Recall: Timed Büchi Automata

A Timed Büchi Automaton (TBA) is defined as a pair
$$ \langle R, \tau, \nu \rangle $$

where:
- R is a rational constant.
- τ is a sequence of the form
 $$ \nu = \langle \nu_1, \nu_2, \ldots, \nu_i \rangle $$
 such that
 $$ \nu_i = \langle \sigma, \tau \rangle $$
 for some $\sigma \in \Sigma$, $\tau \in \mathbb{N}$.
- ν is a rational constant.

Recall: Timed Languages

The Universality Problem is undecidable for TBA.
Recall: The Language of a TBA

Definition. For a TBA \(A \), the language \(L(A) \) of timed words it accepts is defined to be the set \(\{ (\sigma, \tau) | A \text{ has an accepting run over } (\sigma, \tau) \} \).

For short: \(L(A) \) is the language of \(A \).

Definition. A timed language \(L \) is a timed regular language if and only if \(L = L(A) \) for some TBA \(A \).

The Universality Problem is Undecidable for TBA

• Given: A TBA \(A \) over alphabet \(\Sigma \).
• Question: Does \(A \) accept all timed words over \(\Sigma \)? In other words: Is \(L(A) = \{ (\sigma, \tau) | \sigma \in \Sigma^\omega, \tau \text{ times sequence} \} \).

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet \(\Sigma \) accepts all timed words over \(\Sigma \) is \(\Pi_{11} \)-hard.

("The class \(\Pi_{11} \) consists of highly undecidable problems, including some non-arithmetic sets; consult, for instance [Rogers, 1967].")

Proof Idea:

• Consider a language \(L_{\text{undec}} \) which consists of the recurring computations of a 2-counter machine \(M \).
• Construct a TBA \(A \) from \(M \) which accepts the complement of \(L_{\text{undec}} \), i.e. with \(L(A) = L_{\text{undec}} \).
• Then \(A \) is universal if and only if \(L_{\text{undec}} = \emptyset \). . . which is the case if and only if \(M \) doesn't have a recurring computation.

Once Again: Two Counter Machines (Different Flavour)

A two-counter machine \(M \):
• has two counters \(C, D \) and a finite program consisting of \(n \) instructions.
• An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.
• A configuration of \(M \) is a triple \(\langle i, c, d \rangle \):
 - program counter \(i \in \{1, \ldots, n\} \),
 - values \(c, d \in \mathbb{N}_0 \) of \(C \) and \(D \).
• A computation of \(M \) is an infinite consecutive sequence \(\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots \) that is, \(\langle i_j, c_j, d_j \rangle \) is a result executing instruction \(i_j \) at \(\langle i_j, c_j, d_j \rangle \).
• A computation of \(M \) is called recurring if \(i_j = 1 \) for infinitely many \(j \in \mathbb{N}_0 \).

Step 1: The Language of Recurring Computations

• Let \(M \) be a 2CM with \(n \) instructions.
• Wanted: A timed language \(L_{\text{undec}} \) (over some alphabet) representing exactly the recurring computations of \(M \). In particular such that \(L_{\text{undec}} = \emptyset \) if and only if \(M \) has no recurring computation.
• Choose \(\Sigma = \{ b_1, \ldots, b_n, a_1, a_2 \} \) as alphabet.
• We represent a configuration \(\langle i, c, d \rangle \) of \(M \) by the sequence \(b_i a_1 \ldots a_1 \ldots c \times a_2 \ldots a_2 \ldots d \times \ldots = b_1 a_1 c \times a_2 d \times \ldots \).
Step 2: Construct "Observer" for L.

The Language of Recurring Computations

(i) The prefix of the timed word with times of instruction doesn't encode $t < 0$, i.e. i has only finitely many $\langle \sigma, \tau \rangle$.

(ii) The configuration encoded in W doesn't encode $t < 0$, i.e. i has only finitely many $\langle \sigma, \tau \rangle$.

(iii) The configuration encoded in W doesn't encode $t < 0$, i.e. i has only finitely many $\langle \sigma, \tau \rangle$.

(iv) The configuration encoded in W doesn't encode $t < 0$, i.e. i has only finitely many $\langle \sigma, \tau \rangle$.

It is easy to construct such a timed automaton.
Step 2.(ii): Construct

The prefix of the timed word with times $0 \leq t < 1$ doesn't encode $\langle 1, 0, 0 \rangle$.

• It accepts $\{ (\sigma_j, \tau_j) | j \in \mathbb{N}_0 | (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1) \}$.

Step 2.(iii): Construct

The timed word is not recurring, i.e. it has only finitely many b_i.

• A_{recur} accepts words with only finitely many b_i.

Step 2.(iv): Construct

The configuration encoded in $[j+1, j+2]$ doesn't faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j+1]$.

Example: Assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise.

A_7 is $A_{17} \cup \cdots \cup A_{67}$.

• A_{17} accepts words with b_7 at time j but neither b_3 nor b_5 at time $j+1$.

"Easy to construct."

• A_{27} is $\ell_0 \ell_1 \ell_2^* b_7 x := 0^* a_1 x < 1 x := 0 \neg a_1, x \neq 1 x \neq 1$.

• A_{37} accepts words which encode unexpected increment of counter C.

• A_{47}, \ldots, A_{67} accept words with missing decrement of D.

Consequences: Language Inclusion

• Given: Two TBAs A_1 and A_2 over alphabet B.

• Question: Is $L(A_1) \subseteq L(A_2)$?

Possible applications of a decision procedure:

• Characterize the allowed behavior as A_2 and model the design as A_1.

• Automatically check whether the behavior of the design is a subset of the allowed behavior.

• If language inclusion was decidable, then we could use it to decide universality of A by checking $L(A_{\text{univ}}) \subseteq L(A)$ where A_{univ} is any universal TBA (which is easy to construct).

Consequences: Complementation

• Given: A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).

• Question: Is W timed regular?

Possible applications of a decision procedure:

• Characterize the allowed behavior as A_2 and model the design as A_1.

• Automatically construct A_3 with $L(A_3) = L(A_2)$ and check $L(A_1) \cap L(A_3) = \emptyset$, that is, whether the design has any non-allowed behavior.

• Taking for granted that:
 • The intersection automaton is effectively computable.
 • The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton [Alur and Dill, 1994].)
Consequences: Complementation

• Given: A timed regular language \(W \) over \(B \) (that is, there is a TBA \(A \) such that \(L(A) = W \)).

• Question: Is \(W \) timed regular?

If the class of timed regular languages were closed under complementation, "the complement of the inclusion problem is recursively enumerable. This contradicts the \(\Pi_{11} \)-hardness of the inclusion problem." [Alur and Dill, 1994]

An non-complementable TBA \(A \):

\[
\begin{align*}
\ell_1 &:= 0 \\
\ell_0 &:= a, x := 0 \\
\ell_2 &:= b, y := 0 \\
2x &:= 3 \\
y &:= 0 \\
\end{align*}
\]

\[L(A) = \{(a\omega, (t_i)i \in \mathbb{N}_0) | \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}\].

Beyond Timed Regular

With clock constraints of the form \(x + y \leq x' + y' \) we can describe timed languages which are not timed regular. In other words:

• There are strictly timed languages that are not timed regular.

• There exist timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[
\begin{align*}
(1+1-1) &:= (1+1-1) x \quad \text{for } x := 0 \\
(1+1-1) &:= (1+1-1) y \\
(1+1-1) &:= (1+1-1) z \\
\end{align*}
\]

\[L(A) = \{(1+1-1)\omega, \tau \} | \forall j. (\tau_3 j - \tau_3 j - 1) = 2(\tau_3 j - 1 - \tau_3 j - 2)\}\].

References
