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Real-Time Systems

Ledure 12: Location Reachahlity
(or: The Region Automaton)
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Last Lecture:

Networks of Timed Automata

Uppaal Demo

This Lecture:

Educational Objectives: Capabilities for following tasks/questions.
What are decidable problems of TA?
How can we show this? What are the essential premises of decidability?
What is a region? What is the region automaton of this TA?
What's the time abstract system of a TA? Why did we consider this?
What can you say about the complexity of Region-automaton based

reachability analysis?

Content:
med Transit Stem
Location Reachability Problem

Constructive, region-based decidability proof
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The Location Reachahlity Problem

The Location Reachallity Problem
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7 N
Given: A timed automaton A and one of its control locations /.
Question: Is ¢ reachable?

That is, is there a transition sequence of the form
A A A An
<£in7lay0> —1> <€17V1> —2> <€2)V2> Hs el T <€n,Vn> = <€)V>
in the labelled transition system 7 (A)?
\ Y

Note: Decidability is not soo obvious, recall that
clocks range over real numbers, thus infinitely many configurations,

at each configuration, uncountably many transitions 5N may originate

Consequence: The timed automata as we consider them here cannot
encode a 2-counter machine, and they are strictly less expressive than DC.
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

o Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

e Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

o Lem. 4.20: location reachability
of A is preserved in U(A).

o Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

o Lem. 4.32: location reachability of U(.A)
is preserved in R(A).

o Lem. 4.28: R(A) is finite.

Withou Lossof Generality: Natural Constants
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Recall: Simple clock constraints are p i=x ~c|z—y~c|pAgp
with 2,y € X, c € Qf, and ~€ {<,>, <, >}

o Let C(A) = {c € Qf | c appears in A} — C(A) is finite! (Why?)
o Let t4 be the least common multiple of the denominators in C(A).

o Let t4 - A be the TA obtained from A by multiplying all constants by ¢ 4.
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Withou Lossof Generality: Natural Constants
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Recall: Simple clock constraints are p i=x ~c|z—y~c|pAgp
with 2,y € X, c € Qf, and ~€ {<,>, <, >}

Let C(A) = {c € Q¢ | c appears in A} — C(A) is finite! (Why?)

Let ¢4 be the least common multiple of the denominators in C(A).

Let ¢4 - A be the TA obtained from A by multiplying all constants by ¢ 4.

Then:
° C(tA .A) C INy.
o A location £ is reachable in t 4 - A if and only if £ is reachable in A.

That is: we can without loss of generality in the following consider only
timed automata A with C'(A) C INy.

Definition. Let 2 be a clock of timed automaton A (with C'(A) C
INy). We denote by ¢, € INy the largest time constapt c that
appears together with x in a constraint of A.

Deadallity of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U/(.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.
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Helper: Relationd Compasition
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Recall: T(A) = (Conf(A), Time U Ba, {25 A € Time U By}, Cins)

A . . . .
Note: The = are binary relations on configurations.

p
Definition. Let A be a TA. For all (¢1,11), ({2,12) € Conf(A),

(b1, 11) 25 0 225 (05, 1)
W

if and only if there exists some (¢',1') € Conf(A) such that

(01, 01) 25 (€', 1) and (€', ) 225 {0y, ).

Remark. The following property of time additivity holds.

. ¢ ¢ t+t
Viti,ty € Time: =5 o0 =2 = 2172,

Time-abstract Transition S/stem
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Definition 4.19. [Time-abstract transition system|
Let A be a timed automaton.

The time-abstract transition system U/(.A)

is obtained from 7 (A) (Def. 4.4) by taking

U(A) = (Conf(A), Ba, {:a>| a € Bn},Cini)

where

==C Conf(A) x Conf(A)

is defined as follows: Let (¢,v), (¢',v") € Conf(A) be configura-
tions of A and @ € B+ an action. Then

(tv) = (')
if and only if there exists t € Time such that

vy S 02 (0 V).

- )

L J
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Example (6,v) =5 (¢, v/) iff 3t € Time o (6,v) 5 0 X (¢,))
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press?
[>

O x%=3> %coa, x-35>
/
<ol k=9 i.'_f“—i)u;,cf,wo)

: 5 [ , ")
([ 3 é <17 =‘£ —_ ﬂ)(‘ _-{
<a—,k‘. ) %(&% '( Wl (0@;Y ) o ”‘/X

e.a. il t=0 (chg €& Time Lm‘&u)

-
i 3te <off =2 Lo S o, x:35

wplies ¢’=o

ICOSER g) Lok, =35
o g) ay\'at'hﬂt't at sl Mﬁ/

Lo, e8> 3> S k=807 S e
Qo x=85 T Lo, =13 w0
(\‘,-ou,y-.w) =, (L:‘*au.s(rza) WU £:10

Location Reachahility is preserved in /(. A)

— 12 - 2012-06-28 — Sdec —

becase o AP b nseds o actiges

the following holds: q
% =
¢ is*reachable in 7 (A) if and only if £ is‘reachable in /(.A).

Lemma 4.20. For all locations ¢ of a given timed automaton A

Proof:
‘& ey w0, ie. could be eufé
Ly € il B TR
® M © <e’:”°) J—§<(ﬂ, l’g)ﬁ"‘ﬁ*(/o,, ,i)oh>_:>(€’,ar>
_é'qqﬂ <p7:4, R =) v Y] ::Z é"q
H ieq
ta

o
T YT s coup
= > => =L >
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[J Lem. 4.20: location reachability
of A is preserved in U(A).

O Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

O Lem. 4.32: location reachability of /(A)
is preserved in R(A).

O Lem. 4.28: R(A) is finite.
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12/31
. . . . . press?
Indistingushale Configuations
press? press?

z:=0
press?
>3

u A . ress

(A) (bright, z = 0) == Ve same
Q_//f‘ (bright, = = 0.1) 25 ... b A
S ress
,'{a‘z (bright, m—IO) =
S ‘6;, ress
Q/e/j (bright, x—30) =
o % ress e saene
. (brlght:c—3001>p j o A
B2 (light,z = 0)
K A (off,z = 0) =2 ...
(offac—29> =
. '.0».

press

_e&.&"' (offm—30>
A <ofFac—3001> pres

(off, x = 127. 1415> ...
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Distingushing Clock Valuations: One Clock
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o Assume A with only a single clock, i.e. X = {z} (recall: C(A) C IN.)

o A could detect, for a given v,
whether v(z) € {0,..., ¢ }.

o A cannot distinguish v; and vy
if vi(z) € (k,k+1),i=1,2,
and k € {0,...,¢c, — 1}.

o A cannot distinguish 1 and vy
if vi(z) > ¢y i=1,2.

14/31

Distingushing Clock Valuations: One Clock
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o Assume A with only a single clock, i.e. X = {z} (recall: C(A) C IN.)

o A could detect, for a given v,

whether v(z) € {0,..., ¢} ¢ O——)i’)O

o A cannot distinguish 1 and vy e
if v;(z) € (k,k+1),i=1,2, 3 i X<2 0
and k € {0,...,¢c, — 1}.

o A cannot distinguish v; and v 3 K2 Ca N
. . 0] 20
if vi(x) >cp i =1,2.

o If ¢, > 1, there are (2¢, + 2) equivalence classes:

{{0},(0,1), {1}, (1,2), ..., {ea}, (ca; 00)}

If v1(x) and vo(x) are in the same equivalence class,
then 11 and v, are indistiguishable by A.
1431



Distingushing Clock Valuations: Two Clocks
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o X={z,y}, co=1,¢,=1

x=055,4135 yh 0y,

1 (}uo(\__‘

\/ x'9"04 0(K<4A 0<\1< 1

x>y << A 0¢9¢

0 oo 0cren 1
15/31

Helper: Floor andFraction
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¢ Recall:

Each g € Rg' can be split into
o floor |¢] € Ny and
« fraction frac(q) € [0,1)
such that
q = lq] + frac(q).
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An Equivalence-Relation onValuations
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D

w

\_

efinition. Let X be a set of clocks, ¢, € INg for each clock
x € X, and vy, v clock valuations of X.

We set 11 = vy iff the following four conditions are satisfied.

(1) Forallz € X,

v (2)] =

(2) For all z € X with v1(z) < ¢,
frac(vi(z)) = 0 if and only if frac(v2(z)) = 0.
(3) Forall z,y € X,

or both |v1(z) — v1(y)| > ¢ and |va(z) — v2(y)| > c.
(4) For all z,y € X with —c < v1(z) —i(y) <,
frac(vi(z) — v1(y)) = 0 if and only if frac(ve(z) — v2(y)) = 0.

here ¢ = max{cs, ¢y }.

|v2(z)] or both vi(x) > ¢; and va(x) > c,.

[vi(2) —vi(y)] = Lva(z) — va(y)]

J

Example: Regions

17/31

1) Ve e X : [1i(x)] = |va(z)]| V (ni(x) > o Ava(z) > ca)
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12—

=]

L]
]

P

(2) Ve e X 1 1h(z) < co
= (frac(v1(z)) =0 < frac(vz2(x)) = 0)

(3) Yo,y € X5 [1(2) — ()] = va(e) — va(»)]
V ([vi(®) —vi(y)l > e A lva(x) — v2(y)| > ©)
(4) Ve,ye X : —c<uni(z) —vi(y) <c =
(frac(vi(z) —vi(y)) =0 <= frac(vz(z) — v2(y)) = 0)

* U3k, becawe LV;(k)8=0 F 1=y, 6d)

o V, ch
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Regi

ons
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Proposition. = is an equivalence relation.

Definition 4.27. For a given valuation v we denote by [v] the
equivalence class of v. We call equivalence classes of = regions.

The

\ie. {o' | v'of

Region Automaton

— 12 — 2012-06-28 — Sdec —

7

L

Definition 4.29. [Region Automaton] The region automaton
R(A) of the timed automaton A is the labelled transition system

R(.A) — (Conf('R(.A)),B?!, {i>R(A)| (NS B?l},Cim‘)

4
where refe ““‘-m»{w

Conf(R(A)) ={{,[v]) |t € L,v: X — Time,v = I({)},
for each o € By,

€, [v]) i>R(A) (¢',[V']) if and only if (¢,v) == (¢, )
in U(A), and
Cini = {(Zim" [szD} n COTLf(R(.A)) with I/mi(X) = {0}

~

Proposition. The transition relation of R(.A) is well-defined, that
is, independent of the choice of the representative v of a region [v].

19/31
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Example: Region Automaton
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press?

z:=0 ig <3
press?
xz >3
U(A): (bright, [z = 0]) =2 ... PRI
L= ot
ﬁe‘l/ (bright, [z = 0.1]) &% ...
< : ress
7 (bright, [z = 1.0]) E= ...
’ (a - PR
et (bright, [z = 3.0]) =2
. bright, [z = 3.001]) £ ...
- B2 (light, [z = 0]) tbright. | b
(off, [x = 0]) e
(off, [z = 2.9]) &= - -
. O -
N (off, [¢ = 3.0) X2 ...
~ (off, [z = 3.001]) == ...
21/31

Remark
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Remark 4.30. That a configuration (¢, [v]) is reachable in R(.A)
represents the fact, that all (¢, v) are reachable.

In A, we can observe v when
location £ has just been entered. (uo 'Mfy afec emin'»a/

The clock values reachable by staying/letting time pass in £ are
not explicitly represented by the regions of R(A).
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U(.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.
23/31

Region Automaton Properties
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Lemma 4.32. [Correctness| For all locations ¢ of a given timed
automaton A the following holds:

¢ is reachable in U(.A) if and only if £ is reachable in R(A).

(= 4

<,y =<2y,

For the Proof: ~ o
: ol i

1 v <ev> :———5(€II}L’>

Definition 4.21. [Bisimulation] An equivalence relation ~ on val-
uations is a (strong) bisimulation if and only if, whenever

v1 ~ vy and <€7 V1> — <f/7l/i>

. . (¢}
then there exists v with 1] ~ vy and (£, v2) = (¢, v3).
g /

Lemma 4.26. [Bisimulation] = is a strong bisimulation.
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Deadadhility of The Location Reachahlity Problem
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Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

O

Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INy.

Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

Lem. 4.20: location reachability
of A is preserved in U(A).

Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

Lem. 4.32: location reachability of U(.A)
is preserved in R(A).

Lem. 4.28: R(A) is finite.

The Number of Regions pagndids of X
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(wivber of clements X))

Lemma 4.28. Let X be a et of clocks, ¢, € INg the maximal
constant for each z € X, ajld ¢ = max{c, | € X}. Then

(2¢ + Q)IXI (4ec + 3)%|X|'(|X|—1)

is an upper bound on the number of regions.

.

Proof: [Olderog and Dierks, 2008]

25/31
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Observations Regarding the Number of Regions
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o Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

o Note: the upper bound is a worst case, not an exact bound.

L |- | fegins
v4 [2“2}9\)-

Aot La Xa 2L )2s)

1

lAz: (—ZIXZ e 2:[X,| = /)(z’

2731

Deadallity of The Location Reachahlity Problem
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Claim: (Theorem 4.33)
The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

[J Observe: clock constraints are simple
— w.l.o.g. assume constants ¢ € INp.

O Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably
many delay transitions, still infinite-state.

[0 Lem. 4.20: location reachability
of A is preserved in U(A).

[ Def. 4.29: region automaton R(A) —
equivalent configurations collapse into regions

[ Lem. 4.32: location reachability of U/(.A)
is preserved in R(A).

[ Lem. 4.28: R(A) is finite.
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Putting It All Together
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Let A= (L,B,X,I,FE {;,) be a timed automaton, ¢ € L a location.
R(A) can be constructed effectively.
There are finitely many locations in L (by definition).
There are finitely many regions by Lemma 4.28.

So Conf(R(A)) is finite (by construction).
It is decidable whether (Cjp;x of R(.A) is empty) or whether there exists
a sequence

(Cinis [Vin]) = Reay (01, [11]) SRy - R4y (Cns [Vn))

such that ¢,, = ¢ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.
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