
20110719

L(A) = {(a”, (t:)ien,) | no two a are separated by distance 1}.

B 27/ - 27/m R 28/m1
Beyond Timed Regular
With clock constraints of the form References
z+y<a +y [Alur and Dill, 1994] Alur, R. and Dill, D. L. (1994). A theory of timed automata.
Theoretical Computer Science, 126(2):183-235
we can describe timed languages which are not timed regular. References P ()
[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems
In other words: - Formal Specification and Automatic Verification. Cambridge University Press.
« There are strictly timed languages than timed regular languages.
© There exists timed languages L such that there exists no A with L(A) = L.
Example:
{((abe)”.7) | Vj.(7sj — 7sj-1) = 2(7sj—1 — 73-2)}
30m 31m

! 29/

