Theory |: Database Foundations

Theory |: Database Foundations

07.2012

20: Formal Design

m We want to distinguish good from bad database design.
m What kind of additional information do we need?

m Can we transform a bad into a good design?

m By which cost?

20.1 Motivation

Relations and anomalies

Stadt
SNr SName LCode LFléache
7 Freiburg D 357
9 Berlin D 357
40 Moscow RU 17075
43 St.Petersburg RU 17075
Kontinent

KName LCode KFlache Prozent

Europe D 3234 100
Europe RU 3234 20
Asia RU 44400 80

Theory |: Database Foundations 20. Formal Design

Having removed anomalies

Land’
LCode LFléache
D 357

RU 17075

Kontinent’

Stadt’

SNr SName LCode
7 Freiburg D
9 Berlin D

40 Moscow RU
43 St.Petersburg RU
Lage’
LCode KName Prozent
D Europe 100
RU Europe 20
RU Asia 80

KName KFlache

Europe 3234
Asia 44400

Theory |: Database Foundations 20. Formal Design

20.2 Functional Dependencies
20.2.1 Definition

m Let a relation schema be given by its format V and let X, Y C V.
m Let r € Rel(V). r fulfills a functional dependency (FD) X — Y, if for all

n, v e r:
uX] = v[X] = plY] = v[Y].

m Let F a set of functional dependencies over V and X, Y C V. The set of
all relations r € Rel(V), which fulfill all FD's in F, is called Sat(V, F).

20.2.2 Membership-Test

m The FD X —» Y, F E X — Y is implied by F, if for each relation r,
whenever r € Sat(V, F) then r fulfills X — Y.

m Theset F1 = {X - Y | F = X — Y} is called closure of F.
m X - Y c F'is called Membership-Test.

Theory |: Database Foundations 20. Formal Design

key

Let V ={A4,...,Ap}. X C Vis called key of V (bzgl. F), if
m XA .. A EFT,
BY CX=Y AL A, & F*.

Theory |: Database Foundations 20. Formal Design

Armstrong-Axiome
Let r € Sat(V, F).

(A1) Reflexivity: If Y C X C V, then r fulfills FD X — Y.

(A2) Augmentation: If X - Y € F,Z C V, then r fulfills FD
XZ—-YZ.

(A3) Transitivity: If X - Y, Y — Z € F, then r fulfills FD X — Z.
(A1): trivial FD'’s.

Theory |: Database Foundations 20. Formal Design

Soundness and Completeness

m Every FD derivable by the Armstrong axioms is an element of the closure
(soundness).

m Every FD in FT is derivable by the Armstrong axioms (completeness)

m To show completeness: If X — Y not derivable by (A1)—(A3), then
X =Y & F', ie. 3r, rfulfills F, however does not X — Y.

Theory |: Database Foundations 20. Formal Design

Membership-Test Variante 1:
Starting from F apply (A1)—(A3)until X — Y is derived, or F* is derived and
X =Y gFt

Complexity?

10

Theory |: Database Foundations 20. Formal Design

more axioms

Let r € Sat(V,F). Let X, Y, Z,W C Vund Ac V.

(A4) Union: If X - Y, X — Z € F, r fulfills FD X — Y Z.

(A5) Pseudotransitivity: If X — Y, WY — Z € F, r fulfills FD XW — Z.
(A6) Decomposition: If X —Y € F,Z CY, r fulfills FD X — Z.

(A7) Reflexivity: If X C V, r fulfills FD X — X.

(A8) Accumulation: If X - YZ,Z — AW € F, r fullfills X — Y ZA.

Axiom systems {(A1), (A2), (A3)} and {(A6), (A7), (A8)} are equivalent.

11

Membership-Test Variante 2:

m (Attribut-)closure X* of X (w.r.t. F):

Xt={A |AeVand X - A
is derivable by (A1) — (A3)}.

m First compute X by (A6) - (A8) and afterwards test whether Y C X™.

XPlus-Algorithm

XPlus(X,Y,F) boolean {
result := X;
WHILE (changes to result) DO
FOR each X' =Y’ € F DO
IF (X’ C result) THEN result := result U Y’;
end.
IF (Y C result) RETURN true ELSE false;

}

12

Theory |: Database Foundations 20. Formal Design

Example XPlus-Algorithm

Let V ={A,B,C,D,E,F,G,H,I} and
F={AB— E,BE - I,E = G, Gl — H}.

AB — GH € F17?

Axiom Anwendung result

(A7) AB— AB {A,B}

Using XPlus-Algorithm we can, given V, F, compute a key.

How?

13

20.2.3 Minimal Cover

Equivalence

m Let F,G sets of FD's.
m F,G are called equivalent, F =G, if F© =G*.

14

Theory |: Database Foundations 20. Formal Design

Left and right reduction

m A set F of FD's is called left-reduced, if the following condition is fulfilled.

fX—=>YeF,ZcX, then FF=(F\{X—=>Y})U{Z—=>Y} not
equivalent F.

left-reduction: replace X — Y in F by Z = Y.

m It is called right-reduced, it X - Y € F,Z CY, then
F'=(F\{X = Y})U{X — Z} not equivalent F.

right-reduction: replace X — Y in F by X — Z.

15

Theory |: Database Foundations 20. Formal Design

looking for possible reductions

mlet X >Y beaFDin Fandlet Z — Y, where Z C X.
We perform a left-reduction, if XPlus(Z,Y, F) is true.

mlet X Y aFDin Fandlet X — Z, where Z C Y.
We perform a right-reduction, if XPlus(X,Y ,F') is true.

16

Theory |: Database Foundations 20. Formal Design

Theorem
Let F be a set of FD's and F’ be derived from F by left-, resp. right-reduction.

F=F.

17

Theory |: Database Foundations 20. Formal Design

Example

mF={A—-B,B—-AB—CA—C,C— A}
right-reduction?

m 7, ={AB— C,A— B,B— A}.
left-reduction?

18

Theory |: Database Foundations 20. Formal Design

minimal cover

F™" is a minimal cover of F, if it is derived from F by the following steps:

Perform all possible left-reductions.
Perform all possible right-reductions.

Delete all trivial FD's of the form X — 0.

Compute the union of all FD's X — Y4, ..., X = Y, to derive X — Y ..

A Minimal cover can be computed in polynomial time.

How?

F™" is not unique, in general.

Why?

o W e

19

Theory |: Database Foundations 20. Formal Design

20.3 Decomposition
20.3.1 Lossless

Let p = {Xi,..., Xk} a decomposition of V, F a set of FD's.
m Let r € Sat(V,F) and let r; = n[Xj]r, 1 < i< k.
p is called lossless, if for any r € Sat(V/, F) there holds:

r=n[Xq]roa. .o Xe]r.

20

Theory |: Database Foundations 20. Formal Design

Example

m V={AB,C}and F={A— B,A— C}).
m r e Sat(V,F):

A B C
r= ax b1 (5}
a b o
m p1 = {AB,BC} and p» = {AB, AC}.
mr w[AB]r > 7[BC]r,

r w[AB]r > 7w[AC]r.

Theory |: Database Foundations 20. Formal Design

Theorem
Let a format V and set F of FD's. Let p = (X1, X2) be a decomposition of V.

p is lossless, iff

(Xl ﬂXQ) — (Xl \XQ) € f+,oder (X1 ﬂXz) — (Xg\Xl) e Ft.

22

20.3.2 Dependency Preserving

Example

V ={AB,C,D}, p={AB, BC}.

m F={A—>B,B— C,C — A}.
Is p dependency preserving w.r.t. F?

m Consider/ ={A— B,B— C,C — B,B— A}.
Is p dependency preserving w.r.t. F'?

23

Theory |: Database Foundations 20. Formal Design

Definition

mlet R=(V,F)and ZC V.
m Define the projection of F on Z

mZIF ={X > Y e F* | XY C Z}.

m A decomposition p = {Xi,..., Xx} of V is called dependency preserving

w.r.t. F, if
k

Urlxl1F=F.

i=1

24

Theory |: Database Foundations 20. Formal Design

There exist lossless decompositions which are not dependency preserving!

m R=(V,F) where V = {Stadt, Adresse, PLZ},

m F ={Stadt Adresse — PLZ, PLZ — Stadt}.

m p={X1, Xo}: X; = {Adresse, PLZ} und X, = {Stadt, PLZ}.
m pis lossless, as (X1 N X3) — (X2 \ X1) € F.

E p is not dependency preserving.

What are the keys!

25

20.4 Normalform

Let R = (V,F). We are looking for a decomposition p = (X, ...

with the following properties:
m each R; = (X, 7[X{]F), 1 <i < k is in normalform,
m p is lossless and, if possible, dependency preserving.

® k minimal.

,Xi) of R

26

Theory |: Database Foundations 20. Formal Design

Terminology

m Let X key of Rand X CY C V, then Y Superkey of R.
m If A € X for any key X of R, then A Keyattribute (KA) of R;
m if A¢ X for every key X, then A Non-Keyattribute (NKA).

27

Theory |: Database Foundations 20. Formal Design

3rd Normalform

Schema R = (V,F) is in 3rd Normalform (3NF), if for any NKA A € V there
holds:

If X > Ae F, A¢ X, then X Superkey.

28

Theory |: Database Foundations 20. Formal Design

3NF?
Stadt Kontinent
SNr SName LCode LFléache KName LCode KFl&dche Prozent
7 Freiburg D 357 Europe D 3234 100
9 Berlin D 357 Europe RU 3234 20
40 Moscow RU 17075 Asia RU 44400 80
43 St.Petersburg RU 17075
3NF?
Stadt’ Land’
SNr SName LCode LCode LFléache
7 Freiburg D D 357
9 Berlin D RU 17075
40 Moscow RU
43 St.Petersburg RU
Lage’ Kontinent’

LCode KName Prozent
D Europe 100

RU Europe 20
RU Asia 80

KName KFlache

Europe 3234
Asia 44400

29

Theory |: Database Foundations 20. Formal Design

Boyce-Codd-Normalform

Schema R = (V, F) is in Boyce-Codd-Normalform (BCNF), if the following
holds. If X — A€ F, A& X, then X superkey.

BCNF implies 3NF.

m Consider R = (V, F), where V = { Stadt, Adresse, PLZ }, and F ={ Stadt Adresse
— PLZ, PLZ — Stadt}.

m R is in 3NF, however not in BCNF.

m Let p = {Adresse PLZ, Stadt PLZ} a decomposition, then p is in BCNF, lossless and
not dependency preserving.

30

20.5 Normalization Algorithm

BCNF-Analysis: lossless and not dependency-preserving
Let R = (V,F) a schema.

Let X CV, A€ Vand X — A€ F a FD, which violates BCNF. Let
V'=V\{A}L

Decompose R in
Ry = (V' ,7n[V'|F), Rx= (XA, n[XA]F).

Test for BCNF w.r.t. Ry and R, and proceed recursively.

31

Theory |: Database Foundations 20. Formal Design

3NF-Analysis: lossless and dependency-preserving
Let R = (V,F) a schema and let p = (X, ..., Xx) a decomposition of V/, such
that the Schemata Ry = (X1, 7[X1]F), ..., Rk = (Xk, 7[Xk]F) in BCNF.

Let ™" 3 minimal cover of F.

Identify the set F/ C F™" of those FD's, which are not dependency
preserving.

For any such FA, X — A extend p by XA, resp. schema (XA, 7[XA]F).

32

	Formal Design
	Motivation
	Functional Dependencies
	Decomposition
	Normalform
	Normalization Algorithm

