\qquad
\qquad

Exercise 2-Randomization

For an RSA encryption choose $p=13, q=19, e=7$ and $d=31$.

1. By using the public key, encrypt the decimal message $M=14$.
2. Decrypt the message $M^{\prime}=58$. Specify the obtained values after each recursive call of power given below.
```
int power(int a, int p, int n) {
    if (p==0)
        return 1;
    x = power(a,p/2,n);
    result = (x*x)%n;
    if (p%2==1)
        result = (a*result)%n;
    return result;
}
```

\qquad
\qquad

Exercise 5-Reduction relations, ADTs

1. Assume \rightarrow has the Church-Rosser property and $x \stackrel{*}{\leftrightarrow} y$. Which of the following holds?$x \xrightarrow{*} y$ if y is in normal form.$x=y$ if both x, y are in normal form.None of the above.Both of the above.
2. Specify an $\operatorname{ADT} \operatorname{List}(A)$ for lists. The operations available for this ADT should be as follows:

- empty: Returns a new empty list.
- cons: Returns a new list by prepending the given element to the given list.
- head: Returns the first element of the given list.
- tail: Returns the given list without its first element.
- empty?: Checks whether a given list is empty.

Specify the signatures for these operations and define sensible identities for them. What are the constructors of the list ADT?
\qquad

Exercise 6 - Database foundations

1. Consider schemata $R(A, B, C, D)$ nd $S(C, D)$ with instances r, s as shown below:

$$
r=\begin{array}{llll}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
\hline \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \\
\mathrm{a} & \mathrm{~b} & \mathrm{e} & \mathrm{f} \\
\mathrm{~b} & \mathrm{c} & \mathrm{e} & \mathrm{f} \\
\mathrm{e} & \mathrm{~d} & \mathrm{c} & \mathrm{~d} \\
\mathrm{a} & \mathrm{~b} & \mathrm{e} & \mathrm{f} \\
\mathrm{e} & \mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{a} & \mathrm{~b} & \mathrm{~d} & \mathrm{~d}
\end{array} \quad s=\begin{array}{ll}
\mathrm{C} & \mathrm{D} \\
\hline \mathrm{c} & \mathrm{~d} \\
\mathrm{e} & \mathrm{f} \\
\end{array}
$$

Compute $r \div s=$
2. Given the schemas $R(A, B), S(B, C)$ and $T(A, B, C)$ provide an equivalent expression in safe calculus to the following algebra-expression:

$$
\pi[A, B]((R \bowtie S)-T) \cup R
$$

3. Consider the following formula:

$$
\{X, Y \mid(X=a \vee \exists Z . R(Y, Z)) \wedge S(Y)\}
$$

Is the formula safe? If no, explain why.

