Real-Time Systems

Lecture 17: The Universality Problem for TBA Cont’d

2011-07-24

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany
Contents & Goals

Last Lecture:
- Timed Büchi Automata and timed regular languages [Alur and Dill, 1994].

This Lecture:
- Educational Objectives: Capabilities for following tasks/questions.
 - What’s a TBA and what’s the difference to (extended) TA?
 - What’s undecidable for timed (Büchi) automata?
 - What’s the idea of the proof?
- Content:
 - The Universality Problem is undecidable for TBA [Alur and Dill, 1994] Cont’d
 - Timed regular languages are not everything.
Timed Büchi Automata

[Alur and Dill, 1994]
Recall: Timed Languages

Definition. A **time sequence** $\tau = \tau_1, \tau_2, \ldots$ is an infinite sequence of time values $\tau_i \in \mathbb{R}^+_0$, satisfying the following constraints:

(i) **Monotonicity:**
 τ increases **strictly** monotonically, i.e. $\tau_i < \tau_{i+1}$ for all $i \geq 1$.

(ii) **Progress:** For every $t \in \mathbb{R}^+_0$, there is some $i \geq 1$ such that $\tau_i > t$.

Definition. A **timed word** over an alphabet Σ is a pair (σ, τ) where

- $\sigma = \sigma_1, \sigma_2, \cdots \in \Sigma^{\omega}$ is an infinite word over Σ, and
- τ is a time sequence.

Definition. A **timed language** over an alphabet Σ is a set of timed words over Σ.

4/26
Recall: Timed Büchi Automata

Definition. The set $\Phi(X)$ of clock constraints over X is defined inductively by

$$\delta ::= x \leq c \mid c \leq x \mid \neg \delta \mid \delta_1 \land \delta_2$$

where $x \in X$ and $c \in \mathbb{Q}$ is a rational constant.

Definition. A timed Büchi automaton (TBA) A is a tuple $(\Sigma, S, S_0, X, E, F)$, where

- Σ is an alphabet,
- S is a finite set of states, $S_0 \subseteq S$ is a set of start states,
- X is a finite set of clocks, and
- $E \subseteq S \times S \times \Sigma \times 2^X \times \Phi(X)$ gives the set of transitions.

An edge $(s, s', a, \lambda, \delta)$ represents a transition from state s to state s' on input symbol a. The set $\lambda \subseteq X$ gives the clocks to be reset with this transition, and δ is a clock constraint over X.

- $F \subseteq S$ is a set of accepting states.
Recall: (Accepting) TBA Runs

Definition. A run \(r \), denoted by \((\bar{s}, \bar{\nu})\), of a TBA \((\Sigma, S, S_0, X, E, F)\) over a timed word \((\sigma, \tau)\) is an *infinite* sequence of the form

\[
r : \langle s_0, \nu_0 \rangle \xrightarrow{\sigma_1}{\tau_1} \langle s_1, \nu_1 \rangle \xrightarrow{\sigma_2}{\tau_2} \langle s_2, \nu_2 \rangle \xrightarrow{\sigma_3}{\tau_3} \ldots
\]

with \(s_i \in S \) and \(\nu_i : X \to \mathbb{R}^+_0 \), satisfying the following requirements:

- **Initiation:** \(s_0 \in S_0 \) and \(\nu(x) = 0 \) for all \(x \in X \).
- **Consecution:** for all \(i \geq 1 \), there is an edge in \(E \) of the form \((s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i)\) such that
 - \((\nu_{i-1} + (\tau_i - \tau_{i-1}))\) satisfies \(\delta_i \) and
 - \(\nu_i = (\nu_{i-1} + (\tau_i - \tau_{i-1}))[\lambda_i := 0] \).

The set \(\inf(r) \subseteq S \) consists of those states \(s \in S \) such that \(s = s_i \) for infinitely many \(i \geq 0 \).

Definition. A run \(r = (\bar{s}, \bar{\nu}) \) of a TBA over timed word \((\sigma, \tau)\) is called (an) **accepting** (run) if and only if \(\inf(r) \cap F \neq \emptyset \).
Recall: The Language of a TBA

Definition. For a TBA \mathcal{A}, the **language** $L(\mathcal{A})$ of timed words it accepts is defined to be the set

$$\{(\sigma, \tau) \mid \mathcal{A} \text{ has an accepting run over } (\sigma, \tau)\}.$$
For short: $L(\mathcal{A})$ is the **language of** \mathcal{A}.

Definition. A timed language L is a **timed regular language** if and only if $L = L(\mathcal{A})$ for **some** TBA \mathcal{A}.
The Universality Problem is Undecidable for TBA

[Alur and Dill, 1994]
Recall: The Universality Problem

- **Given:** A TBA A over alphabet Σ.
- **Question:** Does A accept all timed words over Σ?
 In other words: Is $L(A) = \{(\sigma, \tau) \mid \sigma \in \Sigma^\omega, \tau$ time sequence$\}$.

Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π_1^1-hard.

("The class Π_1^1 consists of highly undecidable problems, including some nonarithmetical sets (for an exposition of the analytical hierarchy consult, for instance [Rogers, 1967].)")
Theorem 5.2. The problem of deciding whether a timed automaton over alphabet Σ accepts all timed words over Σ is Π^1_1-hard.

Proof Idea:

- Consider a language L_{undec} which consists of the \textit{recurring} computations of a 2-counter machine M.

- Construct a TBA A from M which accepts the complement of L_{undec}, i.e. with

$$L(A) = \overline{L_{\text{undec}}}.$$

- Then A is universal if and only if L_{undec} is empty...

 ...which is the case if and only if M \textit{doesn't have} a recurring computation.
A two-counter machine M

- has two counters C, D and
- a finite program consisting of n instructions.
- An instruction increments or decrements one of the counters, or jumps, here even non-deterministically.

- A configuration of M is a triple $\langle i, c, d \rangle$:

 program counter $i \in \{1, \ldots, n\}$, values $c, d \in \mathbb{N}_0$ of C and D.

- A computation of M is an infinite consecutive sequence

 $\langle 1, 0, 0 \rangle = \langle i_0, c_0, d_0 \rangle, \langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots$

 that is, $\langle i_{j+1}, c_{j+1}, d_{j+1} \rangle$ is a result executing instruction i_j at $\langle i_j, c_j, d_j \rangle$.

A computation of M is called recurring iff $i_j = 1$ for infinitely many $j \in \mathbb{N}_0$.
Step 1: The Language of Recurring Computations

- Let M be a 2CM with n instructions.

Wanted: A timed language L_{undec} (over some alphabet) representing exactly the recurring computations of M. In particular such that $L_{\text{undec}} = \emptyset$ if and only if M has no recurring computation.

- Choose $\Sigma = \{b_1, \ldots, b_n, a_1, a_2\}$ as alphabet.

- We represent a configuration $\langle i, c, d \rangle$ of M by the sequence

$$b_i \underbrace{a_1 \ldots a_1}_{c \text{ times}} \underbrace{a_2 \ldots a_2}_{d \text{ times}} = b_i a_1^c a_2^d$$
Step 1: The Language of Recurring Computations

\[\langle i, c, d \rangle \text{ represented by } b_1 a_1^c a_2^d \]

Let \(L_{\text{undec}} \) be the set of the timed words \((\sigma, \tau) \) with
Step 1: The Language of Recurring Computations

\(\langle i, c, d \rangle \) represented by \(b_1 a_1^c a_2^d \)

Let \(L_{undec} \) be the set of the timed words \((\sigma, \tau)\) with

- \(\sigma \) is of the form \(b_i a_1^{c_1} a_2^{d_1} b_i a_1^{c_2} a_2^{d_2} \ldots \)
- \(\langle i_1, c_1, d_1 \rangle, \langle i_2, c_2, d_2 \rangle, \ldots \) is a recurring computation of \(M \).
- For all \(j \in \mathbb{N}_0 \),
 - the time of \(b_{i_j} \) is \(j \).
 - if \(c_{j+1} = c_j \) then for every \(a_1 \) at time \(t \) in the interval \([j, j + 1]\) there is an \(a_1 \) at time \(t + 1 \),
 - if \(c_{j+1} = c_j + 1 \) then for every \(a_1 \) at time \(t \) in the interval \([j + 1, j + 2]\) except for the last one, there is an \(a_1 \) at time \(t - 1 \),
 - if \(c_{j+1} = c_j - 1 \) then for every \(a_1 \) at time \(t \) in the interval \([j, j + 1]\) except for the last one, there is an \(a_1 \) at time \(t + 1 \),
- And analogously for the \(a_2 \)'s.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that

$$L(\mathcal{A}) = L_{\text{undec}}$$
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA A such that

$$L(A) = \overline{L_{undec}}$$

What are the reasons for a timed word **not to be** in L_{undec}?

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.

(iii) The timed word is not recurring, i.e. it has only finitely many b_1.

(iv) The configuration encoded in $[j + 1, j + 2[$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1[$.
Step 2: Construct “Observer” for L_{undec}

Wanted: A TBA \mathcal{A} such that

$$L(\mathcal{A}) = L_{\text{undec}}$$

What are the reasons for a timed word **not to be** in L_{undec}?

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.

(ii) The prefix of the timed word with times $0 \leq t < 1$ doesn’t encode $\langle 1, 0, 0 \rangle$.

(iii) The timed word is not recurring, i.e. it has only finitely many b_i.

(iv) The configuration encoded in $[j + 1, j + 2[$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1[$.

Plan: Construct a TBA \mathcal{A}_0 for case (i), a TBA $\mathcal{A}_{\text{init}}$ for case (ii), a TBA $\mathcal{A}_{\text{recur}}$ for case (iii), and one TBA \mathcal{A}_i for each instruction for case (iv).

Then set

$$\mathcal{A} = \mathcal{A}_0 \cup \mathcal{A}_{\text{init}} \cup \mathcal{A}_{\text{recur}} \cup \bigcup_{1 \leq i \leq n} \mathcal{A}_i$$
Step 2.(i): Construct A_0

(i) The b_i at time $j \in \mathbb{N}$ is missing, or there is a spurious b_i at time $t \in]j, j + 1[$.

[Alur and Dill, 1994]: “It is easy to construct such a timed automaton.”
Step 2.(ii): Construct A_{init}

(ii) The prefix of the timed word with times $0 \leq t < \frac{1}{2}$ doesn’t encode $\langle 1, 0, 0 \rangle$.

- It accepts

$$\{(\sigma_j, \tau_j)_{j \in \mathbb{N}_0} \mid (\sigma_0 \neq b_1) \lor (\tau_0 \neq 0) \lor (\tau_1 \neq 1)\}.$$
Step 2.(iii): Construct A_{recur}

(iii) The timed word is not recurring, i.e. it has only finitely many b_1.

- A_{recur} accepts words with only finitely many b_1.
Step 2.(iv): Construct A_i

(iv) The configuration encoded in $[j + 1, j + 2]$ doesn’t faithfully represent the effect of instruction b_i on the configuration encoded in $[j, j + 1]$.

Example: assume instruction 7 is:

Increment counter D and jump non-deterministically to instruction 3 or 5.

Once again: stepwise. A_7 is $A_1^7 \cup \cdots \cup A_6^7$.

- A_1^7 accepts words with b_7 at time j but neither b_3 nor b_5 at time $j + 1$. “Easy to construct.”

- A_2^7 is

- A_3^7 accepts words which encode unexpected increment of counter C.

- A_4^7, \ldots, A_6^7 accept words with missing decrement of D.

![Diagram of automaton]
Aha, And...?
Consequences: Language Inclusion

- **Given:** Two TBAs A_1 and A_2 over alphabet B.
- **Question:** Is $L(A_1) \subseteq L(A_2)$?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as A_2 and model the design as A_1.
- Automatically check whether the behaviour of the design is a subset of the allowed behaviour.

- If language inclusion was decidable, then we could use it to decide universality of A by checking

$$L(A_{\text{univ}}) \subseteq L(A)$$

where A_{univ} is any universal TBA (which is easy to construct).
Consequences: Complementation

- **Given:** A timed regular language \(W \) over \(B \) (that is, there is a TBA \(A \) such that \(L(A) = W \)).
- **Question:** Is \(\overline{W} \) timed regular?

Possible applications of a decision procedure:

- Characterise the allowed behaviour as \(A_2 \) and model the design as \(A_1 \).
- Automatically construct \(A_3 \) with \(L(A_3) = \overline{L(A_2)} \) and check

\[
L(A_1) \cap L(A_3) = \emptyset,
\]

that is, whether the design has any non-allowed behaviour.

- Taking for granted that:
 - The intersection automaton is effectively computable.
 - The emptiness problem for Büchi automata is decidable.
 (Proof by construction of region automaton \[Alur and Dill, 1994\].)
Consequences: Complementation

- **Given:** A timed regular language W over B (that is, there is a TBA A such that $L(A) = W$).

- **Question:** Is \overline{W} timed regular?

- If the class of timed regular languages were closed under complementation, “the complement of the inclusion problem is recursively enumerable. This contradicts the Π^1_1-hardness of the inclusion problem.” [Alur and Dill, 1994]

A non-complementable TBA A:

$$L(A) = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \exists i \in \mathbb{N}_0 \exists j > i : (t_j = t_i + 1)\}$$

Complement language:

$$\overline{L(A)} = \{(a^\omega, (t_i)_{i \in \mathbb{N}_0}) \mid \text{no two } a \text{ are separated by distance 1}\}.$$
Beyond Timed Regular
Beyond Timed Regular

With clock constraints of the form

\[x + y \leq x' + y' \]

we can describe timed languages which are not timed regular.

In other words:

- There are strictly timed languages than timed regular languages.
- There exists timed languages \(L \) such that there exists no \(A \) with \(L(A) = L \).

Example:

\[\{((abc)\omega, \tau) \mid \forall j. (\tau_{3j} - \tau_{3j-1}) = 2(\tau_{3j-1} - \tau_{3j-2}) \} \]
References
References
