
Real-TimeSystems

Lecture 12: LocationReachabilit y
(or: TheRegionAutomaton)

2012-06-28

Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

–
1
2

–
2
0
1
2
-0

6
-2

8
–

m
a
in

–

Contents & Goals

Last Lecture:

• Networks of Timed Automata

• Uppaal Demo

This Lecture:

• Educational Objectives: Capabilities for following tasks/questions.

• What are decidable problems of TA?

• How can we show this? What are the essential premises of decidability?

• What is a region? What is the region automaton of this TA?

• What’s the time abstract system of a TA? Why did we consider this?

• What can you say about the complexity of Region-automaton based

reachability analysis?

• Content:

• Timed Transition System of network of timed automata

• Location Reachability Problem

• Constructive, region-based decidability proof

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
p
re

li
m

–

2/31

TheLocationReachabilit y Problem

–
1
2

–
2
0
1
2
-0

6
-2

8
–

m
a
in

–

3/31

TheLocationReachabilit y Problem

Given: A timed automaton A and one of its control locations ℓ.

Question: Is ℓ reachable?

That is, is there a transition sequence of the form

〈ℓini , ν0〉
λ1−→ 〈ℓ1, ν1〉

λ2−→ 〈ℓ2, ν2〉
λ3−→ . . .

λn−−→ 〈ℓn, νn〉 = 〈ℓ, ν〉

in the labelled transition system T (A)?

• Note: Decidability is not soo obvious, recall that

• clocks range over real numbers, thus infinitely many configurations,

• at each configuration, uncountably many transitions
t
−→ may originate

• Consequence: The timed automata as we consider them here cannot
encode a 2-counter machine, and they are strictly less expressive than DC.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

4/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.
off light bright

press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

• Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

• Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

• Lem. 4.20: location reachability

of A is preserved in U(A).

• Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

• Lem. 4.32: location reachability of U(A)
is preserved in R(A).

• Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

5/31

Without Lossof Generality: Natural Constants

Recall: Simple clock constraints are ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

with x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<, >,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

6/31

Without Lossof Generality: Natural Constants

Recall: Simple clock constraints are ϕ ::= x ∼ c | x − y ∼ c | ϕ ∧ ϕ

with x, y ∈ X , c ∈ Q+
0 , and ∼∈ {<, >,≤,≥}.

• Let C(A) = {c ∈ Q+
0 | c appears in A} — C(A) is finite! (Why?)

• Let tA be the least common multiple of the denominators in C(A).

• Let tA · A be the TA obtained from A by multiplying all constants by tA.

• Then:

• C(tA · A) ⊂ N0.

• A location ℓ is reachable in tA · A if and only if ℓ is reachable in A.

• That is: we can without loss of generality in the following consider only
timed automata A with C(A) ⊂ N0.

Definition. Let x be a clock of timed automaton A (with C(A) ⊂
N0). We denote by cx ∈ N0 the largest time constant c that
appears together with x in a constraint of A.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

6/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✘ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

✘ Lem. 4.20: location reachability

of A is preserved in U(A).

✘ Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

✘ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

7/31

Helper: Relational Composition

Recall: T (A) = (Conf (A), Time ∪ B?!, {
λ
−→| λ ∈ Time ∪ B?!}, Cini)

• Note: The
λ
−→ are binary relations on configurations.

Definition. Let A be a TA. For all 〈ℓ1, ν1〉, 〈ℓ2, ν2〉 ∈ Conf (A),

〈ℓ1, ν1〉
λ1−→ ◦

λ2−→ 〈ℓ2, ν2〉

if and only if there exists some 〈ℓ′, ν′〉 ∈ Conf (A) such that

〈ℓ1, ν1〉
λ1−→ 〈ℓ′, ν′〉 and 〈ℓ′, ν′〉

λ2−→ 〈ℓ2, ν2〉.

Remark. The following property of time additivity holds.

∀ t1, t2 ∈ Time :
t1−→ ◦

t2−→ =
t1+t2−−−→

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

8/31

Time-abstract Transition System

Definition 4.19. [Time-abstract transition system]
Let A be a timed automaton.
The time-abstract transition system U(A)
is obtained from T (A) (Def. 4.4) by taking

U(A) = (Conf (A), B?!, {
α

=⇒| α ∈ B?!}, Cini)

where
α

=⇒⊆ Conf (A) × Conf (A)

is defined as follows: Let 〈ℓ, ν〉, 〈ℓ′, ν′〉 ∈ Conf (A) be configura-
tions of A and α ∈ B?! an action. Then

〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉

if and only if there exists t ∈ Time such that

〈ℓ, ν〉
t
−→ ◦

α
−→ 〈ℓ′, ν′〉.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

9/31

Example 〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉 iff ∃ t ∈ Time • 〈ℓ, ν〉
t
−→ ◦

α
−→ 〈ℓ′, ν′〉

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?
–

1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

10/31

LocationReachabilit y ispreserved in U(A)

Lemma 4.20. For all locations ℓ of a given timed automaton A
the following holds:

ℓ is reachable in T (A) if and only if ℓ is reachable in U(A).

Proof:

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

11/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability

of A is preserved in U(A).

✘ Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

✘ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

12/31

IndistinguishableConfigurations

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U(A):

· · ·
press
=⇒ 〈light, x = 0〉

〈bright, x = 0〉
press
=⇒ · · ·

. . .

〈bright, x = 0.1〉
press
=⇒ · · ·

. . .

〈bright, x = 1.0〉
press
=⇒ · · ·

. . .

〈bright, x = 3.0〉
press
=⇒ · · ·

. . .

〈bright, x = 3.001〉
press
=⇒ · · ·

. . .

〈off, x = 0〉
press
=⇒ · · ·

. . .

〈off, x = 2.9〉
press
=⇒ · · ·

. . .

〈off, x = 3.0〉
press
=⇒ · · ·

. . .

〈off, x = 3.001〉
press
=⇒ · · ·

. . .

〈off, x = 127.1415〉
press
=⇒ · · ·

. . .

pr
es
s

=⇒

pr
es
s

=⇒

pr
es

s

=⇒
pre

ss

=⇒

press
=⇒

press

=⇒

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

13/31

Distinguishing ClockValuations: OneClock

• Assume A with only a single clock, i.e. X = {x} (recall: C(A) ⊂ N.)

• A could detect, for a given ν,
whether ν(x) ∈ {0, . . . , cx}.

• A cannot distinguish ν1 and ν2

if νi(x) ∈ (k, k + 1), i = 1, 2,
and k ∈ {0, . . . , cx − 1}.

• A cannot distinguish ν1 and ν2

if νi(x) > cx, i = 1, 2.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

14/31

Distinguishing ClockValuations: OneClock

• Assume A with only a single clock, i.e. X = {x} (recall: C(A) ⊂ N.)

• A could detect, for a given ν,
whether ν(x) ∈ {0, . . . , cx}.

• A cannot distinguish ν1 and ν2

if νi(x) ∈ (k, k + 1), i = 1, 2,
and k ∈ {0, . . . , cx − 1}.

• A cannot distinguish ν1 and ν2

if νi(x) > cx, i = 1, 2.

• If cx ≥ 1, there are (2cx + 2) equivalence classes:

{{0}, (0, 1), {1}, (1, 2), . . . , {cx}, (cx,∞)}

If ν1(x) and ν2(x) are in the same equivalence class,
then ν1 and ν2 are indistiguishable by A.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

14/31

Distinguishing ClockValuations: Two Clocks

• X = {x, y}, cx = 1, cy = 1.

0 1
0

1

x

y

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

15/31

Helper: Floor andFraction

• Recall:

Each q ∈ R+
0 can be split into

• floor ⌊q⌋ ∈ N0 and

• fraction frac(q) ∈ [0, 1)

such that

q = ⌊q⌋ + frac(q).

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

16/31

An Equivalence-Relation onValuations

Definition. Let X be a set of clocks, cx ∈ N0 for each clock
x ∈ X , and ν1, ν2 clock valuations of X .

We set ν1
∼= ν2 iff the following four conditions are satisfied.

(1) For all x ∈ X,

⌊ν1(x)⌋ = ⌊ν2(x)⌋ or both ν1(x) > cx and ν2(x) > cx.

(2) For all x ∈ X with ν1(x) ≤ cx,

frac(ν1(x)) = 0 if and only if frac(ν2(x)) = 0.

(3) For all x, y ∈ X,

⌊ν1(x) − ν1(y)⌋ = ⌊ν2(x) − ν2(y)⌋

or both |ν1(x) − ν1(y)| > c and |ν2(x) − ν2(y)| > c.

(4) For all x, y ∈ X with −c ≤ ν1(x) − ν1(y) ≤ c,

frac(ν1(x) − ν1(y)) = 0 if and only if frac(ν2(x) − ν2(y)) = 0.

Where c = max{cx, cy}.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

17/31

Example: Regions (1) ∀x ∈ X : ⌊ν1(x)⌋ = ⌊ν2(x)⌋ ∨ (ν1(x) > cx ∧ ν2(x) > cx)

(2) ∀x ∈ X : ν1(x) ≤ cx

=⇒ (frac(ν1(x)) = 0 ⇐⇒ frac(ν2(x)) = 0)

(3) ∀x, y ∈ X : ⌊ν1(x) − ν1(y)⌋ = ⌊ν2(x) − ν2(y)⌋
∨ (|ν1(x) − ν1(y)| > c ∧ |ν2(x) − ν2(y)| > c)

(4) ∀x, y ∈ X : −c ≤ ν1(x) − ν1(y) ≤ c =⇒
(frac(ν1(x) − ν1(y)) = 0 ⇐⇒ frac(ν2(x) − ν2(y)) = 0)

0 1
0

1

x

y

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

18/31

Regions

Proposition. ∼= is an equivalence relation.

Definition 4.27. For a given valuation ν we denote by [ν] the
equivalence class of ν. We call equivalence classes of ∼= regions.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

19/31

TheRegion Automaton

Definition 4.29. [Region Automaton] The region automaton
R(A) of the timed automaton A is the labelled transition system

R(A) = (Conf (R(A)), B?!, {
α
−→R(A)| α ∈ B?!}, Cini)

where
• Conf (R(A)) = {〈ℓ, [ν]〉 | ℓ ∈ L, ν : X → Time, ν |= I(ℓ)},

• for each α ∈ B?!,

〈ℓ, [ν]〉
α
−→R(A) 〈ℓ

′, [ν′]〉 if and only if 〈ℓ, ν〉
α

=⇒ 〈ℓ′, ν′〉

in U(A), and

• Cini = {〈ℓini , [νini]〉} ∩ Conf (R(A)) with νini(X) = {0}.

Proposition. The transition relation of R(A) is well-defined, that
is, independent of the choice of the representative ν of a region [ν].

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

20/31

Example: Region Automaton

off light bright
press?

x := 0

press?

x ≤ 3

press?

x > 3

press?

U(A):

· · ·
press
=⇒ 〈light, [x = 0]〉

〈bright, [x = 0]〉
press
=⇒ · · ·

〈bright, [x = 0.1]〉
press
=⇒ · · ·

〈bright, [x = 1.0]〉
press
=⇒ · · ·

. . .

〈bright, [x = 3.0]〉
press
=⇒ · · ·

〈bright, [x = 3.001]〉
press
=⇒ · · ·

〈off, [x = 0]〉
press
=⇒ · · ·

. . .

〈off, [x = 2.9]〉
press
=⇒ · · ·

〈off, [x = 3.0]〉
press
=⇒ · · ·

〈off, [x = 3.001]〉
press
=⇒ · · ·

pr
es
s

=⇒

pr
es
s

=⇒

pre
ss

=⇒
pres

s

=⇒

press

=⇒

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

21/31

Remark

Remark 4.30. That a configuration 〈ℓ, [ν]〉 is reachable in R(A)
represents the fact, that all 〈ℓ, ν〉 are reachable.

In A, we can observe ν when
location ℓ has just been entered.

The clock values reachable by staying/letting time pass in ℓ are
not explicitly represented by the regions of R(A).

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

22/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability

of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

✘ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

23/31

Region AutomatonProperties

Lemma 4.32. [Correctness] For all locations ℓ of a given timed
automaton A the following holds:

ℓ is reachable in U(A) if and only if ℓ is reachable in R(A).

For the Proof:

Definition 4.21. [Bisimulation] An equivalence relation ∼ on val-
uations is a (strong) bisimulation if and only if, whenever

ν1 ∼ ν2 and 〈ℓ, ν1〉
α

=⇒ 〈ℓ′, ν′
1〉

then there exists ν′
2 with ν′

1 ∼ ν′
2 and 〈ℓ, ν2〉

α
=⇒ 〈ℓ′, ν′

2〉.

Lemma 4.26. [Bisimulation] ∼= is a strong bisimulation.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

24/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability

of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

✔ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✘ Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

25/31

TheNumber of Regions

Lemma 4.28. Let X be a set of clocks, cx ∈ N0 the maximal
constant for each x ∈ X , and c = max{cx | x ∈ X}. Then

(2c + 2)|X| · (4c + 3)
1

2
|X|·(|X|−1)

is an upper bound on the number of regions.

Proof: [Olderog and Dierks, 2008]

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

26/31

Observations Regarding theNumber of Regions

• Lemma 4.28 in particular tells us that each timed automaton (in our
definition) has finitely many regions.

• Note: the upper bound is a worst case, not an exact bound.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

27/31

Decidabilit y of TheLocationReachabilit y Problem

Claim: (Theorem 4.33)

The location reachability problem is decidable for timed automata.

Approach: Constructive proof.

✔ Observe: clock constraints are simple
— w.l.o.g. assume constants c ∈ N0.

✔ Def. 4.19: time-abstract transition
system U(A) — abstracts from uncountably

many delay transitions, still infinite-state.

✔ Lem. 4.20: location reachability

of A is preserved in U(A).

✔ Def. 4.29: region automaton R(A) —

equivalent configurations collapse into regions

✔ Lem. 4.32: location reachability of U(A)
is preserved in R(A).

✔ Lem. 4.28: R(A) is finite.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

28/31

Putting It All Together

Let A = (L, B, X, I, E, ℓini) be a timed automaton, ℓ ∈ L a location.

• R(A) can be constructed effectively.

• There are finitely many locations in L (by definition).

• There are finitely many regions by Lemma 4.28.

• So Conf (R(A)) is finite (by construction).

• It is decidable whether (Cinit of R(A) is empty) or whether there exists
a sequence

〈ℓini , [νini]〉
α
−→R(A) 〈ℓ1, [ν1]〉

α
−→R(A) . . .

α
−→R(A) 〈ℓn, [νn]〉

such that ℓn = ℓ (reachability in graphs).

So we have

Theorem 4.33. [Decidability]
The location reachability problem for timed automata is decidable.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

S
d
ec

–

29/31

References

–
1
2

–
2
0
1
2
-0

6
-2

8
–

m
a
in

–

30/31

References

[Olderog and Dierks, 2008] Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems

- Formal Specification and Automatic Verification. Cambridge University Press.

–
1
2

–
2
0
1
2
-0

6
-2

8
–

m
a
in

–

31/31

