Foundations of Programming Languages and Software Engineering

Universität Freiburg

June 13, 2012
Overview

- Basics
 - Relations
 - Induction

- Terms and All That
 - Syntax
 - Semantics
Binary Relations

Definition

- A binary relation on sets M_1 and M_2 is a set $R \subseteq M_1 \times M_2$ of pairs of elements from M_1 and M_2, respectively. If $M_1 = M_2 = M$, we simply call R a binary relation on M.

- We say that $m_1 \in M_1$ and $m_2 \in M_2$ are related by R iff $(m_1, m_2) \in R$.

- We often write $m_1 \mathrel{R} m_2$ instead of $(m_1, m_2) \in R$.

Properties of Binary Relations (1)

Definition

Let R be a binary relation on M.

- R is **reflexive** iff $m \, R \, m$ for all $m \in M$.
- R is **symmetric** iff $m \, R \, m'$ implies $m' \, R \, m$.
- R is **transitive** iff $m_1 \, R \, m_2$ and $m_2 \, R \, m_3$ imply $m_1 \, R \, m_3$.
- R is an **equivalence relation** iff it is reflexive, symmetric, and transitive.
Properties of Binary Relations (2)

Definition

Let R be a binary relation on M.

- The **reflexive closure** of R is the smallest reflexive relation R' such that $R \subseteq R'$.

- The **transitive closure** of R is the smallest transitive relation R' such that $R \subseteq R'$. It is often written R^+.

- The **reflexive and transitive closure** of R is the smallest reflexive and transitive relation R' such that $R \subseteq R'$. It is often written R^*.

Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers

If $P(0)$

and, for all $i \in \mathbb{N}$, $P(i)$ implies $P(i + 1)$,

then $P(n)$ holds for all $n \in \mathbb{N}$.

The assumption "$P(i)$" in the induction step is called the induction hypothesis (IH for short).
Suppose P is some property on natural numbers.

Principle of ordinary induction on natural numbers

If $P(0)$

and, for all $i \in \mathbb{N}$, $P(i)$ implies $P(i + 1)$,

then $P(n)$ holds for all $n \in \mathbb{N}$.

The assumption “$P(i)$” in the induction step is called the induction hypothesis (IH for short).

Principle of complete induction on natural numbers

If, for each $n \in \mathbb{N}$,

given $P(i)$ for all $i < n$

we can show $P(n)$,

then $P(n)$ holds for all $n \in \mathbb{N}$.
Lemma
For all $n \in \mathbb{N}$, $\sum_{i=1}^{n}(2i - 1) = n^2$.

Proof. The proof is by ordinary induction on n.

- If $n = 0$, then both sides of the equation are 0.
- Suppose the lemma holds for some $k \in \mathbb{N}$. We then have:

 $$\sum_{i=1}^{k+1}(2i - 1) = \sum_{i=1}^{k}(2i - 1) + (2(k + 1) - 1)$$

 $$(\text{IH})$$

 $$\equiv k^2 + 2k + 1$$

 $$= (k + 1)^2$$
Definition

A signature Σ is a set of function symbols, where each $f \in \Sigma$ is associated with a natural number n called the arity of f.

$\Sigma^{(n)}$ denotes the set of all n-ary elements of Σ.

The elements of $\Sigma^{(0)}$ are also called constant symbols.
Example

Signature Σ_{prop} for propositional logic

$$\Sigma_{prop} = \{ T^{(0)}, F^{(0)}, \neg^{(1)}, \land^{(2)}, \lor^{(2)} \}$$

$$\Sigma_{prop}^{(0)} = \{ T, F \}$$

$$\Sigma_{prop}^{(1)} = \{ \neg \}$$

$$\Sigma_{prop}^{(2)} = \{ \land, \lor \}$$
Terms

Definition

Let Σ be a signature and X a set of variables such that $\Sigma \cap X = \emptyset$. The set $T(\Sigma, X)$ of all Σ-terms over X is inductively defined as

- $X \subseteq T(\Sigma, X)$,
- for all $n \in \mathbb{N}$, all $f \in \Sigma^{(n)}$, and all $t_1, \ldots, t_n \in T(\Sigma, X)$, we have $f(t_1, \ldots, t_n) \in T(\Sigma, X)$

Note:

- For a constant symbol $f \in \Sigma^{(0)}$, we often write the term $f(\text)\text$ as f.
- From now on, we leave the variable set $X = \{x, x_1, x_2, \ldots, y, y_1, y_2, \ldots, z, z_1, z_2 \ldots\}$ implicit.
Example

Suppose $\Sigma = \Sigma_{prop}$. Then

$$\lor(\neg(x_{42}), \land(T, x_3)) \in T(\Sigma, X)$$
Suppose $\Sigma = \Sigma_{prop}$. Then

$$\lor(\neg(x_{42}), \land(T, x_{3})) \in T(\Sigma, X)$$

Alternative notation

Infix notation (with implicit operator precedence order):

$$\neg x_{42} \lor T \land x_{3}$$
In our current view, equality of terms means syntactic equality.

Therefore, if \(t, s \in T(\Sigma, X) \) and \(t = f(t_1, \ldots, t_n) \) and \(s = g(s_1, \ldots, s_m) \), and \(t = s \), then \(f = g \), \(n = m \), and \(t_i = s_i \) for all \(i \in \{1, \ldots, n\} \).
In our current view, equality of terms means syntactic equality.

Therefore, if \(t, s \in T(\Sigma, X) \) and \(t = f(t_1, \ldots, t_n) \) and \(s = g(s_1, \ldots, s_m) \), and \(t = s \), then \(f = g \), \(n = m \), and \(t_i = s_i \) for all \(i \in \{1, \ldots, n\} \).

Later, we consider a kind of semantic equality: \(+ (1, 3) \) might be equal to \(+ (2, 2) \).
Definition
Suppose $t \in T(\Sigma, X)$.

- The set of positions of term t is a set $\text{Pos}(t)$ of strings over the alphabet of natural numbers. It is inductively defined as follows:
 - If $t = x \in X$, then $\text{Pos}(t) := \{\epsilon\}$
 - If $t = f(t_1, ..., t_n)$, then
 \[
 \text{Pos}(t) := \{\epsilon\} \cup \bigcup_{i=1}^{n}\{ip \mid p \in \text{Pos}(t_i)\}
 \]
- The position ϵ is called the root position of t, the function or variable at this position is called the root symbol of t.
- The size $|t|$ of t is the cardinality of $\text{Pos}(t)$.

Positions and Size of Terms
Definition (Subterm)

For \(p \in Pos(t) \), the **subterm** of \(t \) at position \(p \), denoted by \(t|_p \), is defined by induction on the length of \(p \):

\[
\begin{align*}
 t|_\epsilon & := t \\
 f(t_1, \ldots, t_n)|_{ip} & := t_i|_p
\end{align*}
\]

\((ip \in Pos(t) \) implies that \(t = f(t_1, \ldots, t_n) \) with \(0 \leq i \leq n \).)
Subterms and Replacing

Definition (Subterm)

For \(p \in Pos(t) \), the **subterm** of \(t \) at position \(p \), denoted by \(t|_p \), is defined by induction on the length of \(p \):

\[
\begin{align*}
 t|_\epsilon & := t \\
 f(t_1, \ldots, t_n)|_{ip} & := t_i|_p
\end{align*}
\]

(\(ip \in Pos(t) \) implies that \(t = f(t_1, \ldots, t_n) \) with \(0 \leq i \leq n \).)

Definition (Replacing)

For \(p \in Pos(t) \), we denote by \(t[s]_p \) the term that is obtained from \(t \) by replacing the subterm at position \(p \) by \(s \), i.e.

\[
\begin{align*}
 t[s]_\epsilon & := s \\
 f(t_1, \ldots, t_n)[s]_{ip} & := f(t_1, \ldots, t_i[s]_p, \ldots, t_n)
\end{align*}
\]
Examples

Suppose $t = \lor(\neg(x_{42}), \land(T, x_3))$

- $\text{Pos}(t) = \{\epsilon, 1, 11, 2, 21, 22\}$
- $|t| = 6$ (number of nodes in the tree)
- $t|_2 = \land(T, x_3)$
- $t[\neg(F)]|_2 = \lor(\neg(x_{42}), \neg(F))$
An Induction Principle for Terms

To prove that a property P holds for all $t \in T(\Sigma, X)$, we have to show the following properties:

- **Base case**

 $P(x)$ holds for all $x \in X$ and $P(f)$ holds for all $f \in \Sigma^{(0)}$.

- **Induction step**

 Suppose $n > 0$, $f \in \Sigma^{(n)}$, and $t_1, \ldots, t_n \in T(\Sigma, X)$. Then $P(f(t_1, \ldots, t_n))$ holds assuming $P(t_1), \ldots, P(t_n)$.
Example for Term Induction

Lemma
For all terms \(t \), the set \(Pos(t) \) is prefix closed, i.e. if \(wv \in Pos(t) \) then \(w \in Pos(t) \).
Substitutions

Definition

Let Σ be a signature.

- A $T(\Sigma, X)$-substitution is a function $\sigma : X \rightarrow T(\Sigma, X)$ such that $\sigma(x) \neq x$ for only finitely many xs.
- The domain of σ is $\text{Dom}(\sigma) := \{x \in X \mid \sigma(x) \neq x\}$.
- We write $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ for a substitution that maps x_i to t_i and has domain $\text{Dom}(\sigma) = \{x_1, \ldots, x_n\}$.
Substitutions

Definition

Let Σ be a signature.

- A $T(\Sigma, X)$-substitution is a function $\sigma : X \rightarrow T(\Sigma, X)$ such that $\sigma(x) \neq x$ for only finitely many xs.
- The domain of σ is $\text{Dom}(\sigma) := \{x \in X \mid \sigma(x) \neq x\}$.
- We write $\{x_1 \mapsto t_1, \ldots, x_n \mapsto t_n\}$ for a substitution that maps x_i to t_i and has domain $\text{Dom}(\sigma) = \{x_1, \ldots, x_n\}$.
- A $T(\Sigma, X)$-substitution σ is extended to a mapping $\sigma : T(\Sigma, X) \rightarrow T(\Sigma, X)$ on arbitrary terms as follows: $\sigma(f(t_1, \ldots, t_n)) := f(\sigma(t_1), \ldots, \sigma(t_n))$.
Substitutions. Explanation

Note

Applying the extension of a substitution σ to a term simultaneously replaces all occurrences of a variable by their respective σ-image.
Example

A substitution on terms from $T(\Sigma_{\text{prop}}, X)$

\[
\Sigma = \Sigma_{\text{prop}} \\
\sigma = \{x \mapsto \neg z, y \mapsto x \lor \text{F}\} \\
t = x \lor y \land z \\
\sigma(t) = \neg z \lor (x \lor \text{F}) \land z
\]
Composing Substitutions

Definition

The composition $\sigma \tau$ of two substitutions σ and τ is defined as $\sigma \tau(x) := \sigma(\tau(x))$.

Lemma

Composition of substitutions is an associative operation where the identity substitution is the unit.
Definition

Let Σ be a signature. A Σ-algebra $\mathcal{A} = (A, \mathcal{J})$ consists of

- a carrier set A, and
- an interpretation function \mathcal{J} that associates with each function symbol $f \in \Sigma^{(n)}$ a function $\mathcal{J}(f) : A^n \to A$.
The Σ_{prop}-Algebra A_{prop}

$$A_{prop} = (A_{prop}, I_{prop})$$

$$A_{prop} = \{0, 1\}$$

$$I_{prop}(F) = 0$$

$$I_{prop}(T) = 1$$

$$I_{prop}(\neg)(x) = 1 - x$$

$$I_{prop}(\lor)(x, y) = \max(x, y)$$

$$I_{prop}(\land)(x, y) = \min(x, y)$$
Let $\mathcal{A} = (A, \mathcal{J})$ be a Σ-algebra.

- A **variable assignment** is a function $\alpha : X \rightarrow A$ that assigns every variable a value in the carrier set.

- Given a variable assignment α, the **interpretation function** \mathcal{J} is extended to a function on terms, $\mathcal{J}_\alpha : T(\Sigma, X) \rightarrow A$, as follows:

 $\mathcal{J}_\alpha(x) = \alpha(x)$ \hspace{1cm} (x \in X)

 $\mathcal{J}_\alpha(f(t_1, \ldots, t_n)) = \mathcal{J}(f)(\mathcal{J}_\alpha(t_1), \ldots, \mathcal{J}_\alpha(t_n))$

- The restriction of \mathcal{J}_α to variable free-terms, $\mathcal{J}_\alpha : T(\Sigma, \emptyset) \rightarrow A$, is usually denoted by \mathcal{J} since the α does not matter.
Example

Interpretation of $\bigvee (\neg (x_{42}), \land (T, x_3)) \in T(\Sigma_{prop}, X)$

Suppose $\alpha : X \rightarrow A_{prop}$ is a function such that

\[
\alpha(x_{42}) = 0 \\
\alpha(x_3) = 1
\]

Then we have

\[
J_\alpha(\bigvee (\neg (x_{42}), \land (T, x_3))) = J(\bigvee)(J_\alpha(\neg (x_{42})), J_\alpha(\land (T, x_3))) \\
= \max(J(\neg)(J_\alpha(x_{42})), J(\land)(J_\alpha(T), J_\alpha(x_3)))) \\
= \max(1 - \alpha(x_{42}), \min(J(T), \alpha(x_3)))) \\
= \max(1 - 0, \min(1, 1)) = 1
\]