Contents & Goals

Last Lecture:
- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata?
 - What’s the idea of the proof?

- Content:
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994] Cont’d
 - Timed regular languages are not everything.
Recall: Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}_0^+$, satisfying the following constraints:

(i) **Monotonicity:** τ increases strictly monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \geq 1$.

(ii) **Progress:** For every $t \in \mathbb{R}_0^+$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \ldots \in \Sigma^\omega$ is an infinite word over Σ, and
- τ is a time sequence.

Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ.
Recall: Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid -\delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set λ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

- $F \subseteq S$ is a set of accepting states.

Recall: (Accepting) TBA Runs

Definition. A run r, denoted by $(\bar{s}, \bar{\nu})$, of a TBA $(\Sigma, S, S_0, X, E, F)$ over a timed word (σ, τ) is an infinite sequence of the form

$$r : (s_0, \nu_0) \overset{\sigma_1}{\longrightarrow} (s_1, \nu_1) \overset{\sigma_2}{\longrightarrow} (s_2, \nu_2) \overset{\sigma_3}{\longrightarrow} \ldots$$

with $s_i \in S$ and $\nu_i : X \to \mathbb{R}_+^+$, satisfying the following requirements:

- **Initiation**: $s_0 \in S_0$ and $\nu(x) = 0$ for all $x \in X$.
- **Consecution**: for all $i \geq 1$, there is an edge in E of the form $(s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)$ such that
 - $(\nu_{i-1} + (\tau_i - \tau_{i-1}))$ satisfies δ_i and
 - $\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0]$.

The set $\text{inf}(r) \subseteq S$ consists of those states $s \in S$ such that $s = s_i$ for infinitely many $i \geq 0$.

Definition. A run $r = (\bar{s}, \bar{\nu})$ of a TBA over timed word (σ, τ) is called (an) accepting (run) if and only if $\text{inf}(r) \cap F \neq \emptyset$.
Recall: The Language of a TBA

Definition. For a TBA \mathcal{A}, the language $L(\mathcal{A})$ of timed words it accepts is defined to be the set

$$\{(\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau)\}.$$

For short: $L(\mathcal{A})$ is the language of \mathcal{A}.

Definition. A timed language L is a timed regular language if and only if $L = L(\mathcal{A})$ for some TBA \mathcal{A}.

The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
Recall: The Universality Problem

- **Given:** A TBA A over alphabet Σ.
- **Question:** Does A accept all timed words over Σ?

 In other words: Is $L(A) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau \text{ time sequence}\}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1-hard.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetic sets
for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].")

Proof Idea

- Consider a language L_{undec} which consists of the recurring computations of a 2-counter machine M.
- Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with $L(A) = L_{\text{undec}}$.
- Then A is universal if and only if L_{undec} is empty. . .

 . . . which is the case if and only if M doesn’t have a recurring computation.
Once Again: Two Counter Machines (Different Flavour)

A two-counter machine \(M \)

- has two counters \(C, D \) and
- a finite program consisting of \(n \) instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

- A configuration of \(M \) is a triple \((i, c, d) \):

 program counter \(i \in \{1, \ldots, n\} \), values \(c, d \in \mathbb{N}_0 \) of \(C \) and \(D \).

- A computation of \(M \) is an infinite consecutive sequence

\[
\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots
\]

that is, \(\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle \) is a result executing instruction \(i_j \) at \(\langle i_j, c_j, d_j \rangle \).

A computation of \(M \) is called recurring iff \(i_j = 1 \) for infinitely many \(j \in \mathbb{N}_0 \).

Step 1: The Language of Recurring Computations

- Let \(M \) be a 2CM with \(n \) instructions.

Wanted: A timed language \(L_{\text{undec}} \) (over some alphabet) representing exactly the recurring computations of \(M \). In particular such that \(L_{\text{undec}} = \emptyset \) if and only if \(M \) has no recurring computation.

- Choose \(\Sigma = \{b_1, \ldots, b_n, a_1, a_2\} \) as alphabet.

- We represent a configuration \((i, c, d) \) of \(M \) by the sequence

\[
b_1a_1\ldots a_1a_2\ldots a_2 = b_1^{c}a_1^{d}a_2^{d}
\]

\(c \) times \(d \) times
Step 1: The Language of Recurring Computations

Let L_{undec} be the set of the timed words (σ, τ) with

- σ is of the form $b_i a_1^{c_i} a_2^{d_i} b_i a_1^{c_i} a_2^{d_i} \ldots$
- $\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$ is a recurring computation of M.
- For all $j \in \mathbb{N}_0$,
 - the time of b_{ij} is j.
 - if $c_{j+1} = c_j$ then for every a_1 at time t in the interval $[j, j+1]$ there is an a_1 at time $t + 1$,
 - if $c_{j+1} = c_j + 1$ then for every a_1 at time t in the interval $[j+1, j+2]$ except for the last one, there is an a_1 at time $t - 1$,
 - if $c_{j+1} = c_j - 1$ then for every a_1 at time t in the interval $[j, j+1]$ except for the last one, there is an a_1 at time $t + 1$,

And analogously for the a_2's.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that

$$L(A) = L_{\text{undec}}$$

What are the reasons for a timed word not to be in L_{undec}?

1. The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[.$
2. The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.
3. The timed word is not recurring, i.e. it has only finitely many b_i.
4. The configuration encoded in $]j + 1, j + 2[$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $]j, j + 1[$.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that

$$L(A) = L_{\text{undec}}$$

What are the reasons for a timed word **not to be** in L_{undec}?

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[.

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

(iv) The configuration encoded in $[j + 1, j + 2[$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j+1[$.

Plan: Construct a TBA A_0 for case (i), a TBA A_{init} for case (ii), a TBA A_{recur} for case (iii), and one TBA A_i for each instruction for case (iv).

Then set

$$A = A_0 \cup A_{\text{init}} \cup A_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} A_i$$

Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j+1[.$

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $(1, 0, 0)$.

- It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$

Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many $b_\#$.

- A_{recur} accepts words with only finitely many $b_\#$.

Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction b_7 is:
Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_1 \cup \cdots \cup A_6 \cup A_7$.

- A_7^1 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$.
 "Easy to construct."
- A_7^2 is

- A_7^3 accepts words which encode unexpected increment of counter C.
- A_7^4, \ldots, A_7^6 accept words with missing decrement of D.

Aha, And...?
Consequences: Language Inclusion

- **Given**: Two TBAs A_1 and A_2 over alphabet B.
- **Question**: Is $L(A_1) \subseteq L(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.
- If language inclusion was decidable, then we could use it to decide universality of A by checking
 $$L(A_{\text{univ}}) \subseteq L(A)$$
 where A_{univ} is any universal TBA (which is easy to construct).

Consequences: Complementation

- **Given**: A timed regular language W over B
 (that is, there is a TBA A such that $L(A) = W$).
- **Question**: Is \overline{W} timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically construct A_3 with $L(A_3) = \overline{L(A_2)}$ and check
 $$L(A_1) \cap L(A_3) = \emptyset,$$
 that is, whether the design has any non-allowed behaviour.
- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).
- **Question:** Is \overline{W} timed regular?

If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the Π_1^1-hardness of the inclusion problem." [Alur and Dill, 1994]

A non-complementable TBA A:

\[
\begin{align*}
 &a & a & a \\
 &x := 0 & x = 1 & \\
 &\emptyset & \emptyset & \emptyset
\end{align*}
\]

$L(A) = \{ (a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1) \}$

Complement language:

$\overline{L(A)} = \{ (a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1} \}$.

Beyond Timed Regular
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:
- There are strictly timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[
\{(abc)^\omega, \tau) \mid \forall j, (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2}) \}
\]

References
References
