10 Randomized algorithms
Randomized algorithms

- Classes of randomized algorithms
- Randomized Quicksort
- Randomized primality test
- Cryptography
1. Classes of randomized algorithms

- **Las Vegas** algorithms
 always correct; expected running time ("probably fast")

 Example: randomized Quicksort

- **Monte Carlo** algorithms (mostly correct):
 probably correct; guaranteed running time

 Example: randomized primality test
2. Quicksort

Unsorted range $A[l, r]$ in array A

Quicksort Quicksort
Quickso\textit{r}t

\textbf{Algorithm:} Quick\textit{sort}

\textbf{Input:} unsorted range \([l, r]\) in array \(A\)

\textbf{Output:} sorted range \([l, r]\) in array \(A\)

1. \textbf{if} \(r > l\)
2. \textbf{then} choose pivot element \(p = A[r]\)
3. \hspace{1em} \(m = divide(A, l, r)\)
 /* Divide \(A\) according to \(p\):
 \[A[l], \ldots, A[m - 1] \leq p \leq A[m + 1], \ldots, A[r]\]
 */
4. \hspace{1em} Quickso\textit{r}t\hspace{-1em}
 \(A, l, m - 1\)
 \hspace{1em} Quickso\textit{r}t\hspace{-1em}
 \(A, m + 1, r\)
The divide step
The *divide* step
The *divide* step
The *divide* step

\[\text{divide}(A, l, r):\]

- returns the index of the pivot element in \(A \)
- can be done in time \(O(r - l) \)
Worst case input

n elements:

Running time: \((n-1) + (n-2) + \ldots + 2 + 1 = n \cdot (n-1)/2\)
3. Randomized Quicksort

Algorithm: Quicksort

Input: unsorted range \([l, r]\) in array \(A\)

Output: sorted range \([l, r]\) in array \(A\)

1. if \(r > l\)
2. then randomly choose a pivot element \(p = A[i]\) in range \([l, r]\)
3. swap \(A[i]\) and \(A[r]\)
4. \(m = \text{divide}(A, l, r)\)
 /* Divide \(A\) according to \(p\):
 \[
 A[l], ..., A[m - 1] \leq p \leq A[m + 1], ..., A[r]
 */
5. Quicksort\((A, l, m - 1)\)
6. Quicksort\((A, m + 1, r)\)
Analysis

n elements; let S_i be the i-th smallest element

- S_1 is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes 0 and $n-1$
 -
 -
 -

- S_k is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes $k-1$ and $n-k$
 -
 -
 -

- S_n is chosen as pivot with probability $1/n$:
 - Sub-problems of sizes $n-1$ and 0
Analysis

Expected running time:

\[E(T(n)) = \frac{1}{n} \sum_{k=0}^{n-1} (E(T(k)) + E(T(n-k-1))) + \Theta(n) \]

\[= \frac{2}{n} \sum_{k=0}^{n-1} E(T(k)) + \Theta(n) \]

\[\leq \frac{2}{n} \sum_{k=2}^{n-1} E(T(k)) + \Theta(n) \quad \text{absorb } k=0,k=1 \text{ in } \Theta(n) \]
Analysis

\[E(T(n)) = \frac{2}{n} \sum_{k=2}^{n-1} E(T(k)) + \Theta(n) \]

Prove: \(E[T(n)] \leq cn \log n \) for \(n \geq 2 \) and some \(c > 0 \)

Base case:
choose \(c \) large enough s.t. \(E[T(n)] \leq cn \log n \) for \(n = 2 \)

Inductive step:
substitute inductive hypothesis

\[E(T(n)) \leq \frac{2}{n} \sum_{k=2}^{n-1} ck \log k + \Theta(n) \]
Analysis

\[E(T(n)) \leq \frac{2c}{n} \sum_{k=2}^{n-1} k \lg k + \Theta(n) \]

\[\sum_{k=2}^{n-1} k \lg k \leq \frac{n^2}{2} \lg n - \frac{n^2}{8} \]

(Proof as exercise!)

\[E(T(n)) \leq \frac{2c}{n} \left(\frac{n^2}{2} \lg n - \frac{n^2}{8} \right) + \Theta(n) \]

\[\leq cn \lg n - \left(\frac{cn}{4} - \Theta(n) \right) \]
Analysis

\[E(T(n)) \leq c n \log n - \left(\frac{cn}{4} - \Theta(n) \right) \]
Analysis

\[E(T(n)) \leq cn \log n - \left(\frac{cn}{4} - \Theta(n) \right) \]

desired

Should be \(\geq 0 \)
Analysis

\[E(T(n)) \leq cn \lg n - \left(\frac{cn}{4} - \Theta(n) \right) \]

desired \hspace{1cm} \text{Should be } \geq 0

\[E(T(n)) \leq cn \lg n \text{ where we choose } c \text{ large enough} \]
\[\text{s.t. } cn/4 \text{ dominate } \Theta(n) \]
4. Primality test

Definition:
An integer $p \geq 2$ is **prime** iff $(a \mid p \Rightarrow a = 1 \text{ or } a = p)$.

Algorithm: deterministic primality test (naive)

Input: integer $n \geq 2$

Output: answer to the question: Is n prime?

- if $n = 2$ then return **true**
- if n even then return **false**
- for $i = 1$ to $\sqrt{n}/2$ do
 - if $2i + 1$ divides n
 - then return **false**
- return **true**

Complexity: $\Theta(\sqrt{n})$
Primality test

Goal:
Randomized method
- Polynomial time complexity (in the length of the input)
- If answer is “not prime”, then n is not prime
- If answer is “prime”, then the probability that n is not prime is at most $p>0$

k iterations: probability that n is not prime is at most p^k
Observation:
Each odd prime number p divides $2^{p-1} - 1$.

Examples: $p = 17$, $2^{16} - 1 = 65535 = 17 \times 3855$
$p = 23$, $2^{22} - 1 = 4194303 = 23 \times 182361$

Simple primality test:
1. Calculate $z = 2^{n-1} \mod n$
2. if $z = 1$
3. then n is possibly prime
4. else n is definitely not prime

Advantage: This only takes polynomial time
Simple primality test

Definition:

n is called pseudoprime to base 2, if n is not prime and

$$2^{n-1} \mod n = 1.$$

Example:

$n = 11 \times 31 = 341$

$$2^{340} \mod 341 = 1$$
Randomized primality test

Theorem: (Fermat‘s little theorem)
If \(p \) prime and \(0 < a < p \), then
\[
a^{p-1} \mod p = 1.
\]

Definition:
\(n \) is pseudoprime to base \(a \), if \(n \) not prime and
\[
a^{n-1} \mod n = 1.
\]

Example: \(n = 341, \quad a = 3 \)
\[
3^{340} \mod 341 = 56 \neq 1
\]
Randomized primality test

Algorithm: Randomized primality test 1

1. Randomly choose \(a \in [2, n-1] \)
2. Calculate \(a^{n-1} \mod n \)
3. if \(a^{n-1} \mod n = 1 \)
4. then \(n \) is possibly prime
5. else \(n \) is definitely not prime
Carmichael numbers

Problem: Carmichael numbers

Definition: An integer n is called **Carmichael number** if

$$a^{n-1} \mod n = 1$$

for all a with $\text{GCD}(a, n) = 1$.

(GCD = greatest common divisor)

Example:
Smallest Carmichael number: $561 = 3 \times 11 \times 17$
Randomized primality test 2

Theorem:
If \(p \) prime and \(0 < a < p \), then the only solutions to the equation
\[a^2 \mod p = 1 \]
are \(a = 1 \) and \(a = p - 1 \).

Definition:
\(a \) is called *non-trivial square root* of 1 mod \(n \), if
\[a^2 \mod n = 1 \text{ and } a \neq 1, n - 1. \]

Example: \(n = 35 \)
\[6^2 \mod 35 = 1 \]
Fast exponentiation

Idea:
During the computation of a^{n-1} (0 < a < n randomly chosen), test whether there is a non-trivial square root $1 \mod n$.

Method for the computation of a^n:

Case 1: [n is even]

\[a^n = a^{n/2} \times a^{n/2} \]

Case 2: [n is odd]

\[a^n = a^{(n-1)/2} \times a^{(n-1)/2} \times a \]
Fast exponentiation

Example:

\[a^{62} = (a^{31})^2 \]
\[a^{31} = (a^{15})^2 \cdot a \]
\[a^{15} = (a^{7})^2 \cdot a \]
\[a^{7} = (a^{3})^2 \cdot a \]
\[a^{3} = (a)^2 \cdot a \]

Complexity: \(O(\log^2 a^n \log n) \)
boolean isProbablyPrime;

power(int a, int p, int n) {
 /* computes $a^p \mod n$ and checks during the computation whether there is an x with $x^2 \mod n = 1$ and $x \neq 1, n-1$ */

 if (p == 0) return 1;
 x = power(a, p/2, n)
 result = (x * x) % n;
Fast exponentiation

/* check whether \(x^2 \mod n = 1 \) and \(x \neq 1, n-1 \) */

if (result == 1 && x != 1 && x != n - 1)
 isProbablyPrime = false;

if (p % 2 == 1)
 result = (a * result) % n;

return result;

Complexity: \(O(\log^2 n \log p) \)
Randomized primality test 2

```c
primalityTest(int n) {
    /* carries out the randomized primality test for
       a randomly selected a */

    a = random(2, n-1);

    isProbablyPrime = true;

    result = power(a, n-1, n);

    if (result != 1 || !isProbablyPrime)
        return false;
    else
        return true;
}
```
Randomized primality test 2

Theorem:

If \(n \) is not prime, there are at most \(\frac{n-1}{4} \) integers \(0 < a < n \), for which the algorithm \texttt{primalityTest} fails.
Application: cryptosystems

Traditional encryption of messages with secret keys

Disadvantages:
1. The key k has to be exchanged between A and B before the transmission of the message.
2. For messages between n parties $n(n-1)/2$ keys are required.

Advantage:
Encryption and decryption can be computed very efficiently.
Desired properties of cryptographic systems

- confidential transmission
- integrity of data
- authenticity of the sender
- reliable transmission
Public-key cryptosystems

Diffie and Hellman (1976)

Idea: Each participant A has two keys:

1. a **public** key P_A accessible to every other participant
2. a **private** (or: **secret**) key S_A only known to A.
Public-key cryptosystems

\[D = \text{set of all legal messages,} \]
\[\text{e.g. the set of all bit strings of finite length} \]

\[P_A, S_A : D \rightarrow D \]

Three conditions:

1. \(P_A \) and \(S_A \) can be computed efficiently

2. \(S_A(P_A(M)) = M \) and \(P_A(S_A(M)) = M \)
 \((P_A \) is the inverse function of \(S_A \) and vice-versa)\)

3. \(S_A \) cannot be computed from \(P_A \) (without unreasonable effort)
Encryption in a public-key cryptosystem

A sends a message M to B.

Dear Bob,
I just checked the new ...

#*k- + ;}?,, @-) #$<9
{07:--&$3 (-#!]?8 ...

Dear Bob,
I just checked the new ...

22.05.2012 Theory 1 - Randomized algorithms
Encryption in a public-key cryptosystem

1. **A** accesses **B**’s public key P_B (from a public directory or directly from **B**).

2. **A** computes the encrypted message $C = P_B(M)$ and sends C to **B**.

3. After **B** has received message C, **B** decrypts the message with his own private key S_B: $M = S_B(C)$
Generating a digital signature

\(A\) sends a digitally signed message \(M'\) to \(B\):

1. \(A\) computes the digital signature \(\sigma\) for \(M'\) with her own private key:
 \[
 \sigma = S_A(M')
 \]

2. \(A\) sends the pair \((M',\sigma)\) to \(B\).

3. After receiving \((M',\sigma)\), \(B\) verifies the digital signature:
 \[
 P_A(\sigma) = M'
 \]

\(\sigma\) can be verified by anybody via the public \(P_A\).
RSA cryptosystems

R. Rivest, A. Shamir, L. Adleman

Generating the public and private keys:

1. Randomly select two primes p and q of similar size, each with $l+1$ bits ($l \geq 500$).

2. Let $n = p \cdot q$

3. Let e be an integer that does not divide $(p - 1) \cdot (q - 1)$.

4. Calculate $d = e^{-1} \mod (p - 1)(q - 1)$

 i.e.:

 $d \cdot e \equiv 1 \mod (p - 1)(q - 1)$
RSA cryptosystems

5. Publish $P = (e, n)$ as public key

6. Keep $S = (d, p, q)$ as private key

Divide message (described in a binary string) in blocks of size 2^l.
Interpret each block M as a binary number: $0 \leq M < 2^{2^l}$

$$P(M) = M^e \mod n \quad S(C) = C^d \mod n$$