9 Dynamic tables
Dynamic tables

Problem:
 Maintenance of a table under the operations insert and delete such that
 - the table size can be adjusted to the number of elements
 - a fixed portion of the table is always filled with elements
 - the costs for n insert or delete operations are in $O(n)$.

Organisation of the table: hash table, heap, stack, etc.

Load factor α_T : fraction of table spaces of T which are occupied.

Cost model:
 Insertion or deletion of an element causes cost 1, if the table is not filled yet.
 If the table size is changed, all elements must be copied.
Initialisation

```java
class dynamicTable {
    private int[] table;
    private int size;
    private int num;
    dynamicTable() {
        table = new int[1]; // initialize empty table
        size = 1;
        num = 0;
    }
}
```
Expansion strategy: insert

Double the table size whenever an element is inserted in the fully occupied table!

```java
public void insert (int x) {
    if (num == size) {
        int[] newTable = new int[2*size];
        for (int i=0; i < size; i++)
            insert table[i] in newTable;
        table = newTable;
        size = 2*size;
    }
    insert x in table;
    num = num + 1;
}
```
Insert operation in an initially empty table

\[t_i = \text{cost of the } i\text{-th insert operation} \]

Worst case:

\[t_i = 1, \text{ if the table was not full before operation } i \]
\[t_i = (i - 1) + 1, \text{ if the table was full before operation } i \]

Hence, \(n \) insert operations require costs of at most

\[O(n^2) \]

Amortized worst case:

Aggregate analysis, accounting method, potential method
Potential method

T table with

- $k = T.num$ elements and
- $s = T.size$ spaces

Potential function

$$\phi(T) = 2k - s$$
Properties of the potential function

Properties

- \(\phi_0 = \phi(T_0) = \phi (\text{empty table}) = -1 \)

- For all \(i \geq 1 : \phi_i = \phi (T_i) \geq 0 \)

 Since \(\phi_n - \phi_0 \geq 0 \), \(\sum a_i \) is an upper bound for \(\sum t_i \)

- Directly before an expansion, \(k = s \),
 hence \(\phi(T) = k = s. \)

- Directly after an expansion, \(k = s/2 \),
 hence \(\phi(T) = 2k - s = 0. \)
Amortized cost of insert (1)

\[k_i = \text{# elements in } T \text{ after the } i\text{-th operation} \]
\[s_i = \text{table size of } T \text{ after the } i\text{-th operation} \]

Case 1: [i-th operation does not trigger an expansion]
Amortized cost of insert (2)

Case 2: [i-th operation triggers an expansion]
Insertion and deletion of elements

Now: contract table, if the load is too small!

Goals:
(1) Load factor is always bounded below by a constant
(2) Amortized cost of a single insert or delete operation is constant.

First attempt:
• Expansion: same as before
• Contraction: halve the table size as soon as table is less than $\frac{1}{2}$ occupied
 (after the deletion)!
"Bad" sequence of insert and delete operations

\[\frac{n}{2} \text{ times insert} \]
\(\text{(table fully occupied)} \)

Cost

\[\frac{n}{2} \]

\[I: \text{expansion} \]

\[\frac{n}{2} + 1 \]

\[D, D: \text{contraction} \]

\[\frac{n}{2} + 1 \]

\[I, I: \text{expansion} \]

\[\frac{n}{2} + 1 \]

\[D, D: \text{contraction} \]

\[\frac{n}{2} \]

Total cost of the sequence

\[In/2, I, D, D, I, I, D, D, \ldots \text{ of length } n: \]
Second attempt

Expansion: (as before) double the table size, if an element is inserted in the full table.

Contraction: As soon as the load factor is below $\frac{1}{4}$, halve the table size.

Hence:

At least $\frac{1}{4}$ of the table is always occupied, i.e.

$$\frac{1}{4} \leq \alpha(T) \leq 1$$

Cost of a sequence of insert and delete operations?
Analysis: insert and delete

\[k = T.num, \quad s = T.size, \quad \alpha = k/s \]

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
\]
Analysis: insert and delete

Directly after an expansion or contraction of the table:

\[\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
 s/2 - k, & \text{if } \alpha < 1/2
\end{cases} \]

\[s = 2k, \text{ hence } \phi(T) = 0 \]
Insert

i-th operation: \(k_i = k_{i-1} + 1 \)

Case 1: \(\alpha_{i-1} \geq \frac{1}{2} \)

Case 2: \(\alpha_{i-1} < \frac{1}{2} \)

Case 2.1: \(\alpha_i < \frac{1}{2} \)

Case 2.2: \(\alpha_i \geq \frac{1}{2} \)
Case 2.1: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i < \frac{1}{2}$ (no expansion)

Potential function ϕ

$$
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
$$
Case 2.2: \(\alpha_{i-1} < \frac{1}{2}, \alpha_i \geq \frac{1}{2} \) (no expansion)

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq \frac{1}{2} \\
\frac{s}{2} - k, & \text{if } \alpha < \frac{1}{2}
\end{cases}
\]
delete

\[k_i = k_{i-1} - 1 \]

Case 1: \(\alpha_{i-1} < \frac{1}{2} \)

Case 1.1: deletion causes no contraction

\[s_i = s_{j-1} \]

Potential function \(\phi \)

\[
\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}
\]
$k_i = k_{i-1} - 1$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.2: $\alpha_{i-1} < \frac{1}{2}$ deletion causes a contraction

$2s_i = s_{i-1}$

$k_{i-1} = s_{i-1}/4$

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}$$
Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.1: $\alpha_{i-1} \geq \frac{1}{2}$

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}$$
Case 2: $\alpha_{i-1} \geq \frac{1}{2}$ no contraction

$$s_i = s_{i-1} \quad k_i = k_{i-1} - 1$$

Case 2.2: $\alpha_i < \frac{1}{2}$

Potential function ϕ

$$\phi(T) = \begin{cases}
2k - s, & \text{if } \alpha \geq 1/2 \\
\frac{s}{2} - k, & \text{if } \alpha < 1/2
\end{cases}$$