Introduction to Alternating Finite Automata

Pascal Raiola

July 24th, 2013

Outline

- 1. Accepting with DFAs and NFAs
- 2. Generalization
- 3. Alternating finite automata (AFA)
- 4. Concatenation of two AFAs

Example: ababa

Example: q₁ababa

Example: aq2baba

Example: abq2aba

Example: $abaq_1ba$

Example: ababq1a

Example: ababaq₂

Example: ababaq2

 \Rightarrow Not accepted.

Example: ababa

Example: $\{q_1\}$ ababa

Example: $a\{q_2\}$ baba

Example: $ab\{q_2\}aba$

Example: $aba\{q_1, q_2\}ba$

Example: $abab\{q_1,q_2\}a$

Example: $ababa\{q_1, q_2\}$

Example: $ababa\{q_1, q_2\}$

At least one accepting state \Rightarrow Accepted.

▶ NFAs look more general than DFAs,

- ▶ NFAs look more general than DFAs,
- but accept the same class of languages.

- NFAs look more general than DFAs,
- but accept the same class of languages.

Can it be even more general?

If we know:

If we know:

If we know:

 \Rightarrow Reading $a \Rightarrow$

 \Rightarrow Reading $a \Rightarrow$

 \Rightarrow Reading $a \Rightarrow$ q_2 q_3

and we know

 \Rightarrow Reading $a \Rightarrow$

Then

 q_2

Then

 q_2

The transition can be more general!

Acceptance condition

▶ DFAs accept iff the run ends in a final state.

Acceptance condition

- ▶ DFAs accept iff the run ends in a final state.
- NFAs accept iff the run ends in a set containing at least one final state.

Acceptance condition

- DFAs accept iff the run ends in a final state.
- ► NFAs accept iff the run ends in a set containing at least one final state.
- ▶ More general: A function h deciding acceptance for each subset of Q:

$$h:2^Q\to\{0,1\}$$

Formal definition: h-AFA & r-AFA

An h-AFA/r-AFA is a 5-tuple (Q, Σ, g, h, F) , where

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,

Formal definition: h-AFA & r-AFA

An h-AFA/r-AFA is a 5-tuple (Q, Σ, g, h, F) , where

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,
- ▶ $g: Q \times \Sigma \times 2^Q \rightarrow \{0,1\}$ is the transition function,

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,
- ▶ $g: Q \times \Sigma \times 2^Q \rightarrow \{0,1\}$ is the transition function,
- ▶ $h: 2^Q \rightarrow \{0,1\}$ is the accepting function and

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,
- ▶ $g: Q \times \Sigma \times 2^Q \rightarrow \{0,1\}$ is the transition function,
- ▶ $h: 2^Q \rightarrow \{0,1\}$ is the accepting function and
- ▶ $F \subseteq Q$ is the set of final states.

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,
- ▶ $g: Q \times \Sigma \times 2^Q \rightarrow \{0,1\}$ is the transition function,
- $h:2^Q o \{0,1\}$ is the accepting function and
- F ⊆ Q is the set of final states.
- ▶ $f \in \{0,1\}^Q$ is the to F corresponding vector, e.g.

- Q is the finite set of states,
- $ightharpoonup \Sigma$ is the input alphabet,
- ▶ $g: Q \times \Sigma \times 2^Q \rightarrow \{0,1\}$ is the transition function,
- $h: 2^Q \to \{0,1\}$ is the accepting function and
- ▶ $F \subseteq Q$ is the set of final states.
- ▶ $f \in \{0,1\}^Q$ is the to F corresponding vector, e.g.

$$Q = \{q_1, q_2, q_3, q_4, q_5\}, F = \{q_2, q_3\}$$

$$\Rightarrow f = (0, 1, 1, 0, 0)$$

► The transition function $g: Q \times \Sigma \times 2^Q \to \{0,1\}$ is universalized from getting just one letter as an input to a whole word:

- ► The transition function $g: Q \times \Sigma \times 2^Q \to \{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $ightharpoonup g(q, \varepsilon, v) = v_q$

- ► The transition function $g: Q \times \Sigma \times 2^Q \to \{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $ightharpoonup g(q, \varepsilon, v) = v_q$
- g(q,aw,v) = g(q,a,g(w,v))

- ► The transition function $g: Q \times \Sigma \times 2^Q \to \{0,1\}$ is universalized from getting just one letter as an input to a whole word:
- $g(q, \varepsilon, v) = v_q$
- g(q, aw, v) = g(q, a, g(w, v))
- ▶ Notation: $g(w, v) := (g(q, w, v))_{q \in Q}$.

Acceptance

An input w is accepted by an h-AFA iff

$$h(g(w,f))=1$$

Acceptance

An input w is accepted by an h-AFA iff

$$h(g(w,f))=1$$

and by an r-AFA iff

$$h(g(w^R,f))=1.$$

Let $A = (Q, \Sigma, g, h, F)$ be an r-AFA with

- $ightharpoonup Q = \{q_1, q_2\},$
- \triangleright $\Sigma = \{a, b\},$
- ▶ $F = \{q_2\}, f = (0,1)$

Let $A = (Q, \Sigma, g, h, F)$ be an r-AFA with

- $ightharpoonup Q = \{q_1, q_2\},$
- \triangleright $\Sigma = \{a, b\},$
- $F = \{q_2\}, f = (0,1)$
- $h(q_1,q_2) = \overline{q_1} \vee q_2$

Let $A = (Q, \Sigma, g, h, F)$ be an r-AFA with

- $P Q = \{q_1, q_2\},\$
- \triangleright $\Sigma = \{a, b\},\$
- $F = \{q_2\}, f = (0,1)$
- $h(q_1,q_2) = \overline{q_1} \vee q_2$
- ▶ and g is given by

$$g(a,(q_1,q_2)) = (q_1 \vee \overline{q_2}, \overline{q_1} \wedge \overline{q_2})$$

 $g(b,(q_1,q_2)) = (q_1 \wedge \overline{q_2}, \overline{q_1} \vee q_2)$

$$h(g(w^R, f))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee \overline{q_2},\overline{q_1}\wedge \overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge \overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^R, f)) = h(g(ba, f))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee \overline{q_2},\overline{q_1}\wedge \overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge \overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^R, f)) = h(g(ba, f))$$
$$= h(g(b, g(a, f)))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^R, f)) = h(g(ba, f))$$

= $h(g(b, g(a, f)))$
= $h(g(b, g(a, (0, 1))))$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$= h(g(b, (0, 0)))$$

$$egin{aligned} gig(a,(q_1,q_2)ig) &= ig(q_1 ee \overline{q_2},\overline{q_1} \wedge \overline{q_2}ig) \ gig(b,(q_1,q_2)ig) &= ig(q_1 \wedge \overline{q_2},\overline{q_1} ee q_2ig) \ hig(q_1,q_2ig) &= \overline{q_1} ee q_2, \ f &= ig(0,1ig) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$= h(g(b, (0, 0)))$$

$$= h((0 \land \overline{0}, \overline{0} \lor \overline{0}))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$= h(g(b, (0, 0)))$$

$$= h((0 \land \overline{0}, \overline{0} \lor \overline{0}))$$

$$= h((0, 1))$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$= h(g(b, (0, 0)))$$

$$= h((0 \land \overline{0}, \overline{0} \lor \overline{0}))$$

$$= h((0, 1))$$

$$= \overline{0} \lor 1$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

$$h(g(w^{R}, f)) = h(g(ba, f))$$

$$= h(g(b, g(a, f)))$$

$$= h(g(b, g(a, (0, 1))))$$

$$= h(g(b, (0 \lor \overline{1}, \overline{0} \land \overline{1})))$$

$$= h(g(b, (0, 0)))$$

$$= h((0 \land \overline{0}, \overline{0} \lor \overline{0}))$$

$$= h((0, 1))$$

$$= \overline{0} \lor 1 = 1$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ h(q_1,q_2)&=\overline{q_1}ee q_2,\ f=(0,1) \end{aligned}$$

- $ightharpoonup Q_A = Q_D$
- $F_A = \{s\}$

- $ightharpoonup Q_A = Q_D$
- ▶ $F_A = \{s\}$

- $ightharpoonup Q_A = Q_D$
- ▶ $F_A = \{s\}$
- $h(v) = 1 \Leftrightarrow \exists q \in F_D. \ v_q = 1$

Let $A_D = (Q_D, \Sigma, \delta, s, F_D)$ be a DFA. Let $A_A = (Q_A, \Sigma, g, h, F_A)$ be an r-AFA with:

- $ightharpoonup Q_A = Q_D$
- ▶ $F_A = \{s\}$
- $h(v) = 1 \Leftrightarrow \exists q \in F_D. \ v_q = 1$

Then $L(A_D) = L(A_A)$.

Let $A_D = (Q_D, \Sigma, \delta, s, F_D)$ be a DFA. Let $A_A = (Q_A, \Sigma, g, h, F_A)$ be an r-AFA with:

- $ightharpoonup Q_A = Q_D$
- ▶ $F_A = \{s\}$
- \blacktriangleright $h(v) = 1 \Leftrightarrow \exists q \in F_D. \ v_q = 1$

Then $L(A_D) = L(A_A)$.

Highly inefficient (see next talk)

Let $A_A=(Q_A,\Sigma,g,h,F_A)$ be an r-AFA. The DFA $A_D=(Q_D,\Sigma,\delta,s,F_D)$ is defined as follows:

Let $A_A = (Q_A, \Sigma, g, h, F_A)$ be an r-AFA. The DFA $A_D = (Q_D, \Sigma, \delta, s, F_D)$ is defined as follows:

Let $A_A = (Q_A, \Sigma, g, h, F_A)$ be an r-AFA. The DFA $A_D = (Q_D, \Sigma, \delta, s, F_D)$ is defined as follows:

- $Q_D := \{0,1\}^{Q_A}.$
- \triangleright $s := f_A$.

Let $A_A=(Q_A,\Sigma,g,h,F_A)$ be an r-AFA. The DFA $A_D=(Q_D,\Sigma,\delta,s,F_D)$ is defined as follows:

- $Q_D := \{0,1\}^{Q_A}.$
- \triangleright $s := f_A$.
- g and h as in the next slide.

Example:

$$egin{aligned} g(\mathsf{a},(q_1,q_2)) &= (q_1 ee \overline{q_2},\overline{q_1} \wedge \overline{q_2}) \ g(b,(q_1,q_2)) &= (q_1 \wedge \overline{q_2},\overline{q_1} ee q_2) \ F &= \{q_2\}, \qquad h(q_1,q_2) &= \overline{q_1} ee q_2 \end{aligned}$$

Example:

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

$$\left\langle \begin{array}{l} q_1=0, \\ q_2=0 \end{array} \right\rangle$$

$$q_1 = 0,$$

$$q_2 = 1$$

$$egin{pmatrix} q_1=1, \ q_2=0 \end{pmatrix}$$

$$egin{pmatrix} q_1=1,\ q_2=1 \end{pmatrix}$$

Example:

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee \overline{q_2},\overline{q_1}\wedge \overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge \overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

$$egin{aligned} g(a,(q_1,q_2)) &= (q_1 ee \overline{q_2},\overline{q_1} \wedge \overline{q_2}) \ g(b,(q_1,q_2)) &= (q_1 \wedge \overline{q_2},\overline{q_1} ee q_2) \ F &= \{q_2\}, \qquad h(q_1,q_2) &= \overline{q_1} ee q_2 \end{aligned}$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2\end{aligned}$$

$$g(a,(q_1,q_2)) = (q_1 \lor \overline{q_2}, \overline{q_1} \land \overline{q_2})$$

 $g(b,(q_1,q_2)) = (q_1 \land \overline{q_2}, \overline{q_1} \lor q_2)$
 $F = \{q_2\}, \quad h(q_1,q_2) = \overline{q_1} \lor q_2$

$$g(a,(q_1,q_2)) = (q_1 \lor \overline{q_2}, \overline{q_1} \land \overline{q_2})$$
 $g(b,(q_1,q_2)) = (q_1 \land \overline{q_2}, \overline{q_1} \lor q_2)$
 $F = \{q_2\}, \quad h(q_1,q_2) = \overline{q_1} \lor q_2$
 $q_1 = 0, q_2 = 0$
 $q_1 = 1, q_2 = 0$
 $q_1 = 1, q_2 = 1$

$$g(a,(q_1,q_2)) = (q_1 \lor \overline{q_2}, \overline{q_1} \land \overline{q_2})$$
 $g(b,(q_1,q_2)) = (q_1 \land \overline{q_2}, \overline{q_1} \lor q_2)$
 $F = \{q_2\}, \quad h(q_1,q_2) = \overline{q_1} \lor q_2$
 $q_1 = 0, q_2 = 0$
 $q_1 = 1, q_2 = 0$
 $q_1 = 1, q_2 = 1$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

$$egin{aligned} g(a,(q_1,q_2))&=(q_1ee\overline{q_2},\overline{q_1}\wedge\overline{q_2})\ g(b,(q_1,q_2))&=(q_1\wedge\overline{q_2},\overline{q_1}ee q_2)\ F&=\{q_2\}, \qquad h(q_1,q_2)&=\overline{q_1}ee q_2 \end{aligned}$$

And so on...

Equivalence of DFAs and r-AFAs

 $r\text{-AFAs} \sim regular\ languages$

Equivalence of DFAs and r-AFAs

 $r\text{-AFAs} \sim regular\ languages$

Regular languages are closed under reversion

Equivalence of DFAs and r-AFAs

 $r\text{-AFAs} \sim regular\ languages$

Regular languages are closed under reversion

 \Rightarrow h-AFAs \sim regular languages

Concatenation of two *r*-AFAs

Two r-AFAs:

$$A_1 = (Q_1, \Sigma, g_1, h_1, F_1), \quad A_2 = (Q_2, \Sigma, g_2, h_2, F_2)$$

Concatenation of two *r*-AFAs

Two r-AFAs:

$$A_1 = (Q_1, \Sigma, g_1, h_1, F_1), \quad A_2 = (Q_2, \Sigma, g_2, h_2, F_2)$$

Target: r-AFA $A = (Q, \Sigma, g, h, F)$ with $L(A) = L(A_1) \cdot L(A_2)$.

Zacatecas

Z•acatecas

Za•catecas

Let $n := |Q_1|$ and $m := |Q_2|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

▶ n states to simulate the one run of A_1 .

- ▶ n states to simulate the one run of A_1 .
- ▶ 2^m states to simulate each run in parallel

- ▶ *n* states to simulate the one run of A_1 .
- ▶ 2^m states to simulate each run in parallel for each subset of Q_2 we store if there's a copy of A_2 in exactly these states.

- \triangleright *n* states to simulate the one run of A_1 .
- ▶ 2^m states to simulate each run in parallel for each subset of Q_2 we store if there's a copy of A_2 in exactly these states.

$$Q = \{\underbrace{q_0, \dots, q_{n-1}}_{n \text{ states}}, \underbrace{p_0, \dots, p_{2^m-1}}_{m \text{ states}}\}$$

Let $n := |Q_1|$ and $m := |Q_2|$, w.l.o.g $m \neq 0$ and $n \neq 0$. Then we need:

- \triangleright *n* states to simulate the one run of A_1 .
- ▶ 2^m states to simulate each run in parallel for each subset of Q_2 we store if there's a copy of A_2 in exactly these states.

$$Q = \{\underbrace{q_0, \dots, q_{n-1}}_{n \text{ states}}, \underbrace{p_0, \dots, p_{2^m-1}}_{m \text{ states}}\}$$

Each subset $x \in 2^{Q_2}$ is associated to a state p_x .

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L(A_1)$ A should be forced to start with A_1 : $F = F_1$,

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L(A_1)$ A should be forced to start with A_1 : $F = F_1$, otherwise it can also directly launch a copy of A_2 ,

Concatenation of two r-AFAs: Where to start?

If $\varepsilon \notin L(A_1)$ A should be forced to start with A_1 : $F = F_1$, otherwise it can also directly launch a copy of A_2 , formally:

$$F = F_1 \cup \{p_{f_2}\}$$

Concatenation of two r-AFAs: Accepting

h has only to care for A_2 , formally:

Concatenation of two r-AFAs: Accepting

h has only to care for A_2 , formally:

$$h(v) = 1 \Leftrightarrow \exists x \in [0, 2^m - 1]. \underbrace{v_{n+x}}_{\neg p_x} = 1 \land h_2(x) = 1$$

A₁: Zacat

A has to run A_1 on the whole input word without any possibility of interruption:

$$g(a, v)|_{Q_1} = g_1(a, v|_{Q_1})$$

Copies of A_2 should work parallel on the states p_k $(k \ge 0)$

Copies of A_2 should work parallel on the states p_k $(k \ge 0)$

 $\Rightarrow p_k$ should be reached from p_j iff

Copies of A_2 should work parallel on the states p_k $(k \ge 0)$

 $\Rightarrow p_k$ should be reached from p_j iff A_2 reaches k from j.

Copies of A_2 should work parallel on the states p_k $(k \ge 0)$

 $\Rightarrow p_k$ should be reached from p_j iff A_2 reaches k from j.

formally:

For all
$$k \geq 0, k \neq f_2$$

$$g(p_k, a, v) = 1 \Leftrightarrow \exists j \in [0, 2^m - 1]. \ v_{n+j} = 1 \land g_2(a, j) = k$$

The state p_{f_2} can be reached:

The state p_{f_2} can be reached:

as before and

The state p_f can be reached:

- as before and
- if A_1 accepts a substring.

The state p_f can be reached:

- as before and
- if A_1 accepts a substring.

Formally:

$$g(p_{f_2}, a, v) = 1 \Leftrightarrow (\exists j \in [0, 2^m - 1]. \ v_{n+j} = 1 \land g_2(a, j) = f_2)$$

 $\lor h_1(g(a, v)|_{Q_1}) = 1$

Concatenation of two r-AFAs

Then
$$L(A) = L(A_1) \cdot L(A_2)$$
.

Sources

Literature:

- ▶ Efficient implementation of regular languages using reversed alternating finite automata, K. Salomaa, X. Wu, S. Yu, Theoretical Computer Science, Elsevier, 17 January 2000
- ► Implementing Reversed Alternating Finite Automaton (r-AFA) Operations, S. Huerter, K. Salomaa, Xiuming Wu, S. Yu

Sources

Literature:

- ▶ Efficient implementation of regular languages using reversed alternating finite automata, K. Salomaa, X. Wu, S. Yu, Theoretical Computer Science, Elsevier, 17 January 2000
- Implementing Reversed Alternating Finite Automaton (r-AFA)
 Operations, S. Huerter, K. Salomaa, Xiuming Wu, S. Yu

Pictures:

- ► A₁: Larry D. Moore CC BY-SA 3.0.
- ► A₂: Disney/Pixar

Thank you!

Acceptance-checking for AFAs allows working with multiple states in parallel.

Acceptance-checking for AFAs allows working with multiple states in parallel.

 \Rightarrow For both the intersection and the union of two AFAs A_1 and A_2 , one can run both AFAs in one AFA $A = (Q, \Sigma, g, h, F)$:

Acceptance-checking for AFAs allows working with multiple states in parallel.

- \Rightarrow For both the intersection and the union of two AFAs A_1 and A_2 , one can run both AFAs in one AFA $A = (Q, \Sigma, g, h, F)$:
 - $ightharpoonup Q = Q_1 \cup Q_2$

Acceptance-checking for AFAs allows working with multiple states in parallel.

- \Rightarrow For both the intersection and the union of two AFAs A_1 and A_2 , one can run both AFAs in one AFA $A = (Q, \Sigma, g, h, F)$:
 - $ightharpoonup Q_1 \cup Q_2$

 - ▶ $h = h_1 \lor h_2$ (union) resp. $h = h_1 \land h_2$ (intersection).
 - $F = F_1 \cup F_2$

Additional operations: Complemet

For the complement B of an AFA A, define $h_B = \overline{h_A}$.