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Foundations: Propositional Logic



Syntax of Propositional Logic

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2

¬F “not” (negation)
(F1 ∧ F2) “and” (conjunction)
(F1 ∨ F2) “or” (disjunction)
(F1 → F2) “implies” (implication)
(F1 ↔ F2) “if and only if” (iff)
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Example: Syntax

formula F : ((P ∧ Q) → (> ∨ ¬Q))
atoms: P,Q,>
literal: ¬Q
subformulas: (P ∧ Q), (> ∨ ¬Q)
abbreviation

F : P ∧ Q → > ∨ ¬Q
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Semantics (meaning) of PL

Formula F and Interpretation I is evaluated to a truth value 0/1
where 0 corresponds to value false

1 true

Interpretation I : {P 7→ 1,Q 7→ 0, · · · }

Evaluation of logical operators:

F1 F2 ¬F1 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0
1

0 0 1 1
0 1 0 1 1 0

1 0
0

0 1 0 0
1 1 1 1 1 1
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Example: Semantics

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ 1,Q 7→ 0}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I
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Inductive Definition of PL’s Semantics

I |= F if F evaluates to 1 / true under I
I 6|= F 0 / false

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = 1
I 6|= P iff I [P] = 0

Inductive Case:
I |= ¬F iff I 6|= F
I |= F1 ∧ F2 iff I |= F1 and I |= F2

I |= F1 ∨ F2 iff I |= F1 or I |= F2

I |= F1 → F2 iff, if I |= F1 then I |= F2

I |= F1 ↔ F2 iff, I |= F1 and I |= F2,
or I 6|= F1 and I 6|= F2
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Example: Inductive Reasoning

F : P ∧ Q → P ∨ ¬Q

I : {P 7→ 1, Q 7→ 0}

1. I |= P since I [P] = 1
2. I 6|= Q since I [Q] = 0
3. I |= ¬Q by 2, ¬
4. I 6|= P ∧ Q by 2, ∧
5. I |= P ∨ ¬Q by 1, ∨
6. I |= F by 4, → Why?

Thus, F is true under I .
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Satisfiability and Validity

Definition (Satisfiability)

F is satisfiable iff there exists an interpretation I such that I |= F .

Definition (Validity)

F is valid iff for all interpretations I , I |= F .

Note

F is valid iff ¬F is unsatisfiable

Proof.

F is valid iff ∀I : I |= F iff ¬∃I : I 6|= F iff ¬F is unsatisfiable.

Decision Procedure: An algorithm for deciding validity or satisfiability.
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Examples: Satisfiability and Validity

Now assume, you are a decision procedure.

Which of the following formulae is satisfiable, which is valid?

F1 : P ∧ Q satisfiable, not valid

F2 : ¬(P ∧ Q) satisfiable, not valid

F3 : P ∨ ¬P satisfiable, valid

F4 : ¬(P ∨ ¬P) unsatisfiable, not valid

F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q unsatisfiable, not valid

Is there a formula that is unsatisfiable and valid?
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Method 1: Truth Tables

F : P ∧ Q → P ∨ ¬Q

P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1
0 1 0 0 0 1

1 0 0 1 1 1
1 1 1 0 1 1

Thus F is valid.

F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F
0 0 0 0 1 ← satisfying I
0 1 1 0 0 ← falsifying I
1 0 1 0 0
1 1 1 1 1

Thus F is satisfiable, but invalid.
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Method 2: Semantic Argument (Semantic Tableaux)

Assume F is not valid and I a falsifying interpretation: I 6|= F

Apply proof rules.

If no contradiction reached and no more rules applicable, F is invalid.

If in every branch of proof a contradiction reached, F is valid.
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Semantic Argument: Proof rules

I |= ¬F

I 6|= F

I 6|= ¬F

I |= F

I |= F ∧ G

I |= F
I |= G

←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F
I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F
I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F

I |= ⊥
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Example

Prove F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption
2. I |= P ∧ Q 1, Rule →
3. I 6|= P ∨ ¬Q 1, Rule →
4. I |= P 2, Rule ∧
5. I 6|= P 3, Rule ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.
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Example 2

Prove F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption
2. I |= (P → Q) ∧ (Q → R) 1, Rule →
3. I 6|= P → R 1, Rule →
4. I |= P 3, Rule →
5. I 6|= R 3, Rule →
6. I |= P → Q 2, Rule ∧
7. I |= Q → R 2, Rule ∧

8a. I 6|= P
9a. I |= ⊥

∣∣∣∣∣∣
8b. I |= Q 6 →

9ba. I 6|= Q
10ba. I |= ⊥

∣∣∣∣ 9bb. I |= R
10bb. I |= ⊥

Our assumption is incorrect in all cases — F is valid.
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Example 3

Is F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption
2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

4a. I |= P 2 and ∨
5aa. I 6|= P
6aa. I |= ⊥

∣∣∣∣ 5ab. I 6|= Q

∣∣∣∣∣∣
4b. I |= Q 2 and ∨

5ba. I 6|= P
∣∣∣∣ 5bb. I 6|= Q

6bb. I |= ⊥

We cannot always derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in all cases for F to be valid.
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Normal Forms

Idea: Simplify decision procedure, by simplifying the formula first.
Convert it into a simpler normal form, e.g.:

Negation Normal Form: No → and no ↔; negation only before atoms.

Conjunctive Normal Form: Negation normal form, where conjunction is outside,
disjunction is inside.

Disjunctive Normal Form: Negation normal form, where disjunction is outside,
conjunction is inside.

The formula in normal form should be equivalent to the original input.
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Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!
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Equivalence is a Congruence relation

If F1 ⇔ F ′1 and F2 ⇔ F ′2, then

¬F1 ⇔ ¬F ′1
F1 ∨ F2 ⇔ F ′1 ∨ F ′2
F1 ∧ F2 ⇔ F ′1 ∧ F ′2
F1 → F2 ⇔ F ′1 → F ′2
F1 ↔ F2 ⇔ F ′1 ↔ F ′2

if we replace in a formula F a subformula F1 by F ′1 and obtain F ′, then F ⇔ F ′.
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Negation Normal Form (NNF)

Negations appear only in literals. (only ¬,∧,∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)
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Example: Negation Normal Form

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into NNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (¬¬Q2 ∨ R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2)

The last formula is equivalent to F and is in NNF.
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Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist
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Example

Convert F : (Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2) into DNF

(Q1 ∨ ¬¬R1) ∧ (¬Q2 → R2)
⇔ (Q1 ∨ R1) ∧ (Q2 ∨ R2) in NNF
⇔ (Q1 ∧ (Q2 ∨ R2)) ∨ (R1 ∧ (Q2 ∨ R2)) dist
⇔ (Q1 ∧ Q2) ∨ (Q1 ∧ R2) ∨ (R1 ∧ Q2) ∨ (R1 ∧ R2) dist

The last formula is equivalent to F and is in DNF. Note that formulas can grow
exponentially.
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Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)
F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

A disjunction of literals P1 ∨ P2 ∨ ¬P3 is called a clause.
For brevity we write it as set: {P1,P2,P3}.
A formula in CNF is a set of clauses (a set of sets of literals).
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Equisatisfiability

Definition (Equisatisfiability)

F and F ′ are equisatisfiable, iff

F is satisfiable if and only if F ′ is satisfiable

Every formula is equisatifiable to either > or ⊥.
There is a efficient conversion of F to F ′ where

F ′ is in CNF and

F and F ′ are equisatisfiable

Note: efficient means polynomial in the size of F .
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Conversion to CNF

Basic Idea:

Introduce a new variable PG for every subformula G ;
unless G is already an atom.

For each subformula G : G1 ◦ G2 produce a small formula PG ↔ PG1 ◦ PG2 .

encode each of these (small) formulae separately to CNF.

The formula
PF ∧

∧
G

CNF (PG ↔ PG1 ◦ PG2)

is equisatisfiable to F .
The number of subformulae is linear in the size of F .
The time to convert one small formula is constant!
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Example: CNF

Convert F : P ∨ Q → P ∧ ¬R to CNF.
Introduce new variables: PF , PP∨Q , PP∧¬R , P¬R . Create new formulae and convert
them to CNF separately:

PF ↔ (PP∨Q → PP∧¬R) in CNF:

F1 : {{PF ,PP∨Q ,PP∧¬R}, {PF ,PP∨Q}, {PF ,PP∧¬R}}

PP∨Q ↔ P ∨ Q in CNF:

F2 : {{PP∨Q ,P ∨ Q}, {PP∨Q ,P}, {PP∨Q ,Q}}

PP∧¬R ↔ P ∧ P¬R in CNF:

F3 : {{PP∧¬R ∨ P}, {PP∧¬R ,P¬R}, {PP∧¬R ,P,P¬R}}

P¬R ↔ ¬R in CNF: F4 : {{P¬R ,R}, {P¬R ,R}}
{{PF}} ∪ F1 ∪ F2 ∪ F3 ∪ F4 is in CNF and equisatisfiable to F .
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Algorithm to decide PL formulae in CNF.

Published by Davis, Logemann, Loveland (1962).

Often miscited as Davis, Putnam (1960), which describes a different algorithm.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF

Decision Procedure DPLL: Given F in CNF

let rec dpll F =
let F ′ = prop F in

let F ′′ = plp F ′ in

if F ′′ = > then true

else if F ′′ = ⊥ then false

else

let P = choose vars(F ′′) in

(dpll F ′′{P 7→ >}) ∨ (dpll F ′′{P 7→ ⊥})

Jochen Hoenicke (Software Engineering) Decision Procedures Summer 2013 29 / 51



Unit Propagagion

Unit Propagation (prop)

If a clause contains one literal `,

Set ` to >.

Remove all clauses containing `.

Remove ¬` in all clauses.

Based on resolution
` ¬` ∨ C ← clause

C
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Pure Literal Propagagion

Pure Literal Propagation (PLP)

If P occurs only positive (without negation), set it to >.
If P occurs only negative set it to ⊥.
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

Branching on Q
F{Q 7→ >} : (R) ∧ (¬R) ∧ (P ∨ ¬R)

By unit resolution
R (¬R)

⊥
F{Q 7→ >} = ⊥ ⇒ false

On the other branch
F{Q 7→ ⊥} : (¬P ∨ R)
F{Q 7→ ⊥, R 7→ >, P 7→ ⊥} = > ⇒ true

F is satisfiable with satisfying interpretation

I : {P 7→ false, Q 7→ false, R 7→ true}
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Example

F : (¬P ∨ Q ∨ R) ∧ (¬Q ∨ R) ∧ (¬Q ∨ ¬R) ∧ (P ∨ ¬Q ∨ ¬R)

F

(R) ∧ (¬R) ∧ (P ∨ ¬R) (¬P ∨ R)

R (¬R)

⊥ ¬P

I : {P 7→ false, Q 7→ false, R 7→ true}

Q 7→ > Q 7→ ⊥

R 7→ >

P 7→ ⊥
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Knight and Knaves

A island is inhabited only by knights and knaves. Knights always tell the truth, and
knaves always lie. You meet four inhabitants: Alice, Bob, Charles and Doris.

Alice says that Doris is a knave.

Bob tells you that Alice is a knave.

Charles claims that Alice is a knave.

Doris tells you, ‘Of Charles and Bob, exactly one is a knight.’
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Knight and Knaves

Let A denote that Alice is a Knight, etc. Then:

A ↔ ¬D

B ↔ ¬A

C ↔ ¬A

D ↔ ¬(C ↔ B)

In CNF:

{A,D}, {A,D}
{B,A}, {B,A}
{C ,A}, {C ,A}
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}
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Solving Knights and Knaves

F : {{A,D}, {A,D}, {B,A}, {B,A}, {C ,A}, {C ,A},
{D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop and plp are not applicable. Decide on A:

F{A 7→ ⊥} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop yields F{A 7→ ⊥,D 7→ >,B 7→ >,C 7→ >} : ⊥
Unsatisfiable! Now set A to >:

F{A 7→ >} : {{D}, {B}, {C}, {D,C ,B}, {D,C ,B}, {D,C ,B}, {D,C ,B}}

prop yields F{A 7→ >,D 7→ ⊥,B 7→ ⊥,C 7→ ⊥} : >
Satisfying assignment!
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Learning is Useful

Consider the following problem:

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

For some literal orderings, we need exponentially many steps.
Note, that

{{Ai ,Bi}, {Pi−1,Ai ,Pi}, {Pi−1,Bi ,Pi}} ⇒ {{Pi−1,Pi}}

If we learn the right clauses, unit propagation will immediately give unsatisfiable.
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Partial Assignments and Unit/Conflict Clauses

Instead of changing clause set, only remember the literal assignment. When you
assign true to a literal `,also assign false to `.
For a partial assignment

A clause is true if one of its literals is assigned true.

A clause is a conflict clause if all its literals are assigned false.

A clause is a unit clause if all but one literals are assigned false and the last
literal is unassigned.

If the assignment of a literal from a conflict clause is removed we get a unit clause.
Explain unsatisfiability of partial assignment by conflict clause and learn it!
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Conflict Driven Clause Learning (CDCL)

Idea: Explain unsatisfiability of partial assignment by conflict clause and learn it!

If a conflict is found we return the conflict clause.

If variable in conflict were derived by unit propagation
use resolution rule to generate a new conflict clause.

If variable in conflict was derived by decision,
use learned conflict as unit clause
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DPLL with Learning (CDCL)

We describe DPLL by a set of rules modifying a configuration.
A configuration is a triple

〈M,F ,C 〉 ,

where

M (model) is a sequence of literals (that are currently set to true) interspersed
with backtracking points denoted by �.

F (formula) is a formula in CNF,
i. e., a set of clauses where each clause is a set of literals.

C (conflict) is either > or a conflict clause (a set of literals).
A conflict clause C is a clause with F ⇒ C and M 6|= C .
Thus, a conflict clause shows M 6|= F .
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Rule Based Description

We describe the algorithm by a set of rules, which each describe a set of transitions
between configurations, e. g.,

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Here, ¯̀
1, . . . , ¯̀

k ≺ ` in M means the literals ¯̀
1, . . . , ¯̀

k occur in the sequence M
before the literal ` (and all literals appear in M).

Example: for M = P1P̄3P̄2P̄4, F = {{P1}, {P3, P̄4}}, and C = {P2} the
transition

〈M,F , {P2,P4}〉 −→ 〈M,F , {P2,P3}〉

is possible.
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Rules for CDCL (Conflict Driven Clause Learning)

Decide
〈M,F ,>〉

〈M · � · `,F ,>〉
where ` ∈ lit(F ), `, ¯̀ 6in M

Propagate
〈M,F ,>〉
〈M · `,F ,>〉

where {`1, . . . , `k , `} ∈ F
and ¯̀

1, . . . , ¯̀
k in M, `, ¯̀ 6in M.

Conflict
〈M,F ,>〉

〈M,F , {`1, . . . , `k}〉
where {`1, . . . , `k} ∈ F
and ¯̀

1, . . . , ¯̀
k in M.

Explain
〈M,F ,C ∪ {`}〉

〈M,F ,C ∪ {`1, . . . , `k}〉
where ` /∈ C , {`1, . . . , `k , ¯̀} ∈ F ,
and ¯̀

1, . . . , ¯̀
k ≺ ¯̀ in M.

Learn
〈M,F ,C 〉

〈M,F ∪ {C},C 〉
where C 6= >, C /∈ F .

Back
〈M,F , {`1, . . . , `k , `}〉
〈M ′ · `,F ,>〉

where {`1, . . . , `k , `} ∈ F ,
M = M ′ · � · · · ¯̀· · · ,
and ¯̀

1, . . . , ¯̀
k in M ′.
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Example: DPLL with Learning

P1 ∧ (¬P2 ∨ P3) ∧ (¬P4 ∨ P3) ∧ (P2 ∨ P4) ∧ (¬P1 ∨ ¬P4 ∨ ¬P3) ∧ (P4 ∨ ¬P3)

The algorithm starts with M = ε, C = > and
F = {{P1}, {P̄2,P3}, {P̄4,P3}, {P2,P4}, {P̄1, P̄4, P̄3}, {P4, P̄3}}.

〈ε,F ,>〉 Propagate−→ 〈P1,F ,>〉
Decide−→ 〈P1�P̄2,F ,>〉

Propagate−→
〈P1�P̄2P4,F ,>〉

Propagate−→ 〈P1�P̄2P4P3,F ,>〉
Conflict−→

〈P1�P̄2P4P3,F , {P̄1, P̄4, P̄3}〉
Explain−→ 〈P1�P̄2P4P3,F , {P̄1, P̄4}〉

Learn−→
〈P1�P̄2P4P3,F

′, {P̄1, P̄4}〉
Back−→ 〈P1P̄4,F

′,>〉 Propagate−→ 〈P1P̄4P2P3,F
′,>〉 Conflict−→

〈P1P̄4P2P3,F
′, {P4, P̄3}〉

Explain−→ 〈P1P̄4P2P3,F
′, {P4, P̄2}〉

Explain−→
〈P1P̄4P2P3,F

′, {P4}〉
Explain−→ 〈P1P̄4P2P3,F

′, {P̄1}〉
Explain−→ 〈P1P̄4P2P3,F

′, ∅〉 Learn−→
〈P1P̄4P2P3,F

′ ∪ {∅}, ∅〉

where F ′ = F ∪ {{P̄1, P̄4}}.
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Example

{{A1,B1}, {P0,A1,P1}, {P0,B1,P1}, {A2,B2}, {P1,A2,P2}, {P1,B2,P2},
. . . , {An,Bn}, {Pn−1,An,Pn}, {Pn−1,Bn,Pn}, {P0}, {Pn}}

Unit propagation sets P0 and Pn: 〈ε,F ,>〉 Propagate−→ 〈P0Pn,F ,>〉
Decide A1−→ Propagate P1−→ 〈P0Pn�A1P1,F ,>〉
Continue until 〈P0Pn�A1P1 . . .�An−2Pn−1,F ,>〉.
Propagate An and Bn−→ 〈. . .An−2Pn−1AnBn,F ,>〉.
Conflict−→ 〈. . .�An−2Pn−1AnBn,F , {An,Bn}〉
Explain−→

∗
〈. . .�An−2Pn−1AnBn,F , {Pn−1,Pn}〉.

The explained clause can be learned. One can now backtrack to the first

decision point:
Learn−→Back−→ 〈P0PnPn−1,F

′,>〉.
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Correctness of CDCL

Theorem (Correctness of CDCL)

Let F be a propositional formula in CNF. Let

〈ε,F ,>〉 = 〈M0,F0,C0〉 −→ . . . −→ 〈Mn,Fn,Cn〉

be a maximal sequence of rule application of CDCL. Then F is satisfiable iff Cn is >.

Before proving the theorem, we note some important invariants:

Mi never contains a literal more than once.
Mi never contains ` and ¯̀.
Every � in Mi is followed immediately by a literal.
If Ci = {`1, . . . , `k} then ¯̀

1, . . . , ¯̀
k in M.

Ci is always logically implied by Fi .
F is equivalent to Fi for all steps i of the computation.
If a literal ` in M is not immediately preceded by �, then F contains a clause
{`, `1, . . . , `k} and ¯̀

1, . . . , ¯̀
k ≺ ` in M.
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Correctness proof

Proof: If the sequence ends with 〈Mn,Fn,>〉 and there is no rule applicable, then:

Since Decide is not applicable, all literals of Fn appear in Mn either positively or
negatively.

Since Conflict is not applicable, for each clause at least one literal appears in
Mn positively.

Thus, Mn is a model for Fn, which is equivalent to F .

If the sequence ends with 〈Mn,Fn,Cn〉 with Cn 6= >.
Assume Cn = {`1, . . . , `k , `} 6= ∅. W.l.o.g., ¯̀

1, . . . , ¯̀
k ≺ ¯̀. Then:

Since Learn is not applicable, Cn ∈ Fn.

Since Explain is not applicable ¯̀ must be immediately preceded by �.

However, then Back is applicable, contradiction!

Therefore, the assumption was wrong and Cn = ∅ (= ⊥).
Since Fn implies Cn and F is equivalent to Fn, F is not satisfiable.
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Functional Implementation of CDCL

The functions dpll and prop return a conflict clause or satisfiable.

let rec dpll =
let prop U =

. . .
if conflictclauses 6= ∅

choose conflictclauses
else if unitclauses 6= ∅

prop (choose unitclauses)
else if coreclauses 6= ∅

let ` = choose (
⋃

coreclauses) ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable) satisfiable
else

val[`] := undef

if (` /∈ C) C
else learn C ; prop C

else satisfiable
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Unit propagation

The function prop takes a unit clause and does unit propagation. It calls dpll
recursively and returns a conflict clause or satisfiable. recursively:

let prop U =
let ` = choose U ∩ unassigned in

val[`] := >
let C = dpll in

if (C = satisfiable)
satisfiable

else

val[`] := undef

if (` /∈ C ) C

else U \ {`} ∪ C \ {`}
The last line does resolution:

` ∨ C1 ¬` ∨ C2

C1 ∨ C2
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DPLL versus CDCL
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Some Notes about DPLL with Learning

Pure Literal Propagation is unnecessary:
A pure literal is always chosen right and never causes a conflict.

Modern SAT-solvers use this procedure but differ in

heuristics to choose literals/clauses.
efficient data structures to find unit clauses.
better conflict resolution to minimize learned clauses.
restarts (without forgetting learned clauses).

Even with the optimal heuristics DPLL is still exponential:
The Pidgeon-Hole problem requires exponential resolution proofs.
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Summary

Syntax and Semantics of Propositional Logic

Methods to decide satisfiability/validity of formulae:

Truth table
Semantic Tableaux
DPLL

Run-time of all algorithm is worst-case exponential in length of formula.

Deciding satisfiability is NP-complete.
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