Foundations of Programming Languages

and Software Engineering

Universitat Freiburg

June 2012

@ The Word Problem

Foundations of Programming Languages and Software Engineering 1/21

Central Problems of Equational Reasoning

Definition (Validity)
s~ tisvalidin £ iff s ¢ t.

Definition (Satisfiability)
S ~ t is satisfiable in & if there exists a substitution o such
that os ~¢ ot.

Foundations of Programming Languages and Software Engineering 2/21

The Word Problem

Definition

Suppose L is a signature and X a set of variables disjoint
from .
@ The (ground) word problem for £ is the problem of
deciding s = t for arbitrary s, t € T(X, 0).

Foundations of Programming Languages and Software Engineering 3/21

Solving the Word Problem

A Sample Problem

Given Xy = {zero(o), pred("), succ(1)} and

Emt = {pred(succ(x)) =~ x, succ(pred(x)) ~ x}
we would like to decide whether

succ(zero) ~¢,, succ(succ(pred(zero)))

A solution
@ Use identities as reduction rules:
pred(succ(x)) —¢,, X, succ(pred(x)) —¢,, X
@ Apply reduction rules to both terms:
o succ(succ(pred(zero))) —¢,, succ(zero)

@ Check whether the resulting terms are identical.

| A\

A\

Problem: Applying the reduction rules might not terminate.

Foundations of Programming Languages and Software Engineering 4/21

An Undecidable Word Problem

Combinatory Logic
Yo = {SO, [0 KO ()

& ={((S-x)-y)-z=(x-2)-(y-2),
(K-x)-y=x,1-x=x}
Look at the following reduction sequence:

(S-N-H-((S-1-1)
=g (1-((S-1)-N)-(1-((S-1)-1)
= (S-1)-1)-(1-((S-1)- 1))
=& (S-1)-1)-((S-1)-1)
In general: All computable functions can be encoded as

ground terms over ¥ ¢ = the word problem for & is
undecidable.

Foundations of Programming Languages and Software Engineering 5/21

Undecidability

The computation of any Turing machine can be simulated by
an appropriate signature ¥ and set of identities £ = the
word problem in general is undecidable.

Foundations of Programming Languages and Software Engineering 6/21

The Reduction Relation Generated by

> -ldentities

Let £ be a set of >-identities.
The reduction relation —¢C T(X, X) x T(X, X) is defined as

S —¢ Liff
there exists (/,r) € £, p € Pos(s), and a substitution o with
Slp = o(l) and t = s[o(r)],.

Foundations of Programming Languages and Software Engineering 7/21

Example

Computing with Groups

Yo= {e(o), ,‘(1)7 f(2)}

Ec = {f(x,f(y, 2)) = f(f(x,y), 2),
f(e, x) =~ x,
f(i(x), x) ~ e}

f(i(e), f(e,e)) oy ={x—i(e),y ez e}, 1%id
—eg f(f(i(e), €),) os = {x > e},37 id
s fle,e) o3 = {x — e},2"id
e, €

Foundations of Programming Languages and Software Engineering 8/21

Composing Relations

Given two relations R C Ax Band S C B x C, their
composition is defined by

SoR:={(x,z) € Ax C | there exists some y € B with
(x,y) € Rand (y, z) € S}

| A

Example

Suppose R = {FR — OG,0G — KA, KA — MA}.
Then Ro R = {FR — KA,OG — MA}.

Foundations of Programming Languages and Software Engineering 9/21

Notations for Reduction Relations

Suppose — is a binary relation on M.

0 . .
= ={(x,x) | x € M} identity
i+1 i . - .
2hi=sod (i + 1)-fold composition, i > 0
F o= U 5 transitive closure
i>0
0 . .
LH=Hud reflexive transitive closure
= 0 .
— = U= reflexive closure
—={(y,x) | x—=y} inverse
— =<+ U— symmetric closure
&= ()* transitive symmetric closure
* * . g .
— = () reflexive transitive symmetric closure

Foundations of Programming Languages and Software Engineering 10/21

Terminology for Reduction Relations (1)

Suppose — is a binary relation on M and x,y € M.
@ x is reducible iff thereisa z € M with x — z.
@ x is in normal form iff it is not reducible.
@ yis a normal form of x iff x = y and y is in normal form.
@ if x has a unique normal form, it is denoted by x .

@ x and y are joinable iff there is a z € M such that
x = z < y. We then write x | y.

Foundations of Programming Languages and Software Engineering 11/21

Terminology for Reduction Relations (2)

A reduction — is called
X >y
@ Church-Rosser iff x <> y implies x | y, v
x_* Gyl
o confluent iff y; < x =5 y, implies y; | yp, &+
@ semi-confluent iff y; < x = y, implies y; | ys,
@ terminating iff there is no infinite chain
Xo —> X4 = Xo —
@ Normalizing iff every element has a normal form.
@ Convergent iff it is both confluent and terminating.

Foundations of Programming Languages and Software Engineering 12/21

Church-Rosser and Confluence are Equivalent

@ It is easy to see that any Church-Rosser relation is
confluent.

@ If — is confluent and x <> y, then we can visualize the
proof of x | y as follows:

X N e y
\\ * */,/ * */,/ * * e
\\4 »// \\4 »// \\4 »/,

Foundations of Programming Languages and Software Engineering 13/21

Church-Rosser and Confluence are Equivalent

The following conditions are equivalent:
@ — has the Church-Rosser property.
@ — is confluent.
© — is semi-confluent.

Proof. We show that the implications 1 = 2 = 3 =- 1 hold

1 = 2 If — has the Church-Rosser property and y; < x = y»,
then y; <> y». Hence, by the Church-Rosser property,

Y1 4 Vo, i.e. — is confluent.
2 = 3 Obviously any confluent relation is semi-confluent.

Foundations of Programming Languages and Software Engineering 14 /21

Proof (cont.)

3 = 1 If — is semi-confluent and x <+ y, then we show x | y
by induction on the length of the chain x < y.
o X =y, trivial.

° Ifx<i>y’<—>y,weknowx¢y’ by IH. We show x | y by
case distinction:

o y' + y: x| y follows directly from x | y’.
e y' — y:fromthe IH, we get x = zand z < y’ for
some z. Semi-confluence implies z | y, hence x | y.

Foundations of Programming Languages and Software Engineering 15/21

Auxiliary Lemmas

If — is confluent and terminating, then x <= y iff x |= y |. l

e =

Q
™

Foundations of Programming Languages and Software Engineering 16/21

Deciding the Word Problem

Theorem (deciding the word problem for &)

If £ is finite and —¢ is confluent and terminating, then the
word problem for £ is decidable.

@ Plan: To decide whether s =¢ t holds, compare s)¢ and
t e for syntactic equality.

@ Caveat:

@ Slg and t]ge must exist
@ slg and tlg must be computable

@ We do not give the proof details here, but some
important facts are ...

Foundations of Programming Languages and Software Engineering 17/21

Existence and Uniqueness of Normal Forms

@ If — is confluent, every element has at most one normal
form.

@ If — is terminating, every element has at least one
normal form.

Foundations of Programming Languages and Software Engineering 18/21

Existence and Uniqueness of Normal Forms

@ If — is confluent, every element has at most one normal
form.

@ If — is terminating, every element has at least one
normal form.

= If — is confluent and terminating, every element has a
unigue normal form.

Foundations of Programming Languages and Software Engineering 18/21

Deciding the Word Problem

Theorem (deciding the word problem for &)

If £ is finite and —¢ is confluent and terminating, then the
word problem for £ is decidable.

Proof. Suppose s,t € T(X, X). We must give an algorithm
that decides s ~¢ t. Since s ~¢ tand s|. =t are
equivalent (proof omitted), we only need to give an algorithm
for computing the normal form u | for any term u.

Foundations of Programming Languages and Software Engineering 19/21

Computing Normal Forms (1)

Suppose € is finite and —¢ is confluent and terminating.
Given aterm u € T(X, X), we can compute the normal form
ul¢ using the following iteration:

@ Decide if uis already in normal form w.r.t —¢. If yes,
stop. Otherwise, continue with step (2).

@ Find some v such that u —¢ ¢ (if u is not in normal
form). Then continue with step (1), setting u = /.

This iteration terminates because — ¢ is terminating.

Foundations of Programming Languages and Software Engineering 20/21

Computing Normal Forms (2)

Here is how we decide whether u is in normal form:
@ For all identities (/, r) € £ (only finitely many), and
@ all positions p € Pos(u) (only finitely many)

@ check whether there exists a substitution o such that
ulp = o(!). If yes, then we can reduce u to u[o(r)],. If
not, u is already in normal form.

We will see later that finding a substitution ¢ such that
ulp = o(!) is also decidable.

Foundations of Programming Languages and Software Engineering 21/21

	The Word Problem

