Algorithms and complexity:

2 The dictionary problem: search trees
The dictionary problem

Given: a set of objects (data) where each element can be identified by a unique key (integer, string, ...).

Goal: a structure for storing the set of keys such that at least the following operations (methods) are supported:
• search (find, access)
• insert
• delete

Intuition: english-german dictionary
The dictionary problem (2)

- Search(id)
- Insert?
- Delete?

class ListNode {
 int id;
 string name;
 ListNode next;
}

string SequentialSearch (int k){
 n = first;
 while (n != null) {
 if (k == n.id) return n.name;
 n = n.next;
 }
 return "not found";
}
The dictionary problem (3)

The following conditions can influence the choice of a solution to the dictionary problem:

- **the frequency** of the operations:
 - mostly insertion and deletion (dynamic)
 - mostly search (static)
 - approximately the same frequencies

- **other operations** to be implemented:
 - set operations: union, intersection, difference quantity, ...
 - enumerate the set in a certain order (e.g. ascending by key)

- **the complexity** of the solution: average case, worst case, amortized worst case

- **the place where the data is stored**: main memory, hard drive, WORM (write once read multiple)
The dictionary problem (3)

Different approaches to the dictionary problem:

- structuring the complete universe of all possible keys: hashing
- structuring the set of the actually occurring keys: lists, trees, graphs, ...
Trees are a generalisation of linked lists (each element can have more than one successor)

```
tree
  id
  name
  next
  ...
  id
  name
  next
  null
```
Trees as graphs (1)

Trees are

- special graphs:
 - in general, a graph \(G = (N, E) \) consists of a set \(N \) of nodes and a set \(E \) of edges
 - the edges are either directed or undirected
 - nodes and edges can be labelled
- a tree is a connected acyclic graph, where:
 \# nodes = \# edges + 1
- a general and central concept for the hierarchical structuring of information:
 - decision trees
 - code trees
 - syntax trees
Trees as graphs (2)

Several kinds of trees can be distinguished:

- undirected tree (with no designated root)

- rooted tree (one node is designated as the root)

 - from each node k there is exactly one path (a sequence of pairwise neighbouring edges) to the root

 - the parent (or: direct predecessor) of a node k is the first neighbour on the path from k to the root

 - the children (or: direct successors) are the other neighbours of k

 - the rank (or: outdegree) of a node k is the number of children of k
Trees as graphs (3)

- **Rooted tree:**
 - *root*: the only node that has no parent
 - *leaf nodes* (*leaves*): nodes that have no children
 - *internal nodes*: all nodes that are not leaves
 - *order of a tree* T: maximum rank of a node in T
 - *the notion tree is often used as a synonym for rooted tree*

- **Ordered (rooted) tree:** among the children of each node there is an order e.g. the $<$ relation among the keys of the nodes

- **Binary tree:** ordered tree of order 2; the children of a node are referred to as *left child* and *right child*

- **Multiway tree:** ordered tree of order > 2
Trees as graphs (4)

A more precise definition of the set M_d of the ordered rooted trees of order d ($d \geq 1$):

- a single node is in M_d
- let $t_1, \ldots, t_d \in M_d$ and w a node. Then w with the roots of t_1, \ldots, t_d as its children (from left to right) is a tree $t \in M_d$. The t_i are subtrees of t.

 – according to this definition each node has rank d (or rank 0)
 – in general, the rank can be \(\leq d \)
 – nodes of binary trees either have 0 or 2 children
 – nodes with exactly 1 child could also be permitted by allowing empty subtrees in the above definition
Examples

- tree
- not a tree
- not a tree (but two trees!)
Structural properties of trees

- **Depth of a node** k: number of edges from the tree root until k (distance of k to the root)
- **Height** $h(t)$ of a tree t: maximum depth of a leaf in t.
 Alternative (recursive) definition:
 - $h($leaf$) = 0$
 - $h(t) = 1 + \max\{t_i \mid \text{root of } t_i \text{ is a child of the root of } t\}$
 (t_i is a subtree of t)
- **Level** i: all nodes of depth i
- **Complete tree**: tree where each non-empty level has the maximum number of nodes.
 \Rightarrow all leaves have the same depth.
Applications of trees

Use of trees for the dictionary problem:

- **node**: stores one key
- **tree**: stores a set of keys
- enumeration of the complete set of data
Standard binary search trees (1)

Goal: Storage, retrieval of data (more general: dictionary problem)

Two alternative ways of storage:

- **search trees:** keys are stored in internal nodes leaf nodes are empty (usually = null), they represent intervals between the keys
- **leaf search trees:** keys are stored in the leaves internal nodes contain information in order to direct the search for a key

Search tree condition:

For each internal node k: all keys in the left subtree t_i of k are less (<) than the key in k and all keys in the right subtree t_r of k are greater (>) than the key in k
Standard binary search trees (2)

How can the search for key \(s \) be implemented? (leaf \(\equiv \) null)

```java
k = root;
while (k != null) {
    if (s == k.key) return true;
    if (s < k.key) k = k.left;
    else k = k.right
}
return false;
```
Example (without stop mode)

Search for key s ends in the internal node k with $k.key == s$ or in the leaf whose interval contains s
Standard binary search trees (3)

Leaf search tree:
- keys are stored in leaf nodes
- clues (routers) are stored in internal nodes, such that $s_l \leq s_k \leq s_r$ (s_l: key in left subtree, s_k: router in k, s_r: key in right subtree)
 “=“ should not occur twice in the above inequality
- choice of s: either maximum key in t_l (usual) or minimum key in t_r.
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
Example: leaf search tree

Leaf nodes store keys, internal nodes contain routers.
How is the search for key s implemented in a leaf search tree? (leaf = node with 2 null pointers)

```java
k = root;
if (k == null) return false;
while (k.left != null) {
    if (s <= k.key) k = k.left;
    else k = k.right;
} // now in the leaf
return s==k.key;
```

In the following we always talk about search trees (not leaf search trees).
Standard binary search trees (5)

class SearchNode {
 int content;
 SearchNode left;
 SearchNode right;
 SearchNode (int c) { // Constructor for a node
 content = c; // without successor
 left = right = null;
 }
}

class SearchTree {
 SearchNode root;
 SearchTree () { // Constructor for empty tree
 root = null;
 }
 // ...
}
/* Search for c in the tree */

boolean search (int c) {
 return search (root, c);
}

boolean search (SearchNode n, int c){
 while (n != null) {
 if (c == n.content) return true;
 if (c < n.content) n = n.left;
 else n = n.right;
 }
 return false;
}
Standard binary search trees (7)

Alternative tree structure:

- instead of leaf \(\approx \text{null} \), set leaf \(\approx \) pointer to a special “stop node” \(b \)
- for searching, store the search key \(s \) in \(b \) to save comparisons in internal nodes.

Use of a stop node for searching!
Example (with stop mode)
Insertion of a node with key s in search tree t.

Search for s:

1. search for s ends in a node with s: don‘t insert (otherwise, there would be duplicated keys)

2. search ends in leaf b: make b an internal node with s as its key and two new leaves.

\implies tree remains a search tree!
Standard binary search trees (8)

- Tree structure depends on the order of insertions into the initially empty tree
- Height can increase linearly, but it can also be in $O(\log n)$, more precisely $[\log_2 (n+1)]$.
Standard binary search trees (9)

int height() {
 return height(root);
}

int height(SearchNode n) {
 if (n == null) return 0;
 else return 1 + Math.max(height(n.left), height(n.right));
}

/* Insert c into tree; return true if successful and false if c was in tree already */
boolean insert (int c) {
 if (root == null) {
 root = new SearchNode (c);
 return true;
 } else return insert (root, c);
}
Standard binary search trees (10)

```java
boolean insert (SearchNode n, int c){
    while (true){
        if (c == n.content) return false;
        if (c < n.content){
            if (n.left == null) {
                n.left = new SearchNode (c);
                return true;
            } else n = n.left;
        } else { // c > n.content
            if (n.right == null) {
                n.right = new SearchNode (c);
                return true;
            } else n = n.right;
        }
    }
}
```
Special cases

- The structure of the resulting tree depends on the order, in which the keys are inserted. The minimal height is \(\lceil \log_2 (n+1) \rceil \) and the maximal height is \(n \).
- Resulting search trees for the sequences 15, 39, 3, 27, 1, 14 and 1, 3, 14, 15, 27, 39:
A standard tree is created by iterative insertions in an initially empty tree.

- Which trees are more frequent/typical: the balanced or the degenerate ones?
- How costly is an insertion?
Deletion of a node with key s from a tree (while retaining the search tree property)

Search for s:
if search fails: done.
otherwise search ends in node k with $k.key == s$ and k has no child, one child or two children:

a) no child: done (set the parent’s pointer to null instead of k)
b) only one child: let k’s parent v point to k’s child instead of k
c) two children: search for the smallest key in k’s right subtree, i.e. go right and then to the left as far as possible until you reach p (the symmetrical successor of k); copy $p.key$ to k, delete p (which has at most one child, so follow step (a) or (b))
Symmetrical successor

Definition: A node q is called the *symmetrical successor* of a node p if q contains the smallest key greater than or equal to the key of p.

Observations:
- the symmetrical successor q of p is leftmost node in the right subtree of p.
- the symmetrical successor has at most one child, which is the right child.
Finding the symmetrical successor

Observation: If \(p \) has a right child, the symmetrical successor always exists.

- First go to the right child of \(p \).
- From there, always proceed to the left child until you find a node without a left child.
Idea of the *delete* operation

- Delete *p* by replacing its content with the content of its symmetrical successor *q*. Then delete *q*.
- Deletion of *q* is easy because *q* has at most one child.
Example

k has **no internal child, one internal child or two internal children**:

- **a)**
 - k has a right child s, but no left child.
 - v is the root.

- **b)**
 - k has a right child s and a left child t_l.
 - v is the root.

- **c)**
 - k has a right child s, a left child t_l, and a right child t_r.
 - v is the root.

- **d)**
 - k has a right child s, a left child t_l, and a right child t_r.
 - v is the root.
boolean delete(int c) {
 return delete(null, root, c);
}

// delete c from the tree rooted in n, whose parent is vn
boolean delete(SearchNode vn, SearchNode n, int c) {
 if (n == null) return false;
 if (c < n.content) return delete(n, n.left, c);
 if (c > n.content) return delete(n, n.right, c);
 // now we have: c == n.content
 if (n.left == null) {
 point (vn, n, n.right);
 return true;
 }
 if (n.right == null) {
 point (vn, n, n.left);
 return true;
 }
 // ...
}
// now n.left != null and n.right != null
SearchNode q = pSymSucc(n);
if (n == q) { // right child of q is SymSucc(n)
 n.content = q.right.content;
 q.right = q.right.right;
 return true;
} else { // left child of q is SymSucc(n)
 n.content = q.left.content;
 q.left = q.left.right;
 return true;
}
// boolean delete(SearchNode vn, SearchNode n, int c)

// returns the parent of the symmetrical successor
SearchNode pSymSucc(SearchNode n) {
 if (n.right.left != null) {
 n = n.right;
 while (n.left.left != null) n = n.left;
 }
 return n;
}
Standard binary search trees (14)

// let vn point to m instead of n;
// if vn == null, set root pointer to m
void point(SearchNode vn, SearchNode n, SearchNode m) {
 if (vn == null) root = m;
 else if (vn.left == n) vn.left = m;
 else vn.right = m;
}