
Foundations of Programming Languages
and Software Engineering

Universität Freiburg

June 2012

The Word Problem

Foundations of Programming Languages and Software Engineering 1 / 21

Central Problems of Equational Reasoning

Definition (Validity)
s ≈ t is valid in E iff s ≈E t .

Definition (Satisfiability)
s ≈ t is satisfiable in E if there exists a substitution σ such
that σs ≈E σt .

Foundations of Programming Languages and Software Engineering 2 / 21

The Word Problem

Definition
Suppose Σ is a signature and X a set of variables disjoint
from Σ.

The (ground) word problem for E is the problem of
deciding s ≈E t for arbitrary s, t ∈ T (Σ, ∅).

Foundations of Programming Languages and Software Engineering 3 / 21

Solving the Word Problem

A Sample Problem
Given Σint = {zero(0), pred(1), succ(1)} and
Eint = {pred(succ(x)) ≈ x , succ(pred(x)) ≈ x}
we would like to decide whether
succ(zero) ≈Eint succ(succ(pred(zero)))

A solution
Use identities as reduction rules:
pred(succ(x))→Eint x , succ(pred(x))→Eint x
Apply reduction rules to both terms:

succ(succ(pred(zero)))→Eint succ(zero)

Check whether the resulting terms are identical.

Problem: Applying the reduction rules might not terminate.
Foundations of Programming Languages and Software Engineering 4 / 21

An Undecidable Word Problem

Combinatory Logic
ΣC = {S(0), I(0),K (0), ·(2)}
EC = {((S · x) · y) · z = (x · z) · (y · z),

(K · x) · y = x , I · x = x}
Look at the following reduction sequence:

((S · I) · I) · ((S · I) · I)
→EC (I · ((S · I) · I)) · (I · ((S · I) · I))

→EC ((S · I) · I) · (I · ((S · I) · I))

→EC ((S · I) · I) · ((S · I) · I)

In general: All computable functions can be encoded as
ground terms over ΣC ⇒ the word problem for EC is
undecidable.

Foundations of Programming Languages and Software Engineering 5 / 21

Undecidability

The computation of any Turing machine can be simulated by
an appropriate signature Σ and set of identities E ⇒ the
word problem in general is undecidable.

Foundations of Programming Languages and Software Engineering 6 / 21

The Reduction Relation Generated by
Σ-Identities

Definition
Let E be a set of Σ-identities.
The reduction relation→E⊆ T (Σ,X)× T (Σ,X) is defined as

s →E t iff
there exists (l, r) ∈ E , p ∈ Pos(s), and a substitution σ with

s|p = σ(l) and t = s[σ(r)]p.

Foundations of Programming Languages and Software Engineering 7 / 21

Example

Computing with Groups

ΣG = {e(0), i(1), f (2)}
EG = {f (x , f (y , z)) ≈ f (f (x , y), z),

f (e, x) ≈ x ,
f (i(x), x) ≈ e}

f (i(e), f (e, e)) σ1 = {x 7→ i(e), y 7→ e, z 7→ e}, 1st id

→EG f (f (i(e), e), e) σ2 = {x 7→ e}, 3rd id

→EG f (e, e) σ3 = {x 7→ e}, 2nd id
→EG e

Foundations of Programming Languages and Software Engineering 8 / 21

Composing Relations

Definition
Given two relations R ⊆ A× B and S ⊆ B × C, their
composition is defined by

S ◦ R := {(x , z) ∈ A× C | there exists some y ∈ B with
(x , y) ∈ R and (y , z) ∈ S}

Example
Suppose R = {FR→ OG,OG→ KA,KA→ MA}.
Then R ◦ R = {FR→ KA,OG→ MA}.

Foundations of Programming Languages and Software Engineering 9 / 21

Notations for Reduction Relations
Suppose→ is a binary relation on M.

0−→ := {(x , x) | x ∈ M} identity
i+1−−→ :=−→ ◦ i−→ (i + 1)-fold composition, i ≥ 0
+−→ :=

⋃
i>0

i−→ transitive closure

∗−→ :=
+−→ ∪ 0−→ reflexive transitive closure

=−→ :=−→ ∪ 0−→ reflexive closure
←− := {(y , x) | x −→ y} inverse
←→ :=←− ∪ −→ symmetric closure
+←→ := (←→)+ transitive symmetric closure
∗←→ := (←→)∗ reflexive transitive symmetric closure

Foundations of Programming Languages and Software Engineering 10 / 21

Terminology for Reduction Relations (1)

Suppose→ is a binary relation on M and x , y ∈ M.
x is reducible iff there is a z ∈ M with x −→ z.
x is in normal form iff it is not reducible.
y is a normal form of x iff x ∗−→ y and y is in normal form.
if x has a unique normal form, it is denoted by x ↓.
x and y are joinable iff there is a z ∈ M such that
x ∗−→ z ∗←− y . We then write x ↓ y .

Foundations of Programming Languages and Software Engineering 11 / 21

Terminology for Reduction Relations (2)

Definition
A reduction→ is called

Church-Rosser iff x ∗←→ y implies x ↓ y ,

confluent iff y1
∗←− x ∗−→ y2 implies y1 ↓ y2,

semi-confluent iff y1 ←− x ∗−→ y2 implies y1 ↓ y2,
terminating iff there is no infinite chain
x0 −→ x1 −→ x2 −→
Normalizing iff every element has a normal form.
Convergent iff it is both confluent and terminating.

Foundations of Programming Languages and Software Engineering 12 / 21

Church-Rosser and Confluence are Equivalent

It is easy to see that any Church-Rosser relation is
confluent.
If −→ is confluent and x ∗←→ y , then we can visualize the
proof of x ↓ y as follows:

x
�

∗ ∗

-

. . . �

∗

y

∗

-

�

∗∗

-
�

∗∗

-
�

∗∗

-

�

∗∗

-
�

∗∗

-

z
�

∗∗

-

Foundations of Programming Languages and Software Engineering 13 / 21

Church-Rosser and Confluence are Equivalent

Lemma
The following conditions are equivalent:

1 → has the Church-Rosser property.
2 → is confluent.
3 → is semi-confluent.

Proof. We show that the implications 1⇒ 2⇒ 3⇒ 1 hold
1⇒ 2 If→ has the Church-Rosser property and y1

∗← x ∗→ y2,
then y1

∗↔ y2. Hence, by the Church-Rosser property,
y1 ↓ y2, i.e. → is confluent.

2⇒ 3 Obviously any confluent relation is semi-confluent.

Foundations of Programming Languages and Software Engineering 14 / 21

Proof (cont.)

3⇒ 1 If→ is semi-confluent and x ∗↔ y , then we show x ↓ y
by induction on the length of the chain x ∗↔ y .

x = y , trivial.
If x ∗↔ y ′ ↔ y , we know x ↓ y ′ by IH. We show x ↓ y by
case distinction:

y ′ ← y : x ↓ y follows directly from x ↓ y ′.
y ′ → y : from the IH, we get x ∗−→ z and z ∗←− y ′ for
some z. Semi-confluence implies z ↓ y , hence x ↓ y .

Foundations of Programming Languages and Software Engineering 15 / 21

Auxiliary Lemmas

Lemma
If −→ is confluent and terminating, then x ∗←→ y iff x ↓= y ↓.

Lemma
∗←→E = ≈E

Foundations of Programming Languages and Software Engineering 16 / 21

Deciding the Word Problem

Theorem (deciding the word problem for E)
If E is finite and −→E is confluent and terminating, then the
word problem for E is decidable.

Plan: To decide whether s ≈E t holds, compare s↓E and
t ↓E for syntactic equality.
Caveat:

s↓E and t ↓E must exist
s↓E and t ↓E must be computable

We do not give the proof details here, but some
important facts are . . .

Foundations of Programming Languages and Software Engineering 17 / 21

Existence and Uniqueness of Normal Forms

If −→ is confluent, every element has at most one normal
form.
If −→ is terminating, every element has at least one
normal form.

⇒ If −→ is confluent and terminating, every element has a
unique normal form.

Foundations of Programming Languages and Software Engineering 18 / 21

Existence and Uniqueness of Normal Forms

If −→ is confluent, every element has at most one normal
form.
If −→ is terminating, every element has at least one
normal form.

⇒ If −→ is confluent and terminating, every element has a
unique normal form.

Foundations of Programming Languages and Software Engineering 18 / 21

Deciding the Word Problem

Theorem (deciding the word problem for E)
If E is finite and −→E is confluent and terminating, then the
word problem for E is decidable.

Proof. Suppose s, t ∈ T (Σ,X). We must give an algorithm
that decides s ≈E t . Since s ≈E t and s↓E = t ↓E are
equivalent (proof omitted), we only need to give an algorithm
for computing the normal form u ↓E for any term u.

Foundations of Programming Languages and Software Engineering 19 / 21

Computing Normal Forms (1)

Suppose E is finite and −→E is confluent and terminating.
Given a term u ∈ T (Σ,X), we can compute the normal form
u ↓E using the following iteration:

1 Decide if u is already in normal form w.r.t −→E . If yes,
stop. Otherwise, continue with step (2).

2 Find some u′ such that u −→E u′ (if u is not in normal
form). Then continue with step (1), setting u = u′.

This iteration terminates because −→E is terminating.

Foundations of Programming Languages and Software Engineering 20 / 21

Computing Normal Forms (2)

Here is how we decide whether u is in normal form:
For all identities (l, r) ∈ E (only finitely many), and
all positions p ∈ Pos(u) (only finitely many)
check whether there exists a substitution σ such that
u|p = σ(l). If yes, then we can reduce u to u[σ(r)]p. If
not, u is already in normal form.

We will see later that finding a substitution σ such that
u|p = σ(l) is also decidable.

Foundations of Programming Languages and Software Engineering 21 / 21

	The Word Problem

