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= Not accepted.
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Accepting with NFAs

Example: ababa{qi, g2}

b a,b

O C

At least one accepting state = Accepted.
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» NFAs look more general than DFAs,

> but accept the same class of languages.

Can it be even more general?
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If we know:

and we know

Then

= Reading a =

= Reading a =

= Reading a =

The transition can be more general!
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Acceptance condition

» DFAs accept iff the run ends in a final state.

» NFAs accept iff the run ends in a set containing at least one
final state.

» More general: A function h deciding acceptance for each
subset of Q:

h:29 — {0,1}
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Formal definition: h-AFA & r-AFA

An h-AFA/r-AFA is a 5-tuple (Q, X, g, h, F), where

> (@ is the finite set of states,

v

2 is the input alphabet,

g:QxXx 2Q {0,1} is the transition function,
h:2®@ — {0,1} is the accepting function and

F C Q is the set of final states.

f € {0,1}9 is the to F corresponding vector, e.g.

v

v

v

v

Q - {q17 42,43, 44, q5}7 F= {Q27 Q3}
~f=(0 ,1,1,0 ,0)
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Formal definition: h-AFA & r-AFA

» The transition function g : Q x ¥ x 29 — {0,1} is
universalized from getting just one letter as an input to a
whole word:

> g(q7€a V) = Vq
> g(q,aw,v) = g(q,a,g(w,v))
> Notation: g(w,v) = (g(q,w,V)),cq-
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Acceptance

An input w is accepted by an h-AFA iff
h(g(w,f)) =1
and by an r-AFA iff

h(g(WR, f)=1.
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Example: r-AFA

Let A=(Q,X,g,h, F) be an r-AFA with
» Q@={q1, 9},
» ¥ ={a, b},

F={qg} f=(01)

h(qi,q2) =q1V ¢

» and g is given by

v

v

g(a,(g1,92)) = (01 V2,1 A q2)
g(b,(q1,92)) = (1 AN G2, q1 V q2)
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Example: r-AFA

Let w = ab, then w is accepted by A as follows:

h(g(wR, ) = h(g(ba, f))
= h(g(b, g(av f)))
= h(g(b, g(a,(0,1))))
= h(g(b,(0V1,0A1)))
= h((0A0,0V0))
= h((0,1))
=0Vvl=1

g(a,(q1,92)) = (a1 V @2, 91 A\ G2)
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Equivalence of DFAs and r-AFAs: “DFA = r-AFA”

Let Ap = (Qp,X,d,s, Fp) be a DFA. Let Ap = (Qa, X, g, h, Fa)
be an r-AFA with:

» Qa=Qp

> Fa={s}

» g(g,a,v)=1<3peQp. v, =1A0(p,a) =¢q

» h(v)=1&3geFp.vg=1
Then L(Ap) = L(Ag).

Highly inefficient (see next talk)
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Equivalence of DFAs and r-AFAs: “r-AFA = DFA":

Let Ap = (Qa, X, g, h, Fa) be an r-AFA. The DFA
Ap = (Qp, X, 0,s, Fp) is defined as follows:
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Equivalence of DFAs and r-AFAs: “r-AFA = DFA":

Let Ap = (Qa, X, g, h, Fa) be an r-AFA. The DFA
Ap = (Qp, X, 0,s, Fp) is defined as follows:

» Qp :={0,1}%.
> s :=fa.

» g and h as in the next slide.
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Example:

g(a7 (q17 q2)) = (ql \/57@/\@)
g(b’ (q17 q2)) = (ql /\@,ﬁ \% CI2)
F={a}, hlq,e)=aVaqe

And so on...
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Equivalence of DFAs and r-AFAs

r-AFAs ~ regular languages
Regular languages are closed under reversion

= h-AFAs ~ regular languages



Concatenation of two r-AFAs

Two r-AFAs:
Al = (Q1,X, 81, h1, F1), A= (Q2, X, 82,2, F2)
-
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Concatenation of two r-AFAs

Two r-AFAs:

A= (Q1, X, 81, M, F1), Ax=(Q2, X, g, hp, F2)

Target: -AFA A= (Q, X, g, h, F) with L(A) = L(A1) - L(A2).
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Concatenation of two r-AFAs: ldea

Zacatecase catecase €case case

Ai: Za Ap: Zacat Aj1: Zacate
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Concatenation of two r-AFAs: Definitions

Let n:= |Q1] and m :=|Qz|, w.l.o.g m# 0 and n # 0. Then we
need:

» n states to simulate the one run of Aj.

» 2™ states to simulate each run in parallel - for each subset of
Q@> we store if there's a copy of A in exactly these states.

Q — {qO: «++yqn-1,P0; -+, P2’”—1}

g

n states m states

Each subset x € 29 s associated to a state Px-
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Concatenation of two r-AFAs: Where to start?

If ¢ ¢ L(A1) A should be forced to start with A;: F = Fq,

otherwise it can also directly launch a copy of A ,formally:

F=F U{ps}
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Concatenation of two r-AFAs: Accepting

h has only to care for Ay, formally:

h(v)=1 & 3xe€[0,2" —1]. vppx =1Ah(x) =1
——

~ Px

A1: Zacat



Concatenation of two r-AFAs: g on the first n states

A has to run Aj on the whole input word without any possibility of
interruption:

g(a7 V)|Q1 = gl(av V|Q1)
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Concatenation of two r-AFAs: g on the last 2 states

Copies of Ap should work parallel on the states py (k > 0)

= pk should be reached from p;
iff
A reaches k from j.
formally:

Forall k >0,k #£ £,

g(pk)aa V):l g 3_]6[0,2’"71] Vn+j:1/\g2(a7.j):k



Concatenation of two r-AFAs: Special treatment for py,

The state py, can be reached:



Concatenation of two r-AFAs: Special treatment for py,

The state py, can be reached:
» as before and



Concatenation of two r-AFAs: Special treatment for py,

The state py, can be reached:
> as before and

» if A; accepts a substring.



Concatenation of two r-AFAs: Special treatment for py,

The state py, can be reached:
» as before and
» if A; accepts a substring.

Formally:

g(pf27a7 V):l Aad (Elje [072m_1] Vn+j:1/\g2(a7.j):f2)
Vhi(g(a,v)lq) =1



Concatenation of two r-AFAs

Then L(A) = L(A;) - L(Ay).
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alternating finite automata, K. Salomaa, X. Wu, S. Yu,
Theoretical Computer Science, Elsevier, 17 January 2000

» Implementing Reversed Alternating Finite Automaton (r-AFA)
Operations, S. Huerter, K. Salomaa, Xiuming Wu, S. Yu

Pictures:
» Aj: Larry D. Moore CC BY-SA 3.0.
» Ay: Disney/Pixar



Thank you!
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Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states
in parallel.

= For both the intersection and the union of two AFAs A; and
Az, one can run both AFAs in one AFA A= (Q,X,g,h, F):

» Q=1 UQ

> g(q 3 U)I g1(q,37U|Q1) qec @1
o gQ(q7avu’Qz) qge @



Additional operations: Union and intersection

Acceptance-checking for AFAs allows working with multiple states
in parallel.

= For both the intersection and the union of two AFAs A; and
Az, one can run both AFAs in one AFA A= (Q,X,g,h, F):

» Q=0 UQ
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» h= hy V hy (union) resp. h = hy A hy (intersection).

» F=FUF



Additional operations: Complemet

For the complement B of an AFA A, define hg = ha.
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