Alternating Finite Automata

Matthias Hengel

Seminar: Automata Theory
Software Engineering
Albert-Ludwigs-Universität Freiburg

Motivation

- Problem: DFA occurring in practice are often very big with a lot of states
- How can they be represented efficiently?
 - Using alternating finite automata a DFA with 2^k states can be represented as a automaton with $k + 1$ states
- Problem: The “complexity” of the automaton is shifted to the transition function
- How can the transition function be represented efficiently?
Motivation

- Problem: DFA occurring in practice are often very big with a lot of states
- How can they be represented efficiently?
- Using alternating finite automata a DFA with 2^k states can be represented as an automaton with $k + 1$ states
- Problem: The “complexity” of the automaton is shifted to the transition function
- How can the transition function be represented efficiently?
Content

1 Motivation

2 Basic definitions

3 Construction from DFA to an equivalent AFA

4 Bit-wise implementation

5 Conclusion
Basic Definitions
A h-AFA is a tuple \((Q, \Sigma, g, h, f)\), where

- \(Q\) is a finite set of states,
- \(\Sigma\) is the input alphabet,
- \(g : Q \times \Sigma \times B^Q \rightarrow B\) is the transition function, where \(B\) denotes the two-element Boolean algebra,
- \(h : B^Q \rightarrow B\) is the accepting function, and
- \(F \subseteq Q\) is the set of final states.
AFA: Further definitions

Definition

The transition function $g : Q \times \Sigma \times B^Q \rightarrow B$ is extended to a function $g : Q \times \Sigma^* \times B^Q \rightarrow B$ as follows:

- $g(s, \lambda, u) = u_s$, and
- $g(s, aw, u) = g(s, a, g(s, w, u))$.

Definition

A word $w \in \Sigma^*$ is accepted by an AFA iff $h(g(w, f)) = 1$, where

- $f \in B^Q$ and $f_q = 1$ iff $q \in F$, and
- $g(w, f) = g(s, w, f)_{s \in Q}$.
Definition

The transition function \(g : Q \times \Sigma \times B^Q \to B \) is extended to a function \(g : Q \times \Sigma^* \times B^Q \to B \) as follows:

- \(g(s, \lambda, u) = u_s \), and
- \(g(s, aw, u) = g(s, a, g(s, w, u)) \).

Definition

A word \(w \in \Sigma^* \) is accepted by an AFA iff \(h(g(w, f)) = 1 \), where

- \(f \in B^Q \) and \(f_q = 1 \) iff \(q \in F \), and
- \(g(w, f) = g(s, w, f)_{s \in Q} \).
Example

Consider the automata $A = (Q_A, \Sigma, g, h, F_A)$ where

- $Q_A = \{s_0, s_1, s_2\}$
- $\Sigma = \{a, b\}$
- $h(s_0, s_1, s_2) = s_0$
- $F_A = \emptyset$

and g is defined by:

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>$u_1 \land u_2$</td>
<td>u_1</td>
</tr>
<tr>
<td>s_1</td>
<td>$u_1 \land u_2$</td>
<td>$u_1 \lor u_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>u_1</td>
</tr>
</tbody>
</table>
Example
Example
Example
Example
Example run

Example

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>$u_1 \land u_2$</td>
<td>u_1</td>
</tr>
<tr>
<td>s_1</td>
<td>$u_1 \land u_2$</td>
<td>$u_1 \lor u_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>u_1</td>
</tr>
</tbody>
</table>

Consider the word bba.

$$h(g(bba, f)) = h(g(b, g(b, g(a, f)))) = h(g(b, g(b, g(a, (0, 0, 0)))))$$
$$= h(g(b, g(b, (0, 0, 1))))$$
$$= h(g(b, (0, 1, 0)))$$
$$= h(1, 1, 1)$$
$$= 1$$
Consider the word *bba*.

\[
\begin{align*}
 h(g(bba, f)) &= h(g(b, g(b, g(a, f)))) \\
 &= h(g(b, g(b, g(a, (0, 0, 0)))))) \\
 &= h(g(b, g(b, (0, 0, 1)))) \\
 &= h(g(b, (0, 1, 0)) \\
 &= h(1, 1, 1) \\
 &= 1
\end{align*}
\]
Construction from DFA to an equivalent AFA
Consider a DFA with 2^k states

- 2^k states can be encoded by Boolean vectors of length k
- **Idea:** Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language
- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language
Consider a DFA with 2^k states

2^k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment of states of the AFA

- This corresponds to an encoding of the states of the DFA as Boolean vectors
- The transition function must be build accordingly
- The AFA accepts the reverse language
Idea

- Consider a DFA with 2^k states
- 2^k states can be encoded by Boolean vectors of length k
- **Idea:** Every state of the DFA is represented as an assignment of states of the AFA
- This corresponds to an encoding of the states of the DFA as Boolean vectors
 - The transition function must be build accordingly
 - The AFA accepts the reverse language
Idea

Consider a DFA with 2^k states

2^k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment of states of the AFA

This corresponds to an encoding of the states of the DFA as Boolean vectors

The transition function must be built accordingly

The AFA accepts the reverse language
Consider a DFA with 2^k states

2^k states can be encoded by Boolean vectors of length k

Idea: Every state of the DFA is represented as an assignment of states of the AFA

This corresponds to an encoding of the states of the DFA as Boolean vectors

The transition function must be build accordingly

The AFA accepts the reverse language
Construction

Theorem

A language L is accepted by a DFA with 2^k states if and only if its reversed language L^R is accepted by an AFA with $k + 1$ states.
Let \(A = (Q_D, \Sigma, q_0, F_D, \delta) \), \(Q_D = \{q_0, \ldots, q_{2^k-1}\} \) be an DFA with \(2^k \) states.

Example

Consider a DFA \(A \) as following:

\[
\begin{array}{c}
\text{start} \rightarrow q_0 \quad \text{on a} \rightarrow q_1 \quad \text{on b} \rightarrow q_2 \quad \text{on b} \rightarrow q_3 \quad \text{on a, b}
\end{array}
\]

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_1</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>
The set of states is constructed as $Q_A = \{s_0, s_1, \ldots, s_k\}$. The state s_0 has a special role as will be seen later.

Example

$Q_A = \{s_0, s_1, s_2\}$
The set of states is constructed as $Q_A = \{s_0, s_1, \ldots, s_k\}$. The state s_0 has a special role as will be seen later.

Example

$Q_A = \{s_0, s_1, s_2\}$
The set of states is constructed as $Q_A = \{s_0, s_1, \ldots, s_k\}$. The state s_0 has a special role as will be seen later.

Example

$Q_A = \{s_0, s_1, s_2\}$

![Diagram of states s_0, s_1, and s_2]
Construction: Accepting function

The accepting function is constructed as \(h(s_0, s_1, \ldots, s_k) = s_0 \).

Example

\[
h(s_0, s_1, s_2) = s_0
\]
The accepting function is constructed as $h(s_0, s_1, \ldots, s_k) = s_0$.

Example

$h(s_0, s_1, s_2) = s_0$
The final states are constructed as \(F_A = \begin{cases} \{s_0\} & \text{if } q_0 \in F_D, \\ \emptyset & \text{otherwise.} \end{cases} \)

Example

Start state is \(q_0 \) and \(F_D = \{q_3\} \), therefore \(F_A = \emptyset \). The characteristic vector now is \((0, 0, 0)\).
Construction: Final states

The final states are constructed as $F_A = \begin{cases}
\{s_0\} & \text{if } q_0 \in F_D, \\
\emptyset & \text{otherwise.}
\end{cases}$

Example

Start state is q_0 and $F_D = \{q_3\}$, therefore $F_A = \emptyset$. The characteristic vector now is $(0, 0, 0)$.

\[\text{States: } s_0, s_1, s_2 \]
Choose an arbitrary bijection $\pi : Q_D \to B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k.
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A.
- The state s_0 is not considered by π.

Example

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>(0,0)</td>
<td>(0,1)</td>
<td>(1,0)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>
Choose an arbitrary bijection $\pi : Q_D \rightarrow B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A
- The state s_0 is not considered by π

Example

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>$(0, 0)$</td>
<td>$(0, 1)$</td>
<td>$(1, 0)$</td>
<td>$(1, 1)$</td>
</tr>
</tbody>
</table>
Choose an arbitrary bijection $\pi : Q_D \rightarrow B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A
- The state s_0 is not considered by π

Example

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>$(0, 0)$</td>
<td>$(0, 1)$</td>
<td>$(1, 0)$</td>
<td>$(1, 1)$</td>
</tr>
</tbody>
</table>
Choose an arbitrary bijection $\pi : Q_D \to B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a), a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k.
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A.
- The state s_0 is not considered by π.

Example

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>$(0,0)$</td>
<td>$(0,1)$</td>
<td>$(1,0)$</td>
<td>$(1,1)$</td>
</tr>
</tbody>
</table>
Choose an arbitrary bijection $\pi : Q_D \rightarrow B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a), a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A
- The state s_0 is not considered by π

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>$(0, 0)$</td>
<td>$(0, 1)$</td>
<td>$(1, 0)$</td>
<td>$(1, 1)$</td>
</tr>
</tbody>
</table>
Construction: Encoding

Choose an arbitrary bijection $\pi : Q_D \rightarrow B^k$ such that $\pi(q_0) = (0, \ldots, 0)$.

Identify $\pi(a)$, $a \in Q_D$, with an assignment of the states s_1, \ldots, s_k.

- This represents an encoding scheme of the states of the DFA A in B^k.
- $\pi(s)$ is chosen as $(0, \ldots, 0)$ because of the definition of F_A.
- The state s_0 is not considered by π.

<table>
<thead>
<tr>
<th>State of A</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment of s_1 and s_2 under π</td>
<td>$(0,0)$</td>
<td>$(0,1)$</td>
<td>$(1,0)$</td>
<td>$(1,1)$</td>
</tr>
</tbody>
</table>
Let $\theta_1(x) = x$ and $\theta_0(x) = \overline{x}$.

For s_i, $i \neq 0$, the transition function is constructed as:

$$g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a))_i \land \theta_{v_1}(u_1) \land \cdots \land \theta_{v_k}(u_k)).$$
Construction: Transition function

Let $\theta_1(x) = x$ and $\theta_0(x) = \overline{x}$.

For s_i, $i \neq 0$, the transition function is constructed as:

$$g(s_i, a, u) = \bigvee_{\nu \in B^k} (\pi(\delta(\pi^{-1}(\nu), a))_i \land \theta_{v_1}(u_1) \land \cdots \land \theta_{v_k}(u_k)).$$
Lemma

Let $z, x \in B$. Then $\theta_z(x) = 1$ if and only if $z = x$.

Proof.

\(\Rightarrow \) : Let $\theta_z(x)$ be 1.
- $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$, therefore $\bar{x} = 1$ and thus $x = 0$.

\(\Leftarrow \) : Let $z = x$:
- $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$ and therefore $\theta_z(x) = \bar{0} = 1$.

Matthias Hengel

Alternating Finite Automata
Lemma

Let \(z, x \in B \). Then \(\theta_z(x) = 1 \) if and only if \(z = x \).

Proof.

\[\Rightarrow \]: Let \(\theta_z(x) \) be 1.

- \(z = 1 \): Then \(\theta_z(x) = x \) and therefore \(x = 1 \).
- \(z = 0 \): Then \(\theta_z(x) = \bar{x} \), therefore \(\bar{x} = 1 \) and thus \(x = 0 \).

\[\Leftarrow \]: Let \(z = x \):

- \(z = 1 \): Then \(\theta_z(x) = x \) and therefore \(\theta_z(x) = 1 \).
- \(z = 0 \): Then \(\theta_z(x) = \bar{x} \) and therefore \(\theta_z(x) = \bar{0} = 1 \).
Lemma

Let $z, x \in B$. Then $\theta_z(x) = 1$ if and only if $z = x$.

Proof.

\Rightarrow: Let $\theta_z(x)$ be 1.
- $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$, therefore $\bar{x} = 1$ and thus $x = 0$.

\Leftarrow: Let $z = x$:
- $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$ and therefore $\theta_z(x) = \bar{0} = 1$.
Lemma

Let $z, x \in B$. Then $\theta_z(x) = 1$ if and only if $z = x$.

Proof.

\Rightarrow Let $\theta_z(x)$ be 1.
- $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$, therefore $\bar{x} = 1$ and thus $x = 0$.

\Leftarrow Let $z = x$:
- $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
- $z = 0$: Then $\theta_z(x) = \bar{x}$ and therefore $\theta_z(x) = \bar{0} = 1$.
Lemma

Let $z, x \in B$. Then $\theta_z(x) = 1$ if and only if $z = x$.

Proof.

\Rightarrow: Let $\theta_z(x)$ be 1.
- $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
- $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.

\Leftarrow: Let $z = x$:
- $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
- $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.
Construction: Lemma

Lemma

Let $z, x \in B$. Then $\theta_z(x) = 1$ if and only if $z = x$.

Proof.

"\Rightarrow": Let $\theta_z(x)$ be 1.
- $z = 1$: Then $\theta_z(x) = x$ and therefore $x = 1$.
- $z = 0$: Then $\theta_z(x) = \overline{x}$, therefore $\overline{x} = 1$ and thus $x = 0$.

"\Leftarrow": Let $z = x$:
- $z = 1$: Then $\theta_z(x) = x$ and therefore $\theta_z(x) = 1$.
- $z = 0$: Then $\theta_z(x) = \overline{x}$ and therefore $\theta_z(x) = \overline{0} = 1$.
Lemma

Let \(z, x \in B \). Then \(\theta_z(x) = 1 \) if and only if \(z = x \).

Proof.

\(\Rightarrow \): Let \(\theta_z(x) \) be 1.
- \(z = 1 \): Then \(\theta_z(x) = x \) and therefore \(x = 1 \).
- \(z = 0 \): Then \(\theta_z(x) = \overline{x} \), therefore \(\overline{x} = 1 \) and thus \(x = 0 \).

\(\Leftarrow \): Let \(z = x \):
- \(z = 1 \): Then \(\theta_z(x) = x \) and therefore \(\theta_z(x) = 1 \).
- \(z = 0 \): Then \(\theta_z(x) = \overline{x} \) and therefore \(\theta_z(x) = \overline{0} = 1 \).
Using the lemma the transition function can be rearranged as following:

\[
g(s_i, a, u) = \bigvee_{\nu \in B^k} (\pi(\delta(\pi^{-1}(v), a)))_i \land \theta_{v_1}(u_1) \land \cdots \land \theta_{v_k}(u_k))
\]

\[
= \pi(\delta(\pi^{-1}(u_1, \ldots, u_k), a))_i
\]

- The transition function \(g \) directly represents the transitions of \(A \) in the encoding scheme!
- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.
Using the lemma the transition function can be rearranged as following:

\[g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a)))_i \wedge \theta_{v_1}(u_1) \wedge \cdots \wedge \theta_{v_k}(u_k) \]

\[= \pi(\delta(\pi^{-1}(u_1, \ldots, u_k), a))_i \]

- The transition function \(g \) directly represents the transitions of \(A \) in the encoding scheme!

- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.
Using the lemma the transition function can be rearranged as following:

\[g(s_i, a, u) = \bigvee_{v \in B^k} (\pi(\delta(\pi^{-1}(v), a)))_i \wedge \theta_{v_1}(u_1) \wedge \ldots \wedge \theta_{v_k}(u_k) \]

\[= \pi(\delta(\pi^{-1}(u_1, \ldots, u_k), a))_i \]

- The transition function \(g \) directly represents the transitions of \(A \) in the encoding scheme!
- The reason for the initial notation is that in this way it can be represented more easily as a Boolean function.
Transition function: Details

For \(s_0 \) the transition function is constructed as:

\[
g(s_0, a, u) = \bigvee_{q \in F_D} \theta_{\pi(q)}(g(s_1, a, u)) \land \cdots \land \theta_{\pi(q)}(g(s_k, a, u))
\]

- Again we consider the lemma: \(g(s_0, a, u) \) is true iff the encoding of at least one of the final states of \(A \) is the current assignment of the AFA.
- Because of \(h(s_0, s_1, \ldots, s_k) = s_0 \), the state \(s_0 \) is the only state which needs to be considered for acceptance.
For s_0 the transition function is constructed as:

$$g(s_0, a, u) = \bigvee_{q \in F_D} \theta_{\pi(q)}(g(s_1, a, u)) \land \cdots \land \theta_{\pi(q)}(g(s_k, a, u))$$

- Again we consider the lemma: $g(s_0, a, u)$ is true iff the encoding of at least one of the final states of A is the current assignment of the AFA.

- Because of $h(s_0, s_1, \ldots, s_k) = s_0$, the state s_0 is the only state which needs to be considered for acceptance.
Transition function: Details

For s_0 the transition function is constructed as:

$$g(s_0, a, u) = \bigvee_{q \in F_D} \theta_{\pi(q)}(g(s_1, a, u)) \land \cdots \land \theta_{\pi(q)}(g(s_k, a, u))$$

- Again we consider the lemma: $g(s_0, a, u)$ is true iff the encoding of at least one of the final states of A is the current assignment of the AFA.
- Because of $h(s_0, s_1, \ldots, s_k) = s_0$, the state s_0 is the only state which needs to be considered for acceptance.
Construction: Transition function

Example

\[g(s_1, a, u) = \bigvee_{\nu \in B^k} (\pi(\delta(\pi^{-1}(\nu), a)))_1 \land \theta_{v_1}(u_1) \land \theta_{v_2}(u_2) \]

\[= (\pi(\delta(\pi^{-1}(00), a)))_1 \land \theta_0(u_1) \land \theta_0(u_2)) \]
\[\lor (\pi(\delta(\pi^{-1}(01), a)))_1 \land \theta_0(u_1) \land \theta_1(u_2)) \]
\[\lor (\pi(\delta(\pi^{-1}(10), a)))_1 \land \theta_1(u_1) \land \theta_0(u_2)) \]
\[\lor (\pi(\delta(\pi^{-1}(11), a)))_1 \land \theta_1(u_1) \land \theta_1(u_2)) \]

\[= (0 \land \overline{u}_1 \land \overline{u}_2) \lor (0 \land \overline{u}_1 \land u_2) \]
\[\lor (0 \land u_1 \land \overline{u}_2) \lor (1 \land u_1 \land u_2) \]

\[= u_1 \land u_2 \]
Construction: Transition function

Example

Overall the transition function is:

<table>
<thead>
<tr>
<th>g</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>u_1 ∧ u_2</td>
<td>u_1</td>
</tr>
<tr>
<td>s_1</td>
<td>u_1 ∧ u_2</td>
<td>u_1 ∨ u_2</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>u_1</td>
</tr>
</tbody>
</table>
Construction: Transition function

Example
Example run

Example

Consider the word $w = abb$.

- w is accepted by $A \iff w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector $(0, 0, 0)$
- Only the last two numbers of a vector encode the state, the first represents the state of s_0

$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0))))))$
Example run

Example

Consider the word \(w = abb \).

- \(w \) is accepted by \(A \) \(\iff \) \(w^R \) is accepted by the constructed AFA
- The word \(w \) is accepted iff \(h(g(w^R, f)) = 1 \), where \(f \) is the characteristic vector \((0, 0, 0)\)
- Only the last two numbers of a vector encode the state, the first represents the state of \(s_0 \)

\[
h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0))))))
\]
Example run

Example

Consider the word $w = abb$.

- w is accepted by $A \iff w^R$ is accepted by the constructed AFA
- The word w is accepted iff $h(g(w^R, f)) = 1$, where f is the characteristic vector $(0, 0, 0)$
- Only the last two numbers of a vector encode the state, the first represents the state of s_0

$h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))$
Example run

Example

Consider the word \(w = abb \).

- \(w \) is accepted by \(A \) ⇔ \(w^R \) is accepted by the constructed AFA
- The word \(w \) is accepted iff \(h(g(w^R, f)) = 1 \), where \(f \) is the characteristic vector \((0, 0, 0)\)
- Only the last two numbers of a vector encode the state, the first represents the state of \(s_0 \)

\[
h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0)))))
\]
Example run

Consider the word \(w = abb \).

- \(w \) is accepted by \(A \iff w^R \) is accepted by the constructed AFA
- The word \(w \) is accepted iff \(h(g(w^R, f)) = 1 \), where \(f \) is the characteristic vector \((0, 0, 0)\)
- Only the last two numbers of a vector encode the state, the first represents the state of \(s_0 \)

\[
h(g(bba, f)) = h(g(b, g(b, g(a, (0, 0, 0))))))
\]
Example run

Example

\[h(g(bba, f)) = h(g(b, g(b, (0, 0, 1)))) \]
Example run

Example

\[h(g(bba, f)) = h(g(b, (0, 1, 0)) \]

![Diagram of an automaton with states and transitions](image)
Example run

Example

\[h(g(bba, f)) = h(1, 1, 1) = 1 \]
Bit-wise implementation
Transformation DFA to AFA: Observations

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there an efficient representation of Boolean functions?
Transformation DFA to AFA: Observations

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there a efficient representation of Boolean functions?
Transformation DFA to AFA: Observations

- Complexity of states of the DFA is transformed to complexity of the transition function of the AFA
- How can the transition function be represented efficiently?
- Is there an efficient representation of Boolean functions?
Basic definitions

Let $S = \{x_1, \ldots, x_n\}$ a set of Boolean variables, and $\bar{S} = \{\bar{x}_1, \ldots, \bar{x}_n\}$.

Definition

A term t defined on $S \cup \bar{S}$ is a conjunction

$$t = y_1 \land \cdots \land y_k, \quad 1 \leq k \leq n$$

where $y_i \in S \cup \bar{S}$, $y_i \neq y_j$, $y_i \neq \bar{y}_j$ for $1 \leq i < j \leq k$, or t is constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if

$$f = \bigvee_{i=1}^{k} t_i,$$

where $t_i, \ i = 1, \ldots, k$, is a term defined on $S \cup \bar{S}$.
Basic definitions

Let $S = \{x_1, \ldots, x_n\}$ a set of Boolean variables, and $\overline{S} = \{\overline{x_1}, \ldots, \overline{x_n}\}$.

Definition

A term t defined on $S \cup \overline{S}$ is a conjunction

$$t = y_1 \land \cdots \land y_k, \ 1 \leq k \leq n$$

where $y_i \in S \cup \overline{S}$, $y_i \neq y_j$, $y_i \neq \overline{y_j}$ for $1 \leq i < j \leq k$, or t is constant.

Definition

A Boolean expression f is said to be in disjunctive normal form if $f = \bigvee_{i=1}^{k} t_i$, where t_i, $i = 1, \ldots, k$, is a term defined on $S \cup \overline{S}$.
Theorem: Bit-wise representation of Boolean functions

For every Boolean function f defined on S that can be expressed as a single term, there exist two n-bit vectors α and β such that for all $u \in B^n$

$$f(u) = 1 \iff (\alpha \& u) \uparrow \beta = 0$$

where $\&$ is the bit-wise AND operator, \uparrow the bit-wise exclusive-or operator, and 0 is the zero vector $(0, \ldots, 0) \in B^n$.

Using this theorem we can represent a term of a Boolean function as two n-bit integers.
Theorem: Bit-wise representation of Boolean functions

For every Boolean function f defined on S that can be expressed as a single term, there exist two n-bit vectors α and β such that for all $u \in B^n$

$$f(u) = 1 \Leftrightarrow (\alpha \& u) \uparrow \beta = 0$$

where $\&$ is the bit-wise AND operator, \uparrow the bit-wise exclusive-or operator, and 0 is the zero vector $(0, \ldots, 0) \in B^n$.

Using this theorem we can represent a term of a Boolean function as two n-bit integers.
Proof.

Let $f = y_{i_1} \land \cdots \land y_{i_k}$, where $y_{i_j} = x_{i_j}$ or \overline{x}_{i_j}, $i_j \neq i_{j'}$ for $j \neq j'$. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ be defined as follows:

- $\alpha_i = 1$ iff x_i or \overline{x}_i appears in f
- $\beta_i = 1$ iff x_i appears in f

Then $(\alpha \land u)_i = 1 \iff u_i = 1$ and $(x_i$ or \overline{x}_i appears in f).

- Case 1: Neither x_i nor \overline{x}_i appear in f, then $((\alpha \land u) \uparrow \beta)_i = 0$
- Case 2: x_i appears in f, then $((\alpha \land u) \uparrow \beta)_i = 0$ iff $u_i = 1$
- Case 3: \overline{x}_i appears in f, then $((\alpha \land u) \uparrow \beta)_i = 0$ iff $u_i = 0$

All in all $f(u) = 1$ iff $(\alpha \land u) \uparrow \beta = 0$.

\[\square\]
Proof.

Let $f = y_{i_1} \land \cdots \land y_{i_k}$, where $y_{ij} = x_{ij}$ or $\overline{x_{ij}}$, $i_j \neq i_{j'}$ for $j \neq j'$. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ be defined as follows:

- $\alpha_i = 1$ iff x_i or $\overline{x_i}$ appears in f
- $\beta_i = 1$ iff x_i appears in f

Then $(\alpha \& u)_i = 1 \iff u_i = 1$ and $(x_i$ or $\overline{x_i}$ appears in f).

- Case 1: Neither x_i nor $\overline{x_i}$ appear in f, then $((\alpha \& u) \uparrow \beta)_i = 0$
- Case 2: x_i appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$
- Case 3: $\overline{x_i}$ appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$

All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

\[\square\]
Proof

Let \(f = y_{i_1} \land \cdots \land y_{i_k} \), where \(y_{i_j} = x_{i_j} \) or \(\overline{x}_{i_j} \), \(i_j \neq i_{j'} \) for \(j \neq j' \).

Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) be defined as follows:

- \(\alpha_i = 1 \) iff \(x_i \) or \(\overline{x}_i \) appears in \(f \)
- \(\beta_i = 1 \) iff \(x_i \) appears in \(f \)

Then \((\alpha \land u)_i = 1 \iff u_i = 1 \) and \((x_i \text{ or } \overline{x}_i \text{ appears in } f)\).

- Case 1: Neither \(x_i \) nor \(\overline{x}_i \) appear in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \)
- Case 2: \(x_i \) appears in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \iff u_i = 1 \)
- Case 3: \(\overline{x}_i \) appears in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \iff u_i = 0 \)

All in all \(f(u) = 1 \iff (\alpha \land u) \uparrow \beta = 0 \).
Proof.

Let \(f = y_{i_1} \land \cdots \land y_{i_k} \), where \(y_{i_j} = x_{i_j} \) or \(\overline{x_{i_j}} \), \(i_j \neq i_{j'} \) for \(j \neq j' \).

Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) be defined as follows:

- \(\alpha_i = 1 \) iff \(x_i \) or \(\overline{x_i} \) appears in \(f \)
- \(\beta_i = 1 \) iff \(x_i \) appears in \(f \)

Then \((\alpha \land u)_i = 1 \iff u_i = 1 \) and \((x_i \text{ or } \overline{x_i} \text{ appears in } f) \).

- Case 1: Neither \(x_i \) nor \(\overline{x_i} \) appear in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \)
- Case 2: \(x_i \) appears in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \) iff \(u_i = 1 \)
- Case 3: \(\overline{x_i} \) appears in \(f \), then \(((\alpha \land u) \uparrow \beta)_i = 0 \) iff \(u_i = 0 \)

All in all \(f(u) = 1 \) iff \((\alpha \land u) \uparrow \beta = 0 \).
Proof.

Let \(f = y_{i_1} \land \cdots \land y_{i_k} \), where \(y_{i_j} = x_{i_j} \) or \(\overline{x_{i_j}} \), \(i_j \neq i_{j'} \) for \(j \neq j' \).

Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) be defined as follows:

- \(\alpha_i = 1 \) iff \(x_i \) or \(\overline{x_i} \) appears in \(f \)
- \(\beta_i = 1 \) iff \(x_i \) appears in \(f \)

Then \((\alpha \& u)_i = 1 \iff u_i = 1 \) and (\(x_i \) or \(\overline{x_i} \) appears in \(f \)).

- Case 1: Neither \(x_i \) nor \(\overline{x_i} \) appear in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \)
- Case 2: \(x_i \) appears in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \) iff \(u_i = 1 \)
- Case 3: \(\overline{x_i} \) appears in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \) iff \(u_i = 0 \)

All in all \(f(u) = 1 \) iff \((\alpha \& u) \uparrow \beta = 0 \).
Proof.

Let \(f = y_{i_1} \land \cdots \land y_{i_k} \), where \(y_{ij} = x_{ij} \) or \(\overline{x}_{ij} \), \(i_j \neq i_{j'} \) for \(j \neq j' \).

Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) be defined as follows:

- \(\alpha_i = 1 \) iff \(x_i \) or \(\overline{x}_i \) appears in \(f \)
- \(\beta_i = 1 \) iff \(x_i \) appears in \(f \)

Then \((\alpha \& u)_i = 1 \iff u_i = 1 \) and \((x_i \text{ or } \overline{x}_i \text{ appears in } f) \).

- Case 1: Neither \(x_i \) nor \(\overline{x}_i \) appear in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \)
- Case 2: \(x_i \) appears in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \) iff \(u_i = 1 \)
- Case 3: \(\overline{x}_i \) appears in \(f \), then \(((\alpha \& u) \uparrow \beta)_i = 0 \) iff \(u_i = 0 \)

All in all \(f(u) = 1 \iff (\alpha \& u) \uparrow \beta = 0 \).
Proof.

Let $f = y_{i_1} \land \cdots \land y_{i_k}$, where $y_{ij} = x_{ij}$ or \overline{x}_{ij}, $i_j \neq i_{j'}$ for $j \neq j'$. Let $\alpha = (\alpha_1, \ldots, \alpha_n)$ and $\beta = (\beta_1, \ldots, \beta_n)$ be defined as follows:

- $\alpha_i = 1$ iff x_i or \overline{x}_i appears in f.
- $\beta_i = 1$ iff x_i appears in f.

Then $(\alpha \& u)_i = 1 \iff u_i = 1$ and $(x_i$ or \overline{x}_i appears in f).

- Case 1: Neither x_i nor \overline{x}_i appear in f, then $((\alpha \& u) \uparrow \beta)_i = 0$.
- Case 2: x_i appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 1$.
- Case 3: \overline{x}_i appears in f, then $((\alpha \& u) \uparrow \beta)_i = 0$ iff $u_i = 0$.

All in all $f(u) = 1$ iff $(\alpha \& u) \uparrow \beta = 0$.

\[\blacksquare\]
Consider $f(u_1, u_2) = u_1 \land \overline{u_2}$. Then:

- $\alpha = (1, 1)$
- $\beta = (1, 0)$

Therefore:

\[
f(1, 0) = (\alpha \& (1, 0)) \uparrow \beta \\
= ((1, 1)\&(1, 0)) \uparrow (1, 0) \\
= (1, 0) \uparrow (1, 0) \\
= (0, 0)
\]
Consider $f(u_1, u_2) = u_1 \land \overline{u_2}$. Then:

- $\alpha = (1, 1)$
- $\beta = (1, 0)$

Therefore:

$$f(1, 0) = (\alpha \& (1, 0)) \uparrow \beta$$
$$= ((1, 1) \& (1, 0)) \uparrow (1, 0)$$
$$= (1, 0) \uparrow (1, 0)$$
$$= (0, 0)$$
Example

Consider \(f(u_1, u_2) = u_1 \land \overline{u_2} \). Then:

- \(\alpha = (1, 1) \)
- \(\beta = (1, 0) \)

Therefore:

\[
\begin{align*}
f(1, 0) &= (\alpha \& (1, 0)) \uparrow \beta \\
&= ((1, 1) \& (1, 0)) \uparrow (1, 0) \\
&= (1, 0) \uparrow (1, 0) \\
&= (0, 0)
\end{align*}
\]
Theorem: Example

Example

Consider \(f(u_1, u_2) = u_1 \land \overline{u_2} \). Then:

- \(\alpha = (1, 1) \)
- \(\beta = (1, 0) \)

Therefore:

\[
\begin{align*}
f(1, 0) &= (\alpha \& (1, 0)) \uparrow \beta \\
&= ((1, 1) \& (1, 0)) \uparrow (1, 0) \\
&= (1, 0) \uparrow (1, 0) \\
&= (0, 0)
\end{align*}
\]
Consider again the transition function (and the transition function of the DFA):

<table>
<thead>
<tr>
<th>g</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>$u_1 \land u_2$</td>
<td>u_1</td>
</tr>
<tr>
<td>s_1</td>
<td>$u_1 \land u_2$</td>
<td>$u_1 \lor u_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>u_1</td>
</tr>
</tbody>
</table>

This gives the following representation (compared to the DFA):

<table>
<thead>
<tr>
<th>State</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>q_1</td>
<td>q_0</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1</td>
<td>q_2</td>
</tr>
<tr>
<td>q_2</td>
<td>q_1</td>
<td>q_3</td>
</tr>
<tr>
<td>q_3</td>
<td>q_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>g</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_0</td>
<td>$((11), (11))$</td>
<td>$((10), (10))$</td>
</tr>
<tr>
<td>s_1</td>
<td>$((11), (11))$</td>
<td>$((10), (10)), ((01), (01))$</td>
</tr>
<tr>
<td>s_2</td>
<td>$((00), (00))$</td>
<td>$((10), (10))$</td>
</tr>
</tbody>
</table>
Consider again the transition function (and the transition function of the DFA):

<table>
<thead>
<tr>
<th>g</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>(u₁ \land u₂)</td>
<td>(u₁)</td>
</tr>
<tr>
<td>s₁</td>
<td>(u₁ \land u₂)</td>
<td>(u₁ \lor u₂)</td>
</tr>
<tr>
<td>s₂</td>
<td>1</td>
<td>(u₁)</td>
</tr>
</tbody>
</table>

This gives the following representation (compared to the DFA):

<table>
<thead>
<tr>
<th>g</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>s₀</td>
<td>(((11),(11)))</td>
<td>(((10),(10)))</td>
</tr>
<tr>
<td>s₁</td>
<td>(((11),(11)))</td>
<td>(((10),(10)), ((01),(01)))</td>
</tr>
<tr>
<td>s₂</td>
<td>(((00),(00)))</td>
<td>(((10),(10)))</td>
</tr>
</tbody>
</table>
Example: 2^{32} state DFA

- A DFA A with 2^{32} states can be represented as an AFA A' with 32 states
- The transition function g of A' can be represented as a $32 \times |\Sigma|$-Matrix, where Σ is the input alphabet of A and A'
- Every entry of the matrix representation of g can be represented as a List of pairs of integers
- All this results in an efficient way for representing DFAs
A DFA A with 2^{32} states can be represented as an AFA A' with 32 states.

The transition function g of A' can be represented as a $32 \times |\Sigma|$-Matrix, where Σ is the input alphabet of A and A'.

Every entry of the matrix representation of g can be represented as a List of pairs of integers.

All this results in an efficient way for representing DFAs.
Example: 2^{32} state DFA

- A DFA A with 2^{32} states can be represented as an AFA A' with 32 states.
- The transition function g of A' can be represented as a $32 \times |\Sigma|$-Matrix, where Σ is the input alphabet of A and A'.
- Every entry of the matrix representation of g can be represented as a List of pairs of integers.
- All this results in an efficient way for representing DFAs.
Example: 2^{32} state DFA

- A DFA A with 2^{32} states can be represented as an AFA A' with 32 states.
- The transition function g of A' can be represented as a $32 \times |\Sigma|$-Matrix, where Σ is the input alphabet of A and A'.
- Every entry of the matrix representation of g can be represented as a List of pairs of integers.
- All this results in an efficient way for representing DFAs.
Conclusion
Conclusion

- AFAs are an efficient way to represent DFAs
 - It is even more efficient using a bit-wise representation of the transition function

Furthermore:
- Operations like the star operation, concatenation or reversal can also be implemented more efficiently
Conclusion

- AFAs are an efficient way to represent DFAs
- It is even more efficient using a bit-wise representation of the transition function

Furthermore:
- Operations like the star operation, concatenation or reversal can also be implemented more efficiently
Conclusion

- AFAs are an efficient way to represent DFAs
- It is even more efficient using a bit-wise representation of the transition function

Furthermore:
- Operations like the star operation, concatenation or reversal can also be implemented more efficiently
Literatur

Huerter, Sandra, Kai Salomaa, Xiuming Wu und Sheng Yu: *Implementing Reversed Alternating Finite Automaton (r-AFA) Operations.*
In: Champarnaud, Jean-Marc et al. [CMZ99], Seiten 69–81.

Salomaa, Kai, Xiuming Wu und Sheng Yu: *Efficient Implementation of Regular Languages Using R-AFA.*
Literatur
