# Foundations of Programming Languages and Software Engineering

Universität Freiburg

June 2012

#### • The Word Problem

# Central Problems of Equational Reasoning

#### Definition (Validity)

 $s \approx t$  is valid in  $\mathcal{E}$  iff  $s \approx_{\mathcal{E}} t$ .

## Definition (Satisfiability)

 $s \approx t$  is satisfiable in  $\mathcal{E}$  if there exists a substitution  $\sigma$  such that  $\sigma s \approx_{\mathcal{E}} \sigma t$ .

## Definition

Suppose  $\Sigma$  is a signature and X a set of variables disjoint from  $\Sigma$ .

The (ground) word problem for *E* is the problem of deciding s ≈<sub>ε</sub> t for arbitrary s, t ∈ T(Σ, Ø).

# Solving the Word Problem

## A Sample Problem

Given  $\Sigma_{int} = \{ \text{zero}^{(0)}, \text{pred}^{(1)}, \text{succ}^{(1)} \}$  and  $\mathcal{E}_{int} = \{ \text{pred}(\text{succ}(x)) \approx x, \text{succ}(\text{pred}(x)) \approx x \}$ we would like to decide whether  $\text{succ}(\text{zero}) \approx_{\mathcal{E}_{int}} \text{succ}(\text{succ}(\text{pred}(\text{zero})))$ 

## A solution

- Use identities as reduction rules:  $pred(succ(x)) \rightarrow_{\mathcal{E}_{int}} x, succ(pred(x)) \rightarrow_{\mathcal{E}_{int}} x$
- Apply reduction rules to both terms:
  - $\operatorname{succ}(\operatorname{\underline{succ}}(\operatorname{\underline{pred}}(\operatorname{\underline{zero}}))) \rightarrow_{\mathcal{E}_{int}} \operatorname{succ}(\operatorname{\underline{zero}})$
- Check whether the resulting terms are identical.

#### Problem: Applying the reduction rules might not terminate.

## An Undecidable Word Problem

## Combinatory Logic

$$\begin{split} \Sigma_{\mathsf{C}} &= \{ \boldsymbol{S}^{(0)}, \boldsymbol{I}^{(0)}, \boldsymbol{K}^{(0)}, \cdot^{(2)} \} \\ \mathcal{E}_{\mathsf{C}} &= \{ ((\boldsymbol{S} \cdot \boldsymbol{x}) \cdot \boldsymbol{y}) \cdot \boldsymbol{z} = (\boldsymbol{x} \cdot \boldsymbol{z}) \cdot (\boldsymbol{y} \cdot \boldsymbol{z}), \\ (\boldsymbol{K} \cdot \boldsymbol{x}) \cdot \boldsymbol{y} = \boldsymbol{x}, \boldsymbol{I} \cdot \boldsymbol{x} = \boldsymbol{x} \} \end{split}$$

Look at the following reduction sequence:

$$\frac{((S \cdot I) \cdot I) \cdot ((S \cdot I) \cdot I)}{(I \cdot ((S \cdot I) \cdot I)) \cdot (I \cdot ((S \cdot I) \cdot I))}$$

$$\rightarrow_{\mathcal{E}_{C}} ((S \cdot I) \cdot I) \cdot (I \cdot ((S \cdot I) \cdot I))$$

$$\rightarrow_{\mathcal{E}_{C}} ((S \cdot I) \cdot I) \cdot ((S \cdot I) \cdot I))$$

In general: All computable functions can be encoded as ground terms over  $\Sigma_C \Rightarrow$  the word problem for  $\mathcal{E}_C$  is undecidable.

The computation of any Turing machine can be simulated by an appropriate signature  $\Sigma$  and set of identities  $\mathcal{E} \Rightarrow$  the word problem in general is undecidable.

# The Reduction Relation Generated by $\Sigma$ -Identities

#### Definition

Let  $\mathcal{E}$  be a set of  $\Sigma$ -identities. The reduction relation  $\rightarrow_{\mathcal{E}} \subseteq T(\Sigma, X) \times T(\Sigma, X)$  is defined as  $s \rightarrow_{\mathcal{E}} t$  iff there exists  $(I, r) \in \mathcal{E}, p \in Pos(s)$ , and a substitution  $\sigma$  with  $s|_{p} = \sigma(I)$  and  $t = s[\sigma(r)]_{p}$ .

## Example

### Computing with Groups

$$\Sigma_G = \{ e^{(0)}, i^{(1)}, f^{(2)} \}$$
  

$$\mathcal{E}_G = \{ f(x, f(y, z)) \approx f(f(x, y), z),$$
  

$$f(e, x) \approx x,$$
  

$$f(i(x), x) \approx e \}$$

$$f(i(e), f(e, e)) \quad \sigma_1 = \{x \mapsto i(e), y \mapsto e, z \mapsto e\}, 1^{st} \text{ id}$$
  

$$\rightarrow_{\mathcal{E}_G} f(f(i(e), e), e) \qquad \qquad \sigma_2 = \{x \mapsto e\}, 3^{rd} \text{ id}$$
  

$$\rightarrow_{\mathcal{E}_G} f(e, e) \qquad \qquad \sigma_3 = \{x \mapsto e\}, 2^{nd} \text{ id}$$
  

$$\rightarrow_{\mathcal{E}_G} e$$

#### Definition

Given two relations  $R \subseteq A \times B$  and  $S \subseteq B \times C$ , their composition is defined by

 $S \circ R := \{(x, z) \in A imes C \mid ext{there exists some } y \in B ext{ with} \ (x, y) \in R ext{ and } (y, z) \in S \}$ 

#### Example

Suppose  $R = \{FR \rightarrow OG, OG \rightarrow KA, KA \rightarrow MA\}$ . Then  $R \circ R = \{FR \rightarrow KA, OG \rightarrow MA\}$ .

# Notations for Reduction Relations

Suppose  $\rightarrow$  is a binary relation on *M*.  $\xrightarrow{0} := \{(x, x) \mid x \in M\}$ identity  $\xrightarrow{i+1} := \rightarrow \circ \xrightarrow{i}$ (i + 1)-fold composition, i > 0 $\xrightarrow{+} := [] \xrightarrow{i}$ transitive closure i > 0 $\xrightarrow{*} := \xrightarrow{+} \mid \mid \xrightarrow{0}$ reflexive transitive closure  $\stackrel{=}{\rightarrow} \stackrel{=}{\longrightarrow} | \stackrel{0}{\rightarrow} |$ reflexive closure  $\leftarrow := \{(y, x) \mid x \to y\}$ inverse  $\leftrightarrow := \leftarrow \cup \rightarrow$ symmetric closure  $\stackrel{+}{\leftrightarrow} := (\leftrightarrow)^+$ transitive symmetric closure  $\stackrel{*}{\leftrightarrow} := (\leftrightarrow)^*$ reflexive transitive symmetric closure Suppose  $\rightarrow$  is a binary relation on *M* and *x*, *y*  $\in$  *M*.

- *x* is reducible iff there is a  $z \in M$  with  $x \to z$ .
- x is in normal form iff it is not reducible.
- y is a normal form of x iff  $x \xrightarrow{*} y$  and y is in normal form.
- if x has a unique normal form, it is denoted by x↓.
- x and y are joinable iff there is a z ∈ M such that x → z ← y. We then write x ↓ y.

# Terminology for Reduction Relations (2)

## Definition

A reduction  $\rightarrow$  is called

• Church-Rosser iff  $x \stackrel{*}{\leftrightarrow} y$  implies  $x \downarrow y$ ,

- confluent iff  $y_1 \xleftarrow{*} x \xrightarrow{*} y_2$  implies  $y_1 \downarrow y_2$ ,  $y_2^{\ddagger}$
- semi-confluent iff  $y_1 \leftarrow x \xrightarrow{*} y_2$  implies  $y_1 \downarrow y_2$ ,
- terminating iff there is no infinite chain  $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \dots$
- Normalizing iff every element has a normal form.
- Convergent iff it is both confluent and terminating.

## Church-Rosser and Confluence are Equivalent

- It is easy to see that any Church-Rosser relation is confluent.
- If → is confluent and x → y, then we can visualize the proof of x ↓ y as follows:



#### Lemma

The following conditions are equivalent:

- $\bigcirc$   $\rightarrow$  has the Church-Rosser property.
- $2 \rightarrow is confluent.$
- $\bigcirc \rightarrow$  is semi-confluent.

*Proof.* We show that the implications  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$  hold

1 ⇒ 2 If → has the Church-Rosser property and  $y_1 \stackrel{*}{\leftarrow} x \stackrel{*}{\rightarrow} y_2$ , then  $y_1 \stackrel{*}{\leftrightarrow} y_2$ . Hence, by the Church-Rosser property,  $y_1 \downarrow y_2$ , i.e. → is confluent.

 $2 \Rightarrow 3$  Obviously any confluent relation is semi-confluent.

- $3 \Rightarrow 1$  If  $\rightarrow$  is semi-confluent and  $x \stackrel{*}{\leftrightarrow} y$ , then we show  $x \downarrow y$  by induction on the length of the chain  $x \stackrel{*}{\leftrightarrow} y$ .
  - x = y, trivial.
  - If  $x \stackrel{*}{\leftrightarrow} y' \leftrightarrow y$ , we know  $x \downarrow y'$  by IH. We show  $x \downarrow y$  by case distinction:
    - $y' \leftarrow y$ :  $x \downarrow y$  follows directly from  $x \downarrow y'$ .
    - y' → y : from the IH, we get x <sup>\*</sup>→ z and z <sup>\*</sup>← y' for some z. Semi-confluence implies z ↓ y, hence x ↓ y.

#### Lemma

If  $\rightarrow$  is confluent and terminating, then  $x \stackrel{*}{\leftrightarrow} y$  iff  $x \downarrow = y \downarrow$ .

# $\mathsf{Lemma} \\ \stackrel{*}{\leftrightarrow}_{\mathcal{E}} = \approx_{\mathcal{E}}$

### Theorem (deciding the word problem for $\mathcal{E}$ )

If  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating, then the word problem for  $\mathcal{E}$  is decidable.

• Plan: To decide whether  $s \approx_{\mathcal{E}} t$  holds, compare  $s \downarrow_{\mathcal{E}}$  and  $t \downarrow_{\mathcal{E}}$  for syntactic equality.

• Caveat:

- $s\downarrow_{\mathcal{E}}$  and  $t\downarrow_{\mathcal{E}}$  must exist
- $s \downarrow_{\mathcal{E}}$  and  $t \downarrow_{\mathcal{E}}$  must be computable
- We do not give the proof details here, but some important facts are ...

# Existence and Uniqueness of Normal Forms

- If → is confluent, every element has at most one normal form.
- If  $\rightarrow$  is terminating, every element has at least one normal form.

# Existence and Uniqueness of Normal Forms

- If → is confluent, every element has at most one normal form.
- If  $\rightarrow$  is terminating, every element has at least one normal form.
- $\Rightarrow~$  If  $\rightarrow$  is confluent and terminating, every element has a unique normal form.

#### Theorem (deciding the word problem for $\mathcal{E}$ )

If  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating, then the word problem for  $\mathcal{E}$  is decidable.

*Proof.* Suppose  $s, t \in T(\Sigma, X)$ . We must give an algorithm that decides  $s \approx_{\mathcal{E}} t$ . Since  $s \approx_{\mathcal{E}} t$  and  $s \downarrow_{\mathcal{E}} = t \downarrow_{\mathcal{E}}$  are equivalent (proof omitted), we only need to give an algorithm for computing the normal form  $u \downarrow_{\mathcal{E}}$  for any term u.

Suppose  $\mathcal{E}$  is finite and  $\rightarrow_{\mathcal{E}}$  is confluent and terminating. Given a term  $u \in T(\Sigma, X)$ , we can compute the normal form  $u \downarrow_{\mathcal{E}}$  using the following iteration:

- Decide if *u* is already in normal form w.r.t  $\rightarrow_{\mathcal{E}}$ . If yes, stop. Otherwise, continue with step (2).
- **②** Find some *u'* such that *u* →<sub>*E*</sub> *u'* (if *u* is not in normal form). Then continue with step (1), setting *u* = *u'*.

This iteration terminates because  $\rightarrow_{\mathcal{E}}$  is terminating.

Here is how we decide whether *u* is in normal form:

- For all identities  $(I, r) \in \mathcal{E}$  (only finitely many), and
- all positions  $p \in Pos(u)$  (only finitely many)
- check whether there exists a substitution σ such that u|<sub>ρ</sub> = σ(I). If yes, then we can reduce u to u[σ(r)]<sub>ρ</sub>. If not, u is already in normal form.

We will see later that finding a substitution  $\sigma$  such that  $u|_{\rho} = \sigma(l)$  is also decidable.